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Most eukaryotic transcription factors (TFs) are part of large protein families, with members of the same family (i.e., paral-

ogous TFs) recognizing similar DNA-binding motifs but performing different regulatory functions. Many TF paralogs are

coexpressed in the cell and thus can compete for target sites across the genome. However, this competition is rarely taken

into account when studying the in vivo binding patterns of eukaryotic TFs. Here, we show that direct competition for DNA

binding between TF paralogs is a major determinant of their genomic binding patterns. Using yeast proteins Cbf1 and Pho4

as our model system, we designed a high-throughput quantitative assay to capture the genomic binding profiles of compet-

ing TFs in a cell-free system. Our data show that Cbf1 and Pho4 greatly influence each other’s occupancy by competing for

their common putative genomic binding sites. The competition is different at different genomic sites, as dictated by the TFs’

expression levels and their divergence in DNA-binding specificity and affinity. Analyses of ChIP-seq data show that the bio-

physical rules that dictate the competitive TF binding patterns in vitro are also followed in vivo, in the complex cellular en-

vironment. Furthermore, the Cbf1-Pho4 competition for genomic sites, as characterized in vitro using our new assay, plays a

critical role in the specific activation of their target genes in the cell. Overall, our study highlights the importance of direct

TF-TF competition for genomic binding and gene regulation by TF paralogs, and proposes an approach for studying this

competition in a quantitative and high-throughput manner.

[Supplemental material is available for this article.]

Transcription factor (TF) proteins recognize specific DNA targets
across the genome to regulate gene expression. In order to control
precise cellular functions, TFs cooperate and competewith one an-
other, forming complex gene regulatory networks (Zhou and
O’Shea 2011; Jolma et al. 2015; Morgunova and Taipale 2017).
Cooperative interactions between TFs, which are typically driven
by direct contacts between compatible protein domains, have
been extensively studied (Wotton et al. 1994; Jolma et al. 2015;
Morgunova and Taipale 2017). TF competition, however, is still
poorly understood, as few studies have directly addressed compet-
itive interactions between TFs and the role of competitive binding
in gene regulation (Miyamoto et al. 1997; Noro et al. 2011; Zhou
andO’Shea 2011; Aowet al. 2013). TFs can compete for DNA bind-
ing whenever their target sites have partial or complete overlap. In
the case of paralogous factors, that is, TFs from the same protein
family, competition is especially important. TF paralogs arose
from gene duplication and divergence during evolution (Fig. 1A)
and are often associated with increased organismal complexity
(Laudet et al. 1999; Banerjee-Basu and Baxevanis 2001;
Amoutzias et al. 2007; Nitta et al. 2015; Murre 2019). Being con-
served in their DNA-binding domains (DBDs), paralogous TFs
have similar DNA binding specificities and share a large fraction

of their putative target sites (Chen and Rajewsky 2007; Berger
et al. 2008; Noyes et al. 2008; Singh and Hannenhalli 2008;
Badis et al. 2009; Wei et al. 2010; Nakagawa et al. 2013;
Weirauch et al. 2014; Shen et al. 2018).Most eukaryotic TFs belong
to large protein families (Henikoff et al. 1997; Lin et al. 2008;
Lambert et al. 2018), and coexpression of paralogs is common
(see Discussion).

Whenever two or more paralogs are present in the nucleus at
the same time, they may compete for DNA binding at their com-
mon target sites, with the potential for competitive binding being
maintained throughout evolution (see Discussion). This also
implies that the TFs’ in vivo binding patterns, as assayed by chro-
matin immunoprecipitation coupled with high-throughput se-
quencing (ChIP-seq) and related techniques (Johnson et al.
2007; Rhee and Pugh 2012; He et al. 2015; Skene et al. 2018), are
implicitly capturing the effects of TF-TF competition, although
these effects are rarely studied explicitly on a genome-wide scale.
Nevertheless, the important role that competition can play in
gene regulation has been investigated for certain TFs and focusing
on particular genomic sites. A prominent example is that of Hox
proteins in Drosophila, where paralogs with slightly different
DNA-binding specificities, driven by cofactor interactions, have
been shown to compete at regulatory sites and tune gene expres-
sion during development (Noro et al. 2011; Slattery et al. 2011;
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Crocker et al. 2015). The mammalian nuclear hormone receptor
superfamily is another example, where peroxisome proliferator-ac-
tivated receptor (PPAR) and thyroid hormone receptor (THR) pro-
teins directly compete for binding to response elements involved
in regulating lipid metabolism, cell growth, and differentiation
(Miyamoto et al. 1997). In fungi, a well-known example of com-
petitive TF-DNAbinding is that of Saccharomyces cerevisiaebasic he-
lix-loop-helix (bHLH) proteins Cbf1 and Pho4, which perform
different regulatory functions in the cell despite having similar
DNA-binding specificities (Zhou and O’Shea 2011; Aow et al.
2013).

The result of competitive DNA binding between two paralogs
can be difficult to predict. In the trivial casewhere their DNA-bind-
ing domains remain highly conserved during evolution and thus
their specificity and affinity forDNA remain unchanged, wewould
expect the relative genomic occupancies of the paralogs to be pro-
portional to their concentrations in the nucleus (Fig. 1A, upper
panel), with any in vivo deviations from this pattern being due
to the nuclear environment. Often, however, the DBDs of paralo-
gous TFs accumulate mutations over time and the TFs start to
diverge in specificity, especially atmedium- and low-affinity target
sites (Berger et al. 2008; Badis et al. 2009; Wei et al. 2010; Gordân
et al. 2013; Shen et al. 2018). The differences in specificity and/or
affinity between paralogs, which are intrinsically encoded in the
DNA sequence, can lead to complex patterns of competitive bind-
ing (Fig. 1A, lower panel) even in the absence of additional effects
from the nuclear environment. Currently, though, our under-
standing of competitive TF binding and its role in gene regulation
is limited, andwe lack the ability to predict how competition influ-
ences the genomic binding of individual TFs, both in vitro and
in vivo.

Here, we use S. cerevisiae bHLH proteins Cbf1 and Pho4 as a
model system to develop a high-throughput approach for charac-
terizing TF-TF competition in vitro and exploring its role in TF
binding and gene regulation in vivo. The bHLH domain is an es-
sential DNA-binding domain that is highly conserved across eu-
karyotes (Jones 2004). Genes encoding this domain arose in
early eukaryotes and then duplicated and diversified to give rise
to proteins involved in critical cellular processes such as prolifera-
tion, differentiation, metabolism, and environmental response
(Sailsbery and Dean 2012; Murre 2019). The domain was first elu-
cidated in animals, where six major bHLH groups (A–F) were iden-
tified (Atchley and Fitch 1997). Fungal bHLH proteins, including
Cbf1 and Pho4 (Robinson and Lopes 2000), are most closely relat-
ed to group B—which includes mammalian factors such as MYC,
MLX, and MITF and is believed to have been present in the com-
mon ancestor of fungi and animals (Sailsbery and Dean 2012;
Sailsbery et al. 2012). This group of bHLHs is characterized by a
conserved BxR motif at positions 5, 8, and 13 in the basic region
of the DNA-binding domain (where B=H or K, and x stands for
any amino acid) (Supplemental Fig. S1; Supplemental Table S1;
Atchley and Fitch 1997; Sailsbery and Dean 2012). Similarly to
group B bHLHs from other eukaryotes, S. cerevisiae Cbf1 and
Pho4 recognize canonical CAnnTG E-box binding sites, with a
strong preference for CACGTG (Atchley and Fitch 1997; Harbison
et al. 2004; Maerkl and Quake 2007; Badis et al. 2008; Zhu et al.
2009). However, their quantitative binding levels to individual
sites are different, depending on the genomic sequence context
(Fig. 1B,C; Supplemental Fig. S1B; Gordân et al. 2013).

In addition to their highly conserved DNA-binding domain
and their similar DNA-binding preferences, Cbf1 and Pho4 are
an ideal system for our study because their competition for DNA
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Figure 1. Paralogous TFs compete for DNA binding. (A) Schematic showing different TF-TF competition scenarios. If paralogous TFs have identical DNA-
binding preferences, then their binding is determined by the levels of the TFs in the nucleus (top panels). However, most paralogs have diverged in spe-
cificity, binding differently at different sites even in the absence of other proteins (Berger et al. 2008; Badis et al. 2009; Wei et al. 2010; Gordân et al. 2013;
Shen et al. 2018); this divergence leads to complex patterns of competitive binding, which depend on the TFs’ affinities and concentrations (bottom pan-
els). (B) S. cerevisiae proteins Cbf1 and Pho4 s have similar, although not identical, DNA-binding specificities, as reflected by their position weight matrix
(PWM) models (Sandelin et al. 2004). (C) Direct comparison between the in vitro binding levels of Cbf1 and Pho4 at their putative genomic binding sites,
measured by genomic-context PBM (Gordân et al. 2013). Each data point corresponds to a 36-bp genomic region centered on a CACGTG site. Plot shows
the fluorescence intensities from PBM assays, which are proportional to the level of bound TF at each genomic site. We note that fluorescence intensities are
generally not directly comparable between PBM experiments for different proteins (see Supplemental Discussion). However, for all proteins tested, here
and in prior studies (Berger et al. 2006; Siggers et al. 2011; Shen et al. 2018; Afek et al. 2020), the PBM fluorescence intensities correlate quantitatively
with binding energies and equilibrium dissociation constants.
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binding has been shown to be important for Pho4’s function in
the cell. In particular, Pho4 plays an important role in the phos-
phate-responsive (PHO) signaling pathway (Ogawa et al. 2000;
Zhou and O’Shea 2011). Pho4 is generally phosphorylated and lo-
cated in the cytoplasm; when inorganic phosphate (Pi) becomes
limited, Pho4 is dephosphorylated and translocated into the nu-
cleus, where it binds a subset of CACGTG sites previously bound
byCbf1, leading to activationof downstreamgenes,most of which
belong to the PHO regulon (Schneider et al. 1994; O’Neill et al.
1996; Zhou and O’Shea 2011). It remains unclear, though, why
Pho4 competes differently with Cbf1 at different genomic sites
andwhether their direct competition for DNAbinding can explain
their binding patterns genome-wide. Insights into this systemwill
be relevant to the many other bHLH proteins that have duplicated
and evolved into different subfamilies with distinct functions, yet
have maintained similar DNA-binding preferences.

In this study, we aimed to decipher the competitive DNA-
binding patterns of TF paralogs Cbf1 and Pho4 by directly measur-
ing their competition for thousands of genomic binding sites us-
ing a quantitative assay based on the protein-binding microarray
(PBM) technology (Berger and Bulyk 2009; Siggers et al. 2011;
Gordân et al. 2013; Shen et al. 2018). Furthermore, by comparing
our in vitro competitive binding measurements against ChIP-seq
and gene expression data, we aimed to determine whether the di-
rect competition for DNA binding between TF paralogs is relevant
for the TFs’ genomic occupancies and gene regulatory patterns in
the cell.

Results

Measuring the direct competition for DNA binding between

paralogous TFs using “competition PBM”

The genomic binding profiles of TFs in the cell are typically as-
sessed using chromatin immunoprecipitation coupled with
high-throughput sequencing (Johnson et al. 2007), as well as relat-
ed assays such as ChIP-exo (Rhee and Pugh 2012) and Cut&Run
(Skene et al. 2018). Because these assays measure TF binding in
the cell, they implicitly capture any in vivo effects of TF-TF compe-
tition. However, from ChIP data alone it is not possible to decon-
volve the effects of competition from those of cofactors, DNA
accessibility, and other cellular factors that influence TF binding.
In order to isolate the effects of TF-TF competition and understand
its contribution to genomic occupancy and gene regulation,we de-
veloped and used a controlled cell-free system where competitive
binding can be easily quantified and modeled.

Wedeveloped a newassay, called “competition PBM,” that le-
verages the quantitative and high-throughput nature of chip-
based assays known as protein-binding microarrays (Berger et al.
2006), in order to measure the competitive binding profiles of
paralogous TFs (Fig. 2A). Our assay uses DNA libraries containing
tens of thousands of putative genomic binding sites for the com-
peting TFs of interest (here, Cbf1 and Pho4), selected from in
vivo-bound regions (here, ChIP-seq peaks [Johnson et al. 2007;
Zhou and O’Shea 2011]), based on the rationale that these are
the sites where TF-TF competition ismost likely to occur. As in pre-
vious work (Gordân et al. 2013; Shen et al. 2018), we selected can-
didate genomic binding sites using universal PBM data, which
contains comprehensive binding specificity measurements for all
possible 8-mers (Berger andBulyk 2009), andweused a loose cutoff
for calling binding sites in order to cover a wide range of binding
affinities (Methods). Given that paralogs differ in specificity most-

ly at medium- and low-affinity sites, we expect competitive bind-
ing to be different at these sites compared to the high-affinity
sites that are bound similarly by TF paralogs (Shen et al. 2018).

After selecting a large set of genomic sites where competition
between the TFs of interest is likely, we synthesized the DNA li-
brary on a chip and incubated it with the two proteins at different
concentrations relative to each other (Fig. 2B,C; Supplemental
Table S2B). To facilitate the interpretation of the data, we kept
the concentration of one TF paralog constant (we henceforth refer
to this protein as the “main TF”) and varied the concentration of
the competitor. Using a fluorophore-conjugated antibody specific
for the main TF, we measured its DNA-binding level in the pres-
ence of various concentrations of the TF competitor, thus directly
probing the effects of competition.

Competition between Cbf1 and Pho4 determines their in vitro

DNA-binding patterns

We performed competition binding assays using Cbf1 as the main
TF and Pho4 as the competitor TF, which corresponds to their
physiological scenario: Pho4 is typically present at very low (al-
though detectable) levels in the nucleus; in phosphate-limited
conditions, Pho4 is translocated into the nucleus where it com-
petes with Cbf1 for binding to E-box CACGTG sites (O’Neill
et al. 1996; Zhou and O’Shea 2011). Keeping the concentration
of Cbf1 constant at 2 μM, we measured its DNA binding in the
presence of Pho4, with the competitor present at four different
concentrations: 0.05 μM, 0.4 μM, 2 μM, and 8 μM (Fig. 2B;
Supplemental Table S2C). The lowest concentration of Pho4 was
chosen to mimic the wild type Pi-rich conditions in yeast, where
Pho4 is present in the nucleus at a much lower level than Cbf1
and is not expected to significantly compete with Cbf1 at any ge-
nomic site (O’Neill et al. 1996; Komeili andO’Shea 1999; Zhou and
O’Shea 2011). Indeed, our in vitro data confirms that Pho4 has
minimal effects on Cbf1 binding when the two proteins are at
0.05 μM and 2 μM concentrations, respectively (Supplemental
Fig. S2A). Ideally, we would perform the competition PBM assays
at protein concentrations similar to those of active Cbf1 and
Pho4 in the yeast nucleus. Because this information is not avail-
able, we chose a concentration for the main TF that leads to mod-
erate DNA-binding levels, whereas the concentration of the
competitor TF was set to cover a wide dynamic range in order to
capture various competition scenarios. As expected, increasing
the concentration of the competitor TF (Pho4) leads to decreased
DNA binding by the main TF (Cbf1). In fact, most genomic bind-
ing sites, especially in the medium- to low-affinity range, show a
decreased level of Cbf1 binding as the concentration of Pho4 in-
creases (Fig. 2B), with a corresponding increase in Pho4 binding
(Supplemental Fig. S2B, left panel).

The decrease in Cbf1 binding is different at different DNA
sites. At some genomic sites (such as the onemarked with blue cir-
cles and arrows in Fig. 2B), Cbf1 is efficiently outcompeted by
Pho4, as illustrated by a large decrease in Cbf1 binding level as
the Pho4 concentration increases. At the highest concentration
of competitor (8 μM), the binding level of Cbf1 is only 2.6% of
its binding level at the lowest competitor concentration (0.05
μM), illustrating the magnitude of the competition effects. In con-
trast, at the genomic sitemarkedwith red arrows in Figure 2B, even
high levels of Pho4 competitor have nonsignificant effects on
Cbf1-DNA binding (P-values > 0.37) (Supplemental Table S2D).
Overall, our data show that Pho4 competes with Cbf1 differently
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at different genomic regions, even in a simple cell-free system
where no other nuclear factors are present.

The observed differential competition is consistent with the
divergence in DNA-binding specificity and affinity between Cbf1
and Pho4 (Zhou and O’Shea 2011; Le et al. 2018). More broadly,
recent studies have revealed that paralogous TF pairs have diverged
in their intrinsic DNA-binding specificities, especially at medium-
and low-affinity sites, with each paralog having individual prefer-
ences for a subset of DNA sequences (Shen et al. 2018). In the case
of Cbf1 and Pho4, we would expect Pho4 to outcompete Cbf1 ef-
ficiently at Pho4-preferred sites (typically A/C/GCACGTG) but not
at Cbf1-preferred sites (typically TCACGTG) (Supplemental Fig.
S1B; Fisher and Goding 1992). Indeed, this is reflected in our in vi-
tro competition PBM data. To illustrate how the individual prefer-
ences of Cbf1 and Pho4play a role in their competitive binding,we
derived position weight matrix (PWM) motifs for Cbf1 from its
binding data under different competition scenarios (Fig. 2B;
Methods). With competitor Pho4 at a low concentration (0.05
μM), Cbf1 has amotif logo that is highly similar to the one derived
from universal PBM data where Cbf1 was tested individually
(Supplemental Fig. S2C). However, when competitor Pho4 is pre-
sent at a high concentration (8 μM), the core TCACGTG stands

out in the Cbf1 motif due to Cbf1’s preference for TCACGTG ver-
sus Pho4’s preference for A/C/GCACGTG. Cbf1’s preference for a T
upstream of the core CACGTG is more and more evident as the
concentration of Pho4 increases (Fig. 2D; Supplemental Fig.
S2D), which is explained by the fact that A/C/GCACGTG sites
are increasingly occupied by Pho4 and less by Cbf1.

We also performed Cbf1-Pho4 competition assays by consid-
ering Cbf1 as the competitor and studying its influence on Pho4-
DNA binding (Fig. 2C). We kept the Pho4 concentration constant
at 2 μMandmeasured its DNA binding levels with Cbf1 at four dif-
ferent concentrations (0.05 μM, 0.4 μM, 2—M, 8 μM). As expected,
we observed different effects of Cbf1 competition on Pho4 binding
at different genomic sites. In addition, we found that the overall
pattern of competitive binding was different between Cbf1 (Fig.
2B) and Pho4 (Fig. 2C), withmany Pho4 sites being onlymoderate-
ly affected byCbf1 competition. These patterns are consistentwith
the intrinsic differences in DNA-binding preferences between
Cbf1 and Pho4 (Supplemental Fig. S2E), with many Pho4-specific
binding sites havingCbf1 binding affinities in the negative control
range. Similarly to the Cbf1 bindingmotifs under different compe-
tition scenarios, the motif logos for Pho4 show that, as the con-
centration of the competitor increases, the preference of Pho4

E
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Figure 2. Characterizing the DNA-binding patterns of Cbf1 and Pho4 using “competition PBM.” (A) Schematic of the competition PBM assay. Genomic
DNA sites are selected from the ChIP-seq peaks of the TFs of interest and synthesized on a DNA chip, similarly to previous work (Siggers et al. 2011; Shen
et al. 2018). The chip is then incubated with the TF paralogs of interest, alone or in competition, and the binding is quantified using fluorophore-conju-
gated antibodies. The effects of TF-TF competition are then quantified by comparing the binding of one TF under conditions where the concentration of
the competitor is varied. See Methods for details. (B) DNA-binding levels for TF Cbf1, at 2 μM concentration, in competition with Pho4 at increasing con-
centrations: 0.05 μM (x-axis), 0.4 μM, 2 μM, and 8 μM (y-axes). The condition shown on the x-axis (which includes Pho4 at the low concentration of 0.05
μM) mimics the in vivo environment in rich media, where Pho4 levels in the nucleus are very low but still detectable (Schneider et al. 1994; O’Neill et al.
1996; Zhou and O’Shea 2011). Each of the 2014 data points corresponds to a putative Cbf1 binding site (defined as a site with Cbf1 binding intensity
above negative controls) (Methods) in its native genomic sequence context. All sequences tested are 36 bp long, centered at the binding site. Data points
below the diagonal demonstrate the influence of Pho4 competition, which results in decreased Cbf1-DNA binding. Blue circles and arrows point to a ge-
nomic site where Cbf1 binding decreases significantly with increasing Pho4 levels. Red circles and arrows point to a genomic site where Cbf1 binding is not
significantly affected by increasing Pho4 levels. Data and statistics are available in Supplemental Table S2. (C) Similar to panel B but for Pho4 as themain TF
and Cbf1 as the competitor TF. Each of the 3341 data points corresponds to a putative Pho4 binding site (defined as a site with Pho4 binding intensity
above negative controls) (Methods). Red circles and arrows point to a genomic site where Pho4 binding decreases significantly with increasing Cbf1 levels.
Blue circles and arrows point to a genomic site where Pho4 binding is not significantly affected by increasing Cbf1 levels. See also Supplemental Table S2.
(D) Motif logos for Cbf1 derived from competitive binding data. Arrows mark the positions that are most different between the two motifs. See
Supplemental Figure S2D for motifs derived from additional competitive binding conditions. (E) Comparing PBM-derived binding energies (ΔΔG) with
binding energies derived from independent MITOMI experiments (Maerkl and Quake 2007). Each data point corresponds to one DNA sequence used
in the MITOMI DNA libraries (the CACNNN library for Cbf1, where the lowest binding energy corresponds to CACGTG; and CACGTGNNN library for
Pho4) (Methods; Maerkl and Quake 2007). See Supplemental Figure S4B for comparisons using additional MITOMI sequence sets. (F) Prediction accuracy
for the biophysical model of competitive DNA binding by Cbf1 and Pho4. Bar plot shows the squared Pearson’s correlation coefficients (R2) between mea-
sured and predicted binding levels at various concentrations of competitor. See Supplemental Figure S4F for full comparisons.
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for A, C, or G upstream of the core CACGTG becomes clearer
(Supplemental Fig. S2D). Overall, our new data show that the di-
rect competition for DNA binding between TF paralogs shapes
their genomic binding profiles in a manner that depends directly
on the intrinsic specificity differences between the paralogs.

In the current study, we expressed TFs as recombinant pro-
teins with epitope tags (His or GST), and we used fluorescent anti-
bodies for the tags to quantify TF-DNA binding. To ensure that the
choice of tags did not influence TF binding or TF-TF competition,
we also performed control experiments where one TF (Cbf1) was
expressed with different tags. We did not observe any tag-specific
effects (Methods; Supplemental Fig. S3A,B; Supplemental Table
S2F–H).

Modeling competitive DNA binding by Cbf1 and Pho4

Our competition PBM data provide direct evidence that Cbf1 and
Pho4 compete for binding to their genomic sites in vitro. Next, we
investigated the general principles that underlie this process, fo-
cusing on how differences in protein concentrations and binding
affinities may lead to different competitive binding patterns. We
tested whether a simple biophysical model of TF occupancy
(Gerland et al. 2002; Djordjevic et al. 2003) can explain the in vitro
competition data. Briefly, for a given DNA site i, the probability
that the site is bound by the main TF can be written as

Pi =
[TF1]/K1

d,i

1+ [TF1]/K1
d,i + [TF2]/K2

d,i

, (1)

where [TF1] and [TF2] are the concentrations of free main TF and
free competitor TF, respectively, and K1

d,i and K2
d,i are their equilib-

rium dissociation constants at site i.
To obtain affinity dissociation constants (Kd) for the se-

quences of interest, we used the approach of Siggers et al.
(2011) to derive Kd values from our custom PBM data by perform-
ing binding experiments at multiple protein concentrations. We
performed such experiments for Cbf1 and Pho4, and we fitted
the saturation curves to estimate the Kd for each TF at each
DNA site (Supplemental Fig. S4A). Next, we assessed the accuracy
of our PBM-derived dissociation constants by using them to com-
pute binding energies (ΔΔG) that we compared to the energetic
binding measurements for Cbf1 and Pho4 obtained from me-
chanical trapping of molecular interactions (MITOMI) assays
(Maerkl and Quake 2007). Such measurements are available for
a few hundred artificial DNA sequences, which we included in
our DNA library. We observed an excellent agreement between
the two techniques (R2 = 0.83–0.88), over a wide range of binding
energies (Fig. 2E; Supplemental Fig. S4B; Methods). We also com-
pared the PBM-derived ΔΔGs against binding energies predicted
using a neural network model trained on Binding Energy Topog-
raphy by sequencing (BET-seq) data, which are available for
NNNNNCACGTGNNNNN sequences (Le et al. 2018). Similarly
to our comparison against MITOMI data, we found a strong
agreement between PBM-derived and BET-seq-derived binding
energies (R2 = 0.72–0.74) (Supplemental Fig. S4C). However, supe-
rior to previous studies, here, we extended our binding measure-
ments to all CACGTG and non-CACGTG E-box genomic sites
potentially bound by Cbf1 and Pho4 (Supplemental Fig. S4D),
and we considered longer sequences flanking the E-box binding
sites, which can significantly influence TF binding (Supplemen-
tal Fig. S4C).

Next, we incorporated the competition between paralogous
TFs into the equilibrium thermodynamics model in Equation

(1), and we expressed the occupancies of each TF paralog using
standard binding isotherms (Methods; Supplemental Fig. S4E).
Plugging in the PBM-derived Kd values into Equation (1), we can
then predict Cbf1 and Pho4 binding under any competition con-
ditions. This standard biophysical model achieved high accuracy
(R2 = 0.86–0.96) in predicting the occupancies of Cbf1 and Pho4
under four different competition scenarios (Fig. 2F; Supplemental
Fig. S4F), suggesting that, for simple systems of two competing
paralogs without cobinding factors, the binding process is largely
described by a standard biophysical model. In addition, our results
highlight the value of PBM experiments for individual TFs, as Kds
derived from such experiments are sufficient (at least in the case of
Cbf1 and Pho4) to accurately predict the equilibrium binding of
the TFs in competition, even without having to perform competi-
tion experiments. For more complex systems, the competition
model can be modified to account for additional interactions,
such as dimerization partners and proteins cofactors (see Methods
and Discussion for further details), enabling generalization of our
competition study to other TF paralogs.

In vivo TF binding data reflect the competitive binding patterns

characterized in vitro

Next, we asked whether the DNA-binding patterns resulting from
the competitive binding of Cbf1 and Pho4 in vitro are also reflect-
ed in their genomic occupancies in the complex environment of
the cell. To assess the in vivo effects of Cbf1 on the binding pat-
terns of Pho4, we leveraged available Pho4 ChIP-seq data from
strains with constitutively nuclear-localized Pho4 (due to PHO80
deletion) and with Cbf1 present versus absent, that is, yeast strains
pho80Δ and cbf1Δpho80Δ, respectively (Fig. 3A; O’Neill et al. 1996;
Zhou and O’Shea 2011). As expected, the Pho4 binding level is
overall lower when Cbf1 is present versus absent (Supplemental
Fig. S5A), consistent with our in vitro observations. In addition,
Cbf1 acts differently on Pho4 binding at different genomic sites
in vivo, which is again consistent with our in vitro competition
data. To illustrate the differential competition, we introduce
here the notion of “resilience” of one TF paralog to competition
from another paralog, defined as the logarithm of the fold-change
in DNA binding of the main TF when the competitor is present
at a high versus a low concentration (Methods; Fig. 3B,F).
Smaller values of the resilience indicate larger effects from the TF
competitor.

We first computed Pho4’s in vitro resilience to Cbf1 competi-
tion using two representative competition scenarios: 2 μM Pho4+
0.05 μMCbf1 versus 2 μM Pho4+2 μMCbf1 (Fig. 3C; Supplemen-
tal Table S3), and we analyzed the in vivo binding of Pho4 and
Cbf1 at genomic sites with high versus low resilience. For example,
at a high-resilience Pho4 target site upstream of the PHO84 gene
(CCACGTGC), we found that the ChIP-seq signal was highly sim-
ilar between the pho80Δ and cbf1Δpho80Δ strains, that is, in the
presence versus the absence of Cbf1, consistent with Pho4’s high
in vitro resilience at this site (Fig. 3C, upper right panel). In con-
trast, at a genomic site with low Pho4 in vitro resilience
(TCACGTGC, located upstream of the SER33 gene), Pho4 shows
virtually no in vivo binding signal, that is, no ChIP-seq peak,
whenCbf1 is present but does showaChIP-seq peak in the absence
of Cbf1 (Fig. 3C, bottom right panel). Similarly to the resilience
measure computed based on our in vitro competition data, we
can use ChIP-seq data to compute in vivo resilience scores (Meth-
ods). We found that genomic sites with higher in vitro resilience
also have higher resilience in vivo (Fig. 3D), demonstrating that
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theDNA-binding patterns resulting fromTF-TF competition in the
cell are consistent with our in vitro observations, despite the com-
plexities of the cellular environment.

Considering Cbf1 as the main TF and Pho4 as the competi-
tor, we analyzed available Cbf1 ChIP-seq data for the wild-type
S. cerevisiae strain EY57 under two phosphate conditions (“no
Pi” and “High Pi”) where Pho4 is present at high versus low levels
in the nucleus (Fig. 3E). As before, we computed the in vivo resil-
ience from the ChIP-seq data and the in vitro resilience from rep-
resentative in vitro competition scenarios (2 μM Cbf1+0.05 μM
Pho4, vs. 2 μM Cbf1+Cbf1 2 μM Pho). We again observed consis-
tency between Cbf1’s resilience to Pho4 competition in vitro
and in vivo, both at individual sites (Fig. 3G) and genome-wide
(Fig. 3H).

In summary, analysis of in vivo ChIP-seq data confirms that
Cbf1 and Pho4 compete in the cell for genomic occupancy in a
pattern consistent with our in vitro competitive binding data.
The significant contribution of TF-TF competition to the overall
binding profiles of paralogous TFs indicates that, when interpret-
ing data from in vivo assays such as ChIP-seq, we should keep in
mind that the measured binding levels will depend on the compe-
tition between the tested TF and its paralogs present in the cell
nucleus.

The Cbf1-Pho4 competition contributes to the differential

regulation of Pho4 target genes genome-wide

TFs exert their regulatory functions through direct interactions
with DNA sites across the genome. Because TF-TF competition is
a critical determinant of TF-DNA binding, we asked whether its in-
fluence is also reflected at the level of gene expression regulation.
In the Cbf1-Pho4 model system analyzed here, it is known that
Pho4 functions as a transcriptional activator and that, out of all
the potential Pho4 target genes, only a subset are actually activated

in response to Pi starvation, that is, only a subset are bona fide
Pho4 targets under physiological conditions. The remaining genes
whose promoters contain putative Pho4 binding sites are activated
only when Cbf1 is absent in the nucleus, that is, are Pho4 targets
only in cbf1Δ (Zhou and O’Shea 2011). The differences in expres-
sion patterns between these two subsets of genes suggest that com-
petition from Cbf1 might play a role in determining which genes
are regulated by Pho4 in the cell.

To analyze the influence of Cbf1 competition on gene regula-
tion by Pho4, we focused on 28 Pho4 target genes whose promoter
regions contain a single Pho4 binding site (Methods). Out of the
28 genes, 18 are Pho4 targets in physiological conditions and 10
genes are Pho4 targets only in cbf1Δ (Supplemental Table S4A),
with the two sets of genes showing distinct expression patterns
in response to phosphate limitation when Cbf1 is present versus
absent in the cell (Supplemental Fig. S5C; O’Neill et al. 1996;
Zhou andO’Shea 2011). Comparing the in vitro Pho4 binding lev-
els at the promoters of the two sets of genes, we found no signifi-
cant difference (Fig. 4A, left panel), indicating that the intrinsic
Pho4-DNA binding specificity cannot explain the differences in
gene expression patterns. Next, we asked whether the two sets of
promoters have different DNA accessibility levels, which could
lead to differential Pho4 binding in vivo. However, nucleosome
occupancy data (Methods) argued against this hypothesis, as
the two sets of promoters have similar accessibility levels
(Supplemental Fig. S5D). When taking into account the influence
of Cbf1 competition, we found that the two groups of Pho4 targets
are significantly different in their Pho4 binding levels, both in vi-
tro (Fig. 4A, right plot) and in vivo (Fig. 4B, right plot). This indi-
cates that direct competition from Cbf1 enables differences in
Pho4 occupancies at binding sites with indistinguishable intrinsic
Pho4 binding preferences, which subsequently contributes to the
differential gene activation by Pho4 in the PHO signaling pathway.
Our results are consistent with those of Aow et al. (2013), who
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Figure 3. In vivo ChIP-seq data reflect the in vitro competitive binding patterns of Cbf1 and Pho4. (A) Data from S. cerevisiae strains pho80Δ and
cbf1Δpho80Δ (Zhou and O’Shea 2011) were used to assess the effect of Cbf1 competition on Pho4. (B) Definition of the term “resilience” in the context
of Pho4-Cbf1 competition. A smaller value of resilience indicates a larger impact from TF competition. (C) Left: Genomic Pho4 binding sites tested in the
competition PBM assay, colored by Pho4’s resilience to Cbf1 competition. Right: Genome browser tracks showing in vivo binding data at sites with high in
vitro resilience (upper panel) versus low in vitro resilience (lower panel). The site with high resilience is less influenced by competition in vivo, whereas at the
site with low resilience, Pho4 is efficiently outcompeted by Cbf1. (D) Comparisons between the in vivo resilience scores of genomic sites with low versus
high in vitro resilience. Plots show comparisons between the top versus bottomN%of sites, sorted in decreasing order of in vitro resilience, for N=50 (top),
33 (middle), and 25 (bottom). See Supplemental Figure S5B for a full comparison of resilience scores at individual binding sites. (E) Data from S. cerevisiae
EY57 cells grown in media with no inorganic phosphate and high inorganic phosphate (Zhou and O’Shea 2011) were used to assess the effect of Pho4
competition on Cbf1. (F,G,H) Similar to panels B, C, and D but showing the effects of Pho4 competition on Cbf1 binding.
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found that the competitive binding of Cbf1 and Pho4 at palin-
dromic NNCACGTGNN sites explained the expression patterns
of a reporter gene with high accuracy.

We also investigated Pho4’s in vitro resilience to Cbf1 com-
petition and found that it also distinguishes between the Pho4
target genes in physiological conditions (blue) versus the target
genes unique to the Cbf1 knockout strain (red) (Fig. 4C). This im-
plies that the Pho4 targets under physiological conditions have
promoter sites resilient to Cbf1 competition, so that they are ro-
bustly activated by Pho4 in response to phosphate starvation.
This set of genes includes PHO84, which encodes a high-affinity
Pi transporter and whose promoter contains a CCACGTGC
Pho4 binding site that is resilient to Cbf1 competition both in vi-
tro and in vivo (Fig. 3C). In contrast, genes that are activated by
Pho4 only in cbf1Δ are vulnerable to Cbf1 competition, so that
the presence of Cbf1 in wild-type cells effectively prevents these
genes from being activated by Pho4. A representative example is
SER33 (Fig. 3C), which is not part of the PHO regulon and whose
promoter contains a TCACGTGC that is poorly bound by Pho4
when Cbf1 is present. Consistent with the results above, we

found that the in vitro DNA binding
probabilities of purifiedCbf1 can also dif-
ferentiate between the two sets of genes,
witha trendopposite to thePho4binding
probability (Fig. 4D). Thus, competition
from Cbf1 effectively contributes to the
specification of the functional Pho4
targets.

Discussion

Despite the important role of TF-TF
competition in gene regulation, studying
this competition based on existing DNA-
binding data is difficult. In vivo tech-
niques that measure TF-DNA bind-
ing, such as ChIP-seq, ChIP-exo, and
Cut&Run (Johnson et al. 2007; Rhee
and Pugh 2012; He et al. 2015; Skene
et al. 2018), reflect the genomic occupan-
cy of one TF in a particular cellular
context and thus inaveryspecific compe-
tition scenario. From individualChIP-seq
data sets, it is impossible to infer how/
whether the competition for DNA bind-
ing among TF paralogs influences the
genomic binding profile of the TF of in-
terest. Data from carefully controlled ex-
periments where a TF is ChIP’ed in the
presence versus the absence of a compet-
itor TF are rare, and even such data may
not be quantitative enough or may not
have the resolution to allow investigation
of the TF-TF competition effects. To com-
plement the in vivo data, we propose us-
ing high-throughput in vitro binding
assays, such as the competition PBM ap-
proach introduced here, which leverages
the quantitative nature of on-chip pro-
tein-DNA bindingmeasurements (Berger
and Bulyk 2009; Siggers et al. 2011; Gor-
dân et al. 2013; Shen et al. 2018). By per-

forming the competition experiments in a cell-free system where
experimental variables arewell controlled,wewere able to generate
highly quantitative data that directly reflect the influence of com-
petition on TF binding to genomic sites in vitro. Next, using the in
vitro competition data as reference, we reinterpreted the in vivo
ChIP-seq data and found evidence of TF-TF competition in the
cell, as well as confirming its role in gene regulation.

Overall, our results show that TF-TF competition is a se-
quence-specific process that translates the intrinsic differences in
DNA specificity between paralogous TFs, which can be thoroughly
and quantitatively characterized in vitro, into differential binding
and gene regulation in the cell. Our findings are in great agreement
with previous small-scale studies of TF paralogs, such as the Hox
factors in Drosophila (Noro et al. 2011; Slattery et al. 2011;
Crocker et al. 2015) and the POU homeodomain factors in mam-
mals (Ferraris et al. 2011). Similar to what we found for the
Cbf1/Pho4 system, the in vitro determinants of TF binding and
competition—which, in the case of both Hox and POU factors, in-
clude cooperating proteins—were recapitulated in vivo (Ferraris
et al. 2011; Noro et al. 2011). These results reaffirm that

B

A C

D

Figure 4. TF-TF competition contributes to differential gene activation. Box plots show the in vitro and
in vivo TF binding data for sets of genes with low versus high fold induction in response to phosphate
starvation (No Pi). Blue: Genes that are activated by Pho4 under physiological conditions, that is, in a
wild-type strain where Cbf1 is present at physiological levels (Zhou and O’Shea 2011). Red: Genes
that are activated by Pho4 only when Cbf1 is absent from the cell, that is, in a cbf1Δ strain (Zhou and
O’Shea 2011). The two sets of Pho4 target genes were compared in terms of: (A) Pho4 in vitro binding
(at 2 μM concentration) in the absence of Cbf1 (left) and in the presence of Cbf1 at 2 μM concentration
(right), asmeasured by PBMand competition PBM, respectively; (B) Pho4 in vivo binding, asmeasured by
ChIP-seq, in the absence of Cbf1 (left, cbf1Δ strain) and in the presence of Cbf1 (right, wild-type strain);
(C ) Pho4’s in vitro resilience to Cbf1 competition (computed between competition PBM conditions:
2 μM Pho4+2 μM Cbf1 versus 2 μM Pho4+0.05 μM Cbf1) (Methods); and (D) Cbf1 in vitro binding
(at 2 μM concentration), as measured by PBM. In vitro binding probabilities were computed from
PBM or competition PBM data (Methods). In vivo binding levels are shown as read counts computed
for Pho4 ChIP-seq peaks (Zhou and O’Shea 2011).
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mechanistic in vitro studies can provide important insights into
TF-TF competition and its role in gene regulation.

In the case of Cbf1 and Pho4, their potential for competitive
DNA-binding seems to have been maintained throughout evolu-
tion. Cbf1 and Pho4 are closely related to “groupB” bHLHproteins
(Atchley and Fitch 1997; Sailsbery and Dean 2012), a large family
of bHLHs in animals that also have similar binding preferences and
likely compete with one another for binding to CAnnTG E-box
sites. Similar to fungi, animal B-type bHLHs are involved in energy
metabolism, lipid metabolism, cell growth, and proliferation
(Jones 2004; Murre 2019). This functional conservation raises
the question: Were competitive Cbf1-like and Pho4-like subfami-
lies already present in the common ancestor of fungi and animals,
or did this feature evolve during the expansion of B-type bHLHs in
fungi?

Previous work in higher fungi showed that there are 12 dis-
tinct phylogenetic bHLH subgroups, F1–F12, with Cbf1 belonging
to F3 and Pho4 belonging to F6 (Sailsbery et al. 2012). Cbf1 and
orthologs from the F3 group are involved in chromosome segrega-
tion and methionine biosynthesis, whereas Pho4 and orthologs
from the F6 group are involved in phosphate uptake and sexual/
asexual development. Some bHLHs, such as Cbf1, are strongly
conserved in higher fungi and were likely present in the fungal an-
cestor. Pho4 is not universal in all fungi; however, the Pho4-medi-
ated phosphate regulation network is conserved and functional in
early-diverging fungi, such as Blastocladiella emersonii (Gomes-
Vieira et al. 2018). To further investigate the evolutionary origin
of fungal Pho4 and Cbf1, and their relationship to animal B-type
bHLHs, we performed a bioinformatic analysis of Pho4 and Cbf1
in early-diverging fungi and animals (Methods). We found that
the progenitors of the Pho4-like and Cbf1-like subfamilies were
both present in the ancestor of fungi and animals (Supplemental
Fig. S1A). We identified Max-like protein X (MLX) and Micro-
phthalmia-associated transcription factor (MITF) subfamilies in
animals as the likely descendants of these Pho4-like and Cbf1-
like progenitors, respectively. The conservation of specific amino
acids in each subfamily DNA-binding domain (Supplemental Fig.
S1A) suggests that binding preferences of these TFs and their com-
petition could be ancestral and conserved. A more recent example
of competition between TF paralogs that may have been main-
tained throughout evolution can be found in the SP family of
Cys2His2 zinc finger proteins in birds and mammals. The SP3
and SP4 subfamilies are paralogs and DNA-binding competitors
of SP1, and they have accumulated convergent substitutions at ho-
mologous positions to SP1, several times during evolution, pre-
sumably to maintain competitive binding (Yokoyama and
Pollock 2012).

Paralogous TFs are often coexpressed in the cell. The yeast S.
cerevisiae genome encodes ∼250 TF proteins belonging to 30 struc-
tural families (Weirauch et al. 2014; Ho et al. 2018). Excluding TFs
with unknown structural families and zinc finger proteins, which
represent a special family with complex and diverged patterns of
specificity, we estimate that ∼31% of yeast TFs (Supplemental
Table S4B) are potentially competing with their paralogs for bind-
ing to genomic target sites (in this analysis, we considered a TF
gene as “expressed” if the level of the corresponding TF protein
was above the 75th percentile of all proteins) (Supplemental Fig.
S5E; Methods). In higher eukaryotes, we expect this fraction to
be evenhigher. Indeed, an analysis of the expression profiles of hu-
man TFs across 37 tissue types (Methods) revealed that, out of 58
TF families that contain more than one paralog (Lambert et al.
2018), 43 of them have at least two family members coexpressed

in at least one tissue type (Supplemental Fig. S5E; Supplemental
Table S4B). MITF and MLX, which are the mammalian bHLH pro-
teinsmost closely related to S. cerevisiaeCbf1 and Pho4, are among
the coexpressed family members, with TFs from the MLX and
MITF orthologous group (Huerta-Cepas et al. 2019) being coex-
pressed in 15 out of the 37 tissues tested (Supplemental Table
S4C). In a more stringent analysis, where TFs from each family
were further separated into clusters of proteins with highly similar
DNA-binding motifs (Lambert et al. 2018; Methods), we found
that 154 out of 158 TF clusters with two or more members
(∼97%) contained at least two TF paralogs coexpressed in at least
one cell type (Supplemental Fig. S5E; Supplemental Table S4D).
These data reinforce that the potential for direct competition for
DNA binding between paralogous TFs is widespread in human
cells.

Our study is most closely related to Zhou and O’Shea (2011),
who focused on the determinants of Pho4 genomic binding and
function, including competition from Cbf1, and Aow et al.
(2013), who investigated the differential binding of Pho4 and
Cbf1 and its role in activating reporter gene expression, focusing
on the 16 palindromic NNCACGTGNN sites. Our results extend
and complement these studies by providing a comprehensive
and quantitative view of the direct competition between Cbf1
and Pho4 genome-wide, using a PBM-based approach that can eas-
ily be applied to other regulatory systems. Moreover, our approach
does not rely on existing TF-DNA binding affinity measurements,
which is one limitation of the Aow et al. (2013) study. The PBM
technology is straightforward to implement, and it uses commer-
cially available DNA chips that are both cost-effective and high-
quality. Furthermore, as shown in this study and in previous
work by us and others (Siggers et al. 2011; Gordân et al. 2013;
Afek et al. 2020), PBM data can be used to infer protein-DNA
binding energies and equilibrium dissociation constants that are
highly correlated with measurements from independent, small-
scale assays. As shown here, the PBM-derived affinities can then
be used directly in biophysical models to infer the occupancies
of competing TFs at various concentrations. This alleviates the
need to perform high-throughput assays in order to measure the
competitive binding patterns of the TFs of interest and makes
our approach easy to generalize to systems with more than two
competitors.

We also found great agreement between our PBM-derived
binding energies (ΔΔG) and the ΔΔG values predicted for
NNNNNCACGTGNNNNN sites using a deep neural networkmod-
el trained on BET-seq data (Le et al. 2018), which is based on a com-
bination of microfluidics and high-throughput sequencing
(Supplemental Fig. S4C). In contrast to the BET-seq data, which
covers a large number of artificial DNA sites, our PBM measure-
ments focus on genomic sites targeted by Cbf1 and Pho4 in the
cell, which include variants of the CAnnTG E-box not tested by
BET-seq (Supplemental Fig. S4D). These variants are typically low-
er-affinity sites. However, previous studies have shown that paral-
ogous TFs diverged in specificity mainly at medium- and low-
affinity sites (Slattery et al. 2011; Crocker et al. 2015; Shen et al.
2018), making these sites particularly relevant for TF-TF competi-
tion. In addition to including lower-affinity CAnnTG variants,
the DNA sequences used in our PBM library extend beyond the
five neighboring bases of the E-box core binding sites (which
were tested by BET-seq) to include 15 bp of genomic DNA on
each side of the CAnnTG E-box. The additional genomic context
can affect the binding affinity of Cbf1 and Pho4, as shown in
our analyses (Supplemental Figs. S4C, S6A) and previous work
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(Gordân et al. 2013) and can thus influence the competitive bind-
ing of the two TFs. Similarly to our previous work on the DNA
binding specificity of Cbf1 (Gordân et al. 2013), here, we also ob-
served that the flanking regions of the E-box binding site have a
significant influence on Pho4 binding specificity, likely exerted
through DNA shape (Supplemental Fig. S6). For both Cbf1 and
Pho4, models of DNA-binding specificity benefit significantly
from including features that reflect the DNA shape of the flanking
regions (Supplemental Fig. S6A,B). However, in the case of Pho4,
flanking shape features have a smaller effect on the overall accura-
cy of our bindingmodels (Supplemental Fig. S6B), consistent with
the findings of Le et al. (2018) that themagnitude of nonadditivity
is smaller for Pho4 than Cbf1 binding sites. Nevertheless, given
that DNA shape readout contributes, albeit to different extents,
to the binding affinities of both Cbf1 and Pho4, it implicitly plays
a role in their competitive binding.

Our in vitro approach can be expanded beyond two compet-
ing TFs to incorporate more of the in vivo factors relevant for TF
binding and regulation. The functionality ofmanyTFs involves in-
teractions with other regulatory proteins. In our model system,
both Cbf1 and Pho4 can interact with other factors: Cbf1 forms
a regulatory complex with Met4 and Met28 to regulate sulfur me-
tabolism genes (Kuras et al. 1997), whereas Pho4 cooperates with
Pho2 in the regulation of the genes in the PHO regulon (Ogawa
et al. 2000; Zhou and O’Shea 2011). Although in our current study
we found that the in vivo competitive DNA binding of Cbf1 and
Pho4 is largely determined by their intrinsic preferences for
DNA, it is possible that interactions with cofactors will further re-
fine the genomic targeting of Cbf1 and Pho4 in the cell. In other
systems, cofactors may have even larger effects on paralogous TF
competition, especially in caseswhere cofactors enable latent spec-
ificities of TF paralogs (Slattery et al. 2011; Crocker et al. 2015). To
account for influences from cofactors, our protocols can be modi-
fied to incubate the competing paralogs with all their contributing
cofactors, as long as the cofactors can be expressed and purified as
recombinant proteins. In addition, the recent development of
nextPBM (Mohaghegh et al. 2019) makes it feasible to perform
protein-DNA binding assays in the endogenous nuclear environ-
ment, also facilitating the study of cellular contributors to compe-
tition.We expect such extensions to be critical for deciphering the
competitive binding of TF paralogs in eukaryotes.

Methods

Protein expression and purification

Full-length S. cerevisiae CBF1 and PHO4 genes, cloned into the
Gateway pDEST15 expression vectors (Invitrogen) were obtained
fromGordân et al. (2013). Using the LR Clonase reaction (Thermo
Fisher Scientific Gateway cloning system), the CBF1 gene was
transferred into the pDEST17 vector, for expression of N-terminal
His-tagged Cbf1 protein. For PHO4, the pDEST15 vector was used
to express N-terminal GST-tagged Pho4 protein. The Cbf1 protein
was also expressed with a GST tag using the pDEST15 vector, for
use in control experiments of GST-Cbf1 versus His-Cbf1 competi-
tion (see section “Competition PBM assay” below for details). Bac-
terial cells (BL21-CodonPlus [DE3]-RIL; Agilent 230245) were
grown in LB culture to an OD600 of 0.8–1.2 and induced with 1
mM IPTG overnight at 20°C for protein expression. Next, the cells
were pelleted and lysed with lysozyme (Millipore 71110). The pro-
teins were purified from the soluble portion of the lysate using His
resin or GST resin (GE Healthcare FF affinity column) according to
the manufacturer’s instructions.

Design of DNA library for PBM assays

Our DNA library consists of: (1) yeast genomic regions containing
putativeDNAbinding sites for Cbf1 and Pho4; (2) negative control
sequences not bound specifically by either Cbf1 or Pho4; and (3)
DNA sequences that were used in previous MITOMI experiments
to measure equilibrium dissociation constants and/or binding en-
ergies for Cbf1 and Pho4 (Maerkl and Quake 2007). Six replicate
DNA spots were used for each probe, randomly distributed across
the array surface. Microarrays using our custom DNA library were
synthesized de novo by Agilent in 8×60 k format (8 chambers,
60,000 DNA spots per chamber).

Probes containing genomic sites

We analyzed publicly available Cbf1 and Pho4 ChIP-seq data to
identify all sites in the yeast genome where Cbf1 and Pho4 may
bind and compete. Cbf1 ChIP-seq data in wild-type strain EY 57
(K699 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3)
under high phosphate condition and Pho4 ChIP-seq data in the
same strain under no phosphate condition were downloaded
from the NCBI Gene Expression Omnibus (GEO; https://www
.ncbi.nlm.nih.gov/geo/) under accession number GSE29506
(Zhou andO’Shea 2011). Comprehensive, unbiased, 8-mer E-score
data from universal PBM assays (Berger and Bulyk 2009; Gordân
et al. 2011) were used to scan the Cbf1 and Pho4 ChIP-seq peaks
and identify putative binding sites, called at a lenient E-score cut-
off of 0.33 for two ormore consecutive 8-mers, similarly to our pre-
vious work (Gordân et al. 2013; Shen et al. 2018). The cutoff was
chosen to be lenient so that we include as many putative genomic
sites as possible in ourDNA library. Using as guidance the results of
Berger and Bulyk (2009), who reported that a false discovery rate of
0.01 typically corresponds to E-scores of 0.32–0.36, we started our
library design with an E-score cutoff of 0.36, and then we relaxed
the cutoff to includemore DNA probes until we reached the capac-
ity of the microarray, which occurred at a cutoff of 0.33. Next, the
selected genomic DNA sequences were aligned using PWMmodels
in order to center the putative Cbf1/Pho4 binding sites. A total of
5424 genomic regions were selected using this procedure. In addi-
tion, we identified all CACGTG sites in the yeast genome and
found 287 genomic sites that were not included in the ChIP-seq
peaks, possibly due to occlusion by nucleosomes or other influenc-
es from the cellular environment. We manually added these addi-
tional CACGTG sites to our DNA library. In addition, we designed
300 negative control DNA probes that served as a reference for
nonspecific Cbf1/Pho4 binding signals, similarly to our previous
work (Gordân et al. 2013; Shen et al. 2018). The negative control
sequences were 36 bp long andwere selected randomly from acces-
sible genomic regions in S. cerevisiae (according to DNase-seq data
fromGEOdata set GSM1705337), excluding the ChIP-seq peaks of
Cbf1 and Pho4 in order to exclude regions bound in vivo by our
TFs of interest. The negative control probes also satisfied the crite-
rion that all 8-mers in the 36-bp regions had E-scores < 0.33, to en-
sure that these probes were unlikely to contain specific sites for
Cbf1 or Pho4. The final DNA probes were 60 bp long, consisting
of 36-bp genomic regions followed by a constant 24-bp sequence
(5′-GTCTTGATTCGCTTGACGCTGCTG-3′) that was complemen-
tary to the DNA primer. The primer was used to double-strand
the DNA on the microarray by primer extension, as previously de-
scribed (Berger and Bulyk 2009).

In analyzing the PBM data, we defined “specific” Cbf1 bind-
ing sites as sites with a Cbf1 binding level (i.e., fluorescence inten-
sity signal) larger than the 99th percentile of negative control
probes, based on experiments where Cbf1 was tested individually
(i.e., not in competition with Pho4). Similarly, “specific” Pho4
binding sites were defined as sites with a Pho4 binding level larger
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than the 99th percentile of negative controls, based on experi-
ments where Pho4 was tested individually. These sites were used
in the analyses shown in Figure 2B,C.

MITOMI-based probes

From the DNA libraries used in Maerkl and Quake (2007), we se-
lected the NNNNGTG, CACNNN, and GTGNNN libraries for our
PBM design. To the DNA sequences in the original MITOMI librar-
ies, whichwere 14 bp long, we added random11-bp flanks on each
side to obtain 36-bp DNA sequences centered at the Cbf1/Pho4
binding sites, similar to the genomic sequences described above.
The random flanks were generated using a uniformprobability dis-
tribution over the four nucleotides. Given that the added 11-bp
flanks could influence the binding specificity/affinity of Cbf1
and Pho4, we designed 10 different random flanks.When process-
ing the data, we used themedianmeasurements over the 10 flanks.

“Competition PBM” assay

“Competition PBM” experiments were carried out following the
standard PBM protocol (Berger et al. 2006; Berger and Bulyk
2009) but incubating the competing TFs (here, Cbf1 and Pho4)
simultaneously with the double-stranded DNA molecules synthe-
sized on the array. Briefly, after performing the primer extension
step (Berger and Bulyk 2009) to double-strand the DNA probes
on the microarray, each chamber on the array was blocked with
2% milk for 1 h. After mild washing, the array was incubated for
1 hwith protein bindingmixtures, at the Cbf1 and Pho4 final con-
centrations shown in Supplemental Table S2B. Alexa Fluor 488-
conjugated anti-GST antibody (Invitrogen A-11131) and Alexa
Fluor 647-conjugated anti-His antibody (Qiagen 35370) were
used for Pho4 and Cbf1, respectively. After mild washing (Berger
and Bulyk 2009), the array was scanned using a GenePix 4400A
scanner (Molecular Devices) at 2.5-micron resolution. Standard
analysis scripts (Berger et al. 2006; Berger and Bulyk 2009) were
used to extract and normalize the florescence intensity data, and
then median values over replicate DNA spots were computed for
the unique DNA sequences. Previous studies have shown that
this design strategy results in highly reproducible PBM data, with
R2 = 0.92–0.98 between duplicate experiments (Shen et al. 2018;
Penvose et al. 2019; Afek et al. 2020). We use the term “binding
level” to refer to the fluorescence intensity signal observed at a
DNA spot, which results from the fluorophore-tagged antibody
bound to the protein bound to the DNA at that spot.

To ensure that the choice of epitope tags did not influence the
intrinsic binding of TFs or their competition, we performed a con-
trol experiment with GST-Cbf1 and His-Cbf1 in competition. We
used a DNA oligonucleotide array in 4×44 k format (Agilent
AMADID 029393) that contains putative Cbf1 binding sites
(Gordân et al. 2013). Similar to the competition assay described
above, we incubated the double-stranded array with protein bind-
ing mixture, with GST-Cbf1 and His-Cbf1 at different concentra-
tions between 0.2 μM and 0.8 μM (Supplemental Table S2F).
Alexa Fluor 488-conjugated anti-GST antibody (Invitrogen A-
11131) and Alexa Fluor 488-conjugated anti-His antibody
(Qiagen 35310)were used to targetGST-Cbf1 andHis-Cbf1, respec-
tively, and competition binding data were collected as described
above. As expected, when GST-Cbf1 and His-Cbf1 were tested by
themselves, we saw an excellent agreement between their binding
intensity levels (Supplemental Fig. S3A). In addition, for each com-
petition scenario tested, we found that GST-Cbf1 and His-Cbf1
competed with each other in a linear pattern consistent with
changes in their concentration (Supplemental Fig. S3B). These
data indicate that no bias was introduced due to the epitope tags

and emphasize the high reproducibility of custom PBM experi-
ments (R2 = 0.95–0.98) (Supplemental Fig. S3A,B), even in the
case of proteins tagged with different epitopes.

Given the high reproducibility of custom PBM data, as de-
scribed above, the high correlations between custom PBM
data and independently measured binding energies and Kd values
(R2 = 0.83–0.88 [Fig. 2E];R2 = 0.84–0.99 [Shen et al. 2018; Afek et al.
2020]), as well as the inclusion of replicate spots within our
DNA libraries, in this study we did not perform duplicate PBM
experiments.

Comparing competition PBM data across experiments

To directly compare the fluorescence signal intensities between
different competition PBM experiments, that is, between different
chambers of the PBM arrays, we process the data as follows. As list-
ed in Supplemental Table S2B, for competition PBMswe varied the
concentration of the competitor TF over a wide range (0.05–8 μM),
while keeping the concentration of the main TF constant (2 μM).
The rationale for this design was to enable direct comparisons be-
tween different chambers with different concentrations of com-
petitors when the concentration of the main TF remained
constant. In practice, due to pipetting noise introduced during
the binding steps and/or the dilution of the protein samples, it is
possible that different chambers on the same microarray have
slightly different concentrations of the main TF, which is what
we observed for Pho4. To determine whether the concentration
of Pho4 was the same across chambers, we used a subset of DNA
probes that were nonspecifically bound by Cbf1 but bound with
low- to medium-affinities by Pho4; these probes, which we call
“Pho4-specific,” were chosen randomly among those with Cbf1
signal in the negative control range (Supplemental Fig. S3C). If
the Pho4 concentrations were the same (i.e., 2 μM) in all four
chambers, then we would expect the Pho4-specific probes to
have similar binding levels across these chambers. However, in
practice, we observed deviations from this expected trend
(Supplemental Fig. S3D), consistent with small differences in the
effective Pho4 concentrations. To alleviate this problem, we used
the standard binding isotherms to derive the correlation between
Pho4 binding levels at different Pho4 concentrations. Based on
this correlation, we estimated the effective concentrations of
Pho4 to be 2 μM, 0.98 μM, 2.17 μM, and 2.18 μM, respectively,
in the array chambers with 0.05 μM, 0.4 μM, 2 μM, and 8 μM
Cbf1. Next, we adjusted the Pho4 binding levels in all chambers
based on a 2 μM concentration, while keeping the concentration
of Cbf1 unchanged (see Supplemental Methods for details). After
this correction, the Pho4 binding signals for “Pho4-specific”
probes showed excellent agreement between different chambers
(Supplemental Fig. S3D), allowing us to use the competition data
to directly assess the effects of Cbf1 competition on the probes
bound specifically by both TFs. We applied a similar procedure
to evaluate the concentration of Cbf1 across chambers and found
that the Cbf1 effective concentration was 2 μM, after rounding, in
all chambers. Thus, we did not apply any correction to the Cbf1
binding signals.

Resilience to TF competition

The resilience of Cbf1 to in vitro competition from Pho4 was de-
fined as the log fold-change of Cbf1 binding levels (fluorescence
intensity, FI) when the concentration of the competitor increased,
for example,

log
Cbf 1 FI at 2uM Cbf 1+ 8uM Pho4

Cbf 1 FI at 2 uM Cbf 1+ 0.05uM Pho4

( )
.
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Similarly, Pho4’s in vitro resilience to Cbf1 binding was de-
fined as

log
Pho4 FI at 2uM Pho4 + 8uM Cbf 1

Pho4 FI at 2uM Pho4 + 0.05uM Cbf 1

( )
.

In vivo, the resilience of Cbf1 was defined as

log
Cbf 1 ChIP − seq pileup in no Pi)
Cbf 1 ChIP − seq pileup in high Pi

( )
,

whereas the resilience of Pho4 was defined as

log
Pho4 ChIP − seq pileup in Dpho80

Pho4 ChIP − seq pileup in Dpho80Dcbf 1

( )
.

To compare in vitro versus in vivo resilience scores, we sorted
the medium- and high-affinity binding sites of Cbf1/Pho4 (de-
fined as sites with fluorescence intensity in the upper half of the
intensity range, where ratios of intensity signals are not signifi-
cantly affected by noise) in decreasing order of their in vitro resil-
ience scores, and we compared the distributions of in vivo
resilience scores between sets of sites with high versus low in vitro
resilience (Fig. 3D,G; Supplemental Table S3A,B). Comparisons be-
tween sets of sites were performed using a one-sided t-test.

PWM motif derivation

To derive motifs for the main TF at different concentrations of the
competitor TF, we ranked DNA sequences by their binding levels
(i.e., by the fluorescence intensities of the main TF) for each com-
petition scenario. Next, we selected the top 200 DNA sequences,
weighted them by their TF binding levels, and used the weighted
counts to construct position frequency matrices. Motif logos
were generated from the frequency matrices using enoLOGOS
(Workman et al. 2005).

DNA shape analyses

Similarly to our previous work (Gordân et al. 2013; Zhou et al.
2015; Shen et al. 2018), we analyzed the extent to which the shape
of genomic regions flanking theCbf1/Pho4 core E-box binding site
contributes to TF-DNA binding specificity. We used DNAshape
(Zhou et al. 2013) to predict theminor groovewidth, roll, propeller
twist, and helix twist for all DNA sequences in our PBM library.
Next, we askedwhether these DNA shape features significantly im-
prove the accuracy of Cbf1 and Pho4 DNA-binding specificity
models when added to mononucleotide (1-mer) features. Least
squares estimation, as implemented in the R “stats” package (R
Core Team 2018), was used to train linear regression models of
DNA-binding specificity from the PBM data. The models were
trained and tested on sequences on different lengths, from 10 bp
(which includes only the E-box site and the immediate 2-bp
flanks) to 36 bp (which includes the full genomic context tested
in our assays). For each length, we performed fivefold cross-valida-
tion to evaluate the model accuracy, assessed as the squared
Pearson’s correlation (R2) between measured and predicted bind-
ing levels. We repeated each cross-validation test 25 times using
25 random splittings of the data. A Mann–Whitney U test was ap-
plied to the R2 values over the 25 runs in order to compare the ac-
curacy of different models.

Analysis of ChIP-seq and nucleosome mapping data

ChIP-seq data for transcription factors Cbf1 and Pho4 were re-
trieved as raw reads from the GEO database, entry GSE29506
(Zhou and O’Shea 2011). We used the ChIP-seq data for Cbf1 in
yeast strain EY57 (K699 MATa ade2-1 trp1-1 can1-100 leu2-3,112

his3-11,15 ura3 [Zhou and O’Shea 2011]) under two physiological
conditions: no Pi (sample “Cbf1_ChIP_NoPi”) and high Pi (sample
“Cbf1_ChIP_HighPi”), and ChIP-seq data for Pho4 in two mutant
yeast strains: a strain with constitutively expressed PHO4
(“Pho4_ChIP_dPHO80”) and a strain with constitutively
expressed PHO4 and knocked-out CBF1
(“Pho4_ChIP_dPHO80dCBF1”). Raw sequencing files were
aligned to the yeast genome (sacCer2) using BWA (parameters
-q 5 -l 32 -k 2 -t 4) (Li and Durbin 2009). The read coverage across
the entire genome was then computed using BEDTools (Quinlan
and Hall 2010). For comparisons with PBM data, the TF genomic
occupancies at each genomic site of interest were calculated as
the ChIP-seq read pileups within the central 6-bp window, where
the centers of the binding sites were located. Nucleosome data
were downloaded from the supplemental files of Zhou and
O’Shea (2011) as processed nucleosome occupancy probabilities.

Gene expression analysis

Gene expression data from Zhou and O’Shea (2011) were
downloaded as normalized log ratios from GEO, accession num-
ber GSE23580, for samples: “Wild type no vs high Pi conditions”,
“pho80Δ vs pho80Δpho4Δ in high Pi conditions”, and “pho80Δcbf1Δ
vs pho80Δpho4Δcbf1Δ in high Pi”. As described in Zhou andO’Shea
(2011), comparing wild type no Pi versus high Pi conditions iden-
tifies genes induced in response to inorganic phosphate limita-
tion. Here, we refer to this set of genes as the genes induced by
Pho4 under physiological conditions. Comparing pho80Δ versus
pho80Δpho4Δ in high Pi conditions identifies genes induced by
Pho4 when the PHO signaling pathway is fully activated. We
used this data to further validate the gene regulatory role of
Pho4 in the presence of Cbf1. Comparing pho80Δcbf1Δ versus
pho80Δpho4Δcbf1Δ in high Pi conditions identifies the influence
of Cbf1 on the gene activation role of Pho4. We used these data
to illustrate how Cbf1 helps specify the true target genes of Pho4
by competing for DNA binding sites at other genes with putative
binding sites. Zhou and O’Shea (2011) reported the Pho4-regulat-
ed genes in the wild-type strain and the pho80Δcbf1Δ strain.We re-
fer to the Pho4-regulated genes in physiological condition as
“Pho4 targets in physiological condition” (Fig. 4, blue). Genes
that are induced in the pho80Δcbf1Δ strain but not in wild type
are referred to as “Pho4 targets only in cbf1Δ” (Fig. 4, red).We iden-
tified the Pho4 binding site(s) potentially responsible for the regu-
lation of each target gene using the following criteria: (1) the site
was located within 1000 bp upstream of the gene TSS; and (2)
the in vitro Pho4-DNA binding level at the site was higher than
the binding level at any of the negative control probes in the
PBM experiment. Based on these criteria, there were nine (out of
37) genes with more than one Pho4 binding site in their upstream
region, which made it difficult to explicitly associate individual
Pho4 binding events with gene regulation. Because the focus of
our study was not the interplay between multiple binding sites
within the regulatory regions, for further analysis we only consid-
ered the genes with a single Pho4 site identified. The list of genes
and the corresponding Pho4 regulatory sites can be found in
Supplemental Table S4A.

Estimation of equilibrium dissociation constants (Kd)

from PBM data

In a PBMexperiment, themeasured fluorescence intensities linear-
ly reflect the amount of TF protein bound at eachDNA spot on the
microarray slide, that is, the amount of TF-DNA complexes. Thus,
we can write: [TF ·DNA]i= aFi, where [TF ·DNA]i is the concentra-
tion of TF-DNA complex at DNA spot i, Fi is the fluorescence signal
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measured at spot i, and a is a constant (Siggers et al. 2011). We can
then express the equilibrium dissociation constant as

Ki
d = [DNA]total − [DNA]ibound

[TF ·DNA]i
[TF]unbound

= Ftotal − Fi

Fi [TF]unbound = Ftotal − Fi

Fi em, (2)

where Ftotal is the fluorescence intensity at saturated DNA spots
(i.e., spots where all DNA molecules are bound by the TF), and
μ = ln([TF]total), as used in Zhao et al. (2009). Next, we can express
the observed fluorescence signal Fi as

Fi = Ftotal

1+ e−mKi
d

. (3)

To infer equilibrium dissociation constants in high through-
put, we performed PBM experiments for each TF of interest at
four different total concentrations: 0.05 μM, 0.2 μM, 1 μM, and 8
μM for Cbf1, and 0.1 μM, 0.4 μM, 2 μM, and 8 μM for Pho4. In
Equation (3), Fi is observed, leaving μk (k=1, 2, 3, 4), Ftotal, and
Ki
d undetermined. We estimated these parameters iteratively. In

the initial round, mk r0 was set to μk= ln([TF]total), and Ftotal r0 was
set to the highest fluorescence signal we observed on the entire
slide. Next, the Ki

d parameter in round 0 (Ki
d r0) at each DNA spot

iwas estimated from the Fimeasurements at the four different con-
centrations using nonlinear least square estimation. Then, with Fi

observations at thousands of DNA spots and Ki
d rn available in our

data (n is the iteration number), Ftotal rn+1 and mk rn+1 (k=1, 2, 3, 4)
were estimated with nonlinear least square regression. Ftotal rn+1

and mk rn+1 (k=1, 2, 3, 4) were used again to estimate Ki
d rn+1 iter-

atively until all the parameters converged. For both Cbf1 and
Pho4, the parameters converged fast, within, at most, 30 rounds.

All the regression analyses were done using minpack in R. All
loss functions were in natural log scale, as in log space the PBM
measurement error does not correlate with the binding signal
(Zhao et al. 2017). We compared our binding data against
MITOMI data (Maerkl and Quake 2007) in terms of binding ener-
gies (ΔΔG). Binding energies were computed from Kd values as

DDG = RT · ln Kd

Kd,ref

( )
, where T is the temperature (298 K) and R

is the gas constant. We chose the DNA probe with highest affinity
(i.e., smallest Kd) as Kd,ref. When comparing our estimated ΔΔG val-
ues against MITOMI data (Maerkl and Quake 2007), the range of
ΔΔG values was slightly different. For example, in Figure 2E, Cbf1
ΔΔG ranges from 0 to 6.5 kcal/mol in PBM, and 0 to 4.2 kcal/mol
in MITOMI. Pho4 ΔΔG ranges from 0 to 0.94 kcal/mol in PBM,
and 0 to 1.3 kcal/mol in MITOMI. These differences were not un-
expected given thatwe are using different techniques and different
protein samples. We found the best agreement for the MITOMI
probe group CACNNN for Cbf1 (R2 = 0.88) and GTGNNN for
Pho4 (R2 = 0.83), as shown in Figure 2E. All PBM-derived Kd and
ΔΔG values were computed over 36-bp sequences. In the compar-
isons against MITOMI data, for each 14-bp sequence tested by
MITOMI, we used 10 random flanks in our DNA library and we
computed the median Kd and ΔΔG value over the 10 flanks.

Biophysical modeling of competitive DNA binding

Using Kd data for themain TF and the competitor TF (whichwe es-
timated in this study as described above), we can directly derive the
probability that a DNA site i is bound by the main TF

Pi =
[TFmain]/Kmain

d,i

1+ [TFmain]/Kmain
d,i + [TFcompetitor]/Kcompetitor

d,i

, (4)

where [TFmain] and [TFcompetitor] are the concentrations of freemain
TF and free competitor TF, respectively, and Kmain

d,i and Kcompetitor
d,i are

their equilibrium dissociation constants at site i. Determining the
concentrations of free proteins in any systems is not trivial. Thus,
[TFmain] and [TFcompetitor] parameters were unknown. Here, we first
estimated these parameters from our data using nonlinear least
square regression, similar to the Kd estimation. Next, we used all
the estimated parameters in Equation (4) in order to calculate
the probabilities of binding under four different competition sce-
narios (Supplemental Table S2B). All loss functions were in natural
log scale, because in log space the PBM measurement error does
not correlate with the signal.

Evolutionary conservation analyses

We searched for bHLH orthologs across fungi and animals. The
fungal species tree was taken from Gomes-Vieira et al. (2018) and
modified to include new fungal genomes and diverse holozoans
(e.g., animals) as an outgroup. Proteomes were downloaded from
NCBI Genome (https://www.ncbi.nlm.nih.gov/genome/) or JGI
MycoCosm (https://mycocosm.jgi.doe.gov/mycocosm/home), as
indicated in Supplemental Table S1. We identified orthologs
in each genome using HMMER profiles downloaded from
eggNOG5, a database of annotated orthologs created via phyloge-
netic and functional analysis of thousands of genomes (Huerta-
Cepas et al. 2019).

Saccharomyces cerevisiae Cbf1 is part of a large orthologous
group (KOG1318) that includes Class B animal bHLHs, such as
the MITF and USF subfamilies. Starting from Saccharomyces cerevi-
siaeCbf1 andMusmusculusMITF,weusedHMMER to identify fun-
gal and animal orthologs using the KOG1318 profile. During our
analysis, it became clear that the Cbf1-like progenitor duplicated
to create Cbf1 and Rtg3 subfamilies in fungi. Thus, we downloaded
the HMMER profile for the Rtg3 subfamily (ENOG503P20B) and
extended our analysis to identify both Rtg3 and Cbf1 orthologs;
see Supplemental Table S1. Last, we aligned all proteins to the ca-
nonical bHLH domain (PF00010) and identified unique sequences
features for each subfamily (Supplemental Fig. S1). Overall, our
data suggest that fungal Cbf1 and animal MITF are likely descend-
ed from the sameCbf1-like progenitor that was present in the com-
mon ancestor of both fungi and animals.

Saccharomyces cerevisiae Pho4 is part of a yeast-specific ortho-
log group (ENOG502S1Z7), whereas the Pho4 orthologs in
Neurospora crassa (Nuc-1) and Aspergillus nidulans (PalcA) are
from a broader, fungal-specific ortholog group (ENOG502S7T4).
We used the broad fungal Pho4 profile to identify both new and
known orthologs (Gomes-Vieira et al. 2018). Fungal Pho4 has a
highly conserved and unique H∗∗AEQKmotif in its basic domain;
see alignment in Supplemental Table S1.We couldnot detect Pho4
in the animal outgroups, but fungal Pho4 had weak hits to animal
orthologs in the MAX (KOG2483), Max-like protein X (MLX,
KOG1319), and MLX-interacting protein (MLXIP, KOG3582) sub-
families. Upon closer inspection, only the MLX and MLXIP sub-
families have the H∗∗AEQK motif. This suggests that fungal Pho4
and animal MLX/MLXIP are likely descendants from the same
Pho4-like progenitor that was present in the common ancestor
of both fungi and animals (Supplemental Fig. S1).

Analysis of paralogous TFs’ expression profiles

The list of TF families in the yeast S. cerevisiaewas acquired from the
Cis-BP database (Weirauch et al. 2014). The protein abundance of
all yeast TFs were obtained from Ho et al. (2018), in units of mol-
ecules per cell. Next, we counted the number of families that
have more than one TF expressed in the cell with abundance
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higher than the Xth percentile among all TFs, where X=0, 0.05…
0.95, 1. The results are presented in Supplemental Figure S5E and
Supplemental Table S4B.

The expression profiles of TF families in 37 human tissues
were obtained from Lambert et al. (2018), as normalized tran-
scripts permillion (TPM). For each TF family, we counted the num-
ber of TFs that have an expression level higher than the Xth
percentile among all TFs, where X=0, 0.01, 0.02…0.99, 1. Next,
we counted the number of families that havemore than one TF ex-
pressed above the threshold in at least one tissue type
(Supplemental Table S4B). The results of these analyses are shown
in Supplemental Figure S5E, where we plotted the counts of TF
families against the percentiles that we used as cutoffs. Next, we re-
fined our analysis by focusing only on paralogs with highly similar
DNA-binding motifs, as represented by PWM models and com-
piled by Lambert et al. (2018). Briefly, Lambert et al. used hierar-
chical clustering to group motifs into 585 clusters that covered
1211 TFs with known DNA-binding motifs. Out of the 585 clus-
ters, 421 had only one TF protein, most commonly (in 82% cases)
a zinc finger protein. Of the remaining 164 clusters, six contained
proteins without available gene expression data, leaving 158 clus-
ters for analysis; each of the 158 clusters contained two or more TF
paralogs with highly similar DNA binding motifs, covering a total
of 871 TFs from 36 families. Of these clusters of interest, 154
(∼97%) contained at least two paralogs coexpressed in at least
one cell type, at a percentile cutoff X=75%. Results for all cutoffs
between 0.01 and 1 are available in Supplemental Table 4D and
Supplemental Figure S5E.
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All raw and processed PBM data generated in this study have been
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www.ncbi.nlm.nih.gov/geo/) under accession number
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