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High-density diffuse optical tomography (HD-DOT) methods have shown significant
improvement in localization accuracy and image resolution compared to traditional topo-
graphic near infrared spectroscopy of the human brain. In this work we provide a compre-
hensive evaluation of image quality in visual cortex mapping via a simulation study with
the use of an anatomical head model derived from MRI data of a human subject. A model
of individual head anatomy provides the surface shape and internal structure that allow
for the construction of a more realistic physical model for the forward problem, as well as
the use of a structural constraint in the inverse problem. The HD-DOT model utilized here
incorporates multiple source-detector separations with continuous-wave data with added
noise based on experimental results.To evaluate image quality we quantify the localization
error and localized volume at half maximum (LVHM) throughout a region of interest within
the visual cortex and systematically analyze the use of whole-brain tissue spatial constraint
within image reconstruction. Our results demonstrate that an image quality with less than
10 mm in localization error and 1000 m3 in LVHM can be obtained up to 13 mm below the
scalp surface with a typical unconstrained reconstruction and up to 18 mm deep when a
whole-brain spatial constraint based on the brain tissue is utilized.
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INTRODUCTION
Diffuse optical tomography (DOT) of the human brain is an
emerging neuroimaging methodology that allows continuous
non-invasive imaging of human brain functional activity by tak-
ing near infrared (NIR) optical measurements using sources and
detectors placed on the human scalp (Bluestone et al., 2001; Boas
et al., 2004b; Gibson et al., 2006; Zeff et al., 2007; White et al., 2009;
Custo et al., 2010; Koch et al., 2010; White and Culver, 2010a;
Niu et al., 2011). While most hemodynamic-based neuroimag-
ing research studies in healthy adult subjects are conducted with
functional magnetic resonance imaging (fMRI), its relative high
cost, fixed scanner locations, physical constraints during imag-
ing and its inability [through the Blood Oxygen Level Dependant
(BOLD) signal] to comprehensively provide or assess altered brain
metabolism, limit fMRI’s translation as a bedside clinical tool.
DOT is emerging as a non-invasive neuroimaging modality that
is uniquely suited to this setting, as it is a mobile system utiliz-
ing a small, flexible imaging cap (Obrig and Villringer, 2003).
It also has the potential to measure absolute changes in oxy-
genated (ΔHbO2), deoxygenated (ΔHbR), and total hemoglobin
(ΔHbT), providing more comprehensive images of the brain’s
hemodynamics (Boas et al., 2004b; Pogue et al., 2006).

Recently high-density diffuse optical tomography (HD-DOT)
systems have been developed to provide high spatial sampling
of the brain tissue using a large number of overlapping mea-
surements. Initial efficacy of HD-DOT has been demonstrated
in vivo with studies that include retinotopic mapping of adult
human visual cortex (Zeff et al., 2007; Eggebrecht et al., 2012),

somatotopic mapping of the sensor motor cortex (Koch et al.,
2010), resting-state mapping of functional connectivity (White
et al., 2009), and phase-encoded retinotopic mapping (White and
Culver, 2010a). The HD-DOT images have a level of detail that was
previously inaccessible via sparse functional near-infrared spec-
troscopy (fNIRS) arrays (White and Culver, 2010b). However most
of these initial HD-DOT studies have been either limited by the
use of simplified generic head models, or have only considered a
limited number of simulated focal activations within the visual
cortex. In this work, we expand the problem of recovered image
analysis from these limitations to encompass the entire visual cor-
tex using a subject specific anatomical model. Additionally we
introduce and utilize robust image analysis metrics that allow a
comprehensive study of the entire visual cortex, thereby providing
a better understanding of the HD-DOT imaging performance.

Following advances in DOT breast cancer imaging (Brooksby
et al., 2005; Dehghani et al., 2009a), more recent DOT studies
of brain function have begun to use magnetic resonance imag-
ing (MRI)-guided approaches in which a three-dimensional (3D)
anatomical head model is constructed (Boas and Dale, 2005).
The realistic representation of the physical model provides the
necessary external and internal structure necessary for an accu-
rate description of light propagation in tissue. Furthermore the
realistic head model also provides a possibility for incorporating
anatomically derived spatial constraints (Boas and Dale, 2005).
Recently the performance of HD-DOT was evaluated by Dehghani
et al. (2009b) and Heiskala et al. (2009b) with anatomically realis-
tic head models. However neither study provided a quantitative
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evaluation of the point-spread-function (PSF) throughout the
entire field of view (FOV) as conducted by Boas et al. (2004a)
and White and Culver (2010b) which themselves were limited to
simplified head models. This paper provides a fully comprehen-
sive quantification of the PSF for HD-DOT using an anatomi-
cally realistic head, both with and without an anatomically based
whole-brain spatial constraint for image recovery. Specifically, PSF
analysis is performed throughout the visual cortex within a spec-
ified region of interest (ROI), corresponding to the total field of
view of an experimental HD-DOT system (Zeff et al., 2007).

MATERIALS AND METHODS
HEAD MODEL
In order to guide the physical modeling of a subject-specific human
head, T1-weighted MPRAGE [echo time (TE) = 3.13 ms, repeti-
tion time (TR) = 2400 ms, flip angle = 8˚, 1 mm × 1 mm × 1 mm
isotropic voxels] and T2-weighted (TE = 84 ms, flip angle = 120˚,
1 mm × 1 mm × 4 mm voxels) scans of the same subject were col-
lected on a Siemens Trio (Erlangen, Germany) 3T scanner at
Washington University School of Medicine. The subject passed MR
screening to ensure their safe participation. Informed consent was
obtained and the research was approved by the Human Research
Protection Office at Washington University School of Medicine.
In-house automated algorithms were applied to both MRI dataset,
which performs a series of iterative thresholding, region grow-
ing, and masking technique to produce a set of segmented images
that indicate scalp, skull, cerebrospinal (CSF), gray matter, and
white matter in different grayscale, as shown in Figure 1. These
three-dimensional images were then imported in the Mimics soft-
ware package (Materialise, http://www.materialise.com/mimics)
to create a three-dimensional finite element head model (FEM).
The model was composed of 1,087,223 nodes corresponding to
6,289,566 linear tetrahedral elements with maximum inter nodal
distance of 1 mm. Each node was labeled by one of the five seg-
mented head tissue types as stated above. Alternative methods for
tissue segmentation through the use of statistical methods based

FIGURE 1 |Three-dimensional surface rendered view for each of the

five segmented head tissues.

on a template of the brain atlas can also be utilized and may prove
to be more suitable when dealing with multiple subjects while
reducing operator bias. Tissue optical properties assigned to the
head model were values estimated at 750 nm (Table 1), which is
one of the primary wavelengths used in our current system (White
and Culver, 2010b) and can be adapted to other wavelengths and
spectral analysis. These values were estimated by applying a linear
line-fitting scheme on values published at other available wave-
lengths (Bevilacqua et al., 1999; Strangman et al., 2003; Custo
et al., 2006).

OPTODE ARRAY ARRANGEMENTS
The high-density (HD) imaging array used for the data simu-
lation consisted of 24 sources and 28 detectors, which has been
previously described (Zeff et al., 2007; White and Culver, 2010b).
The HD imaging array was modeled on the scalp surface over the
visual cortex as shown in Figures 2A,B. Within this context,nearest
neighbor measurements can be defined based on source-detector
separations, Figure 2C. In this study all detectors within 40 mm
from each source (i.e., first, second, and third nearest neighbors
have distances of 13, 30, and 40 mm respectively) were utilized,
giving rise to a total of 260 independent measurements. It was
assumed that only intensity data (as available from a continuous-
wave system) measured at 750 nm were used to provide maps of
optical absorption related changes only. A ROI was defined as the
volume up to 40 mm under the posterior field of view (FOV) of the
HD imaging array, as shown in Figure 2B. The posterior FOV has
been selected to focus on the visual cortex region under the array
with the highest sensitivities and lowest image artifacts (White and
Culver, 2010b).

FORWARD LIGHT MODELING
Forward modeling of light propagation within the head model
was performed using NIRFAST (Dehghani et al., 2008) which is a
modeling and image reconstruction toolbox based on the Diffu-
sion Approximation. NIRFAST was used to generate a sensitivity
matrix J (also known as the Jacobian or Weight matrix) which
represents the changes of measured “boundary data” Δy due to a
small spatial perturbation in absorption Δx, given an initial model
of baseline optical properties. The forward problem of the head
model can thus be expressed as:

Δy = JhΔx (1)

where J h is a matrix with a size of number of measurements (NM)
by number of nodes (NN), Δx is a vector of length NN and Δy is
a vector of length NM. Since Δx corresponds to a small change in

Table 1 |Tissue optical properties at 750 nm.

Tissue μa (mm−1)/μ′
s (mm−1)

Scalp 0.0170/0.74

Skull 0.0116/0.94

CSF 0.004/0.3

Gray matter 0.0180/0.8359

White matter 0.0167/1.1908
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FIGURE 2 | (A) Posterior and (B) lateral schematic view showing the
placement of the imaging array over the visual cortex of the head model
with 24 sources (red squares) and 28 detectors (blue circles). A region of
interest (ROI) was defined by the volume enclosed within the black solid
rectangle, (C) first to third nearest neighbor measurements defined by
separation of 13, 30, 40 mm respectively within the context of the HD
imaging array.

absorption from an initial baseline state, Δy is the corresponding
change in amplitude of the measured signal, i.e. Δy = y – yo, where
yo is the initial rest state measurement and y is the measurement
after a change in absorption. In this work the sensitivity matrix
reflected the logarithmic change in the measured data, such that
Δy = log(y) – log(yo) = log(y/yo), which is the Rytov approxima-
tion (Arridge, 1999) and has shown to allow for the large dynamic
range of the measurements (O’Leary, 1996).

INVERSE PROBLEM
The aim of image reconstruction is the recovery of the opti-
cal parameter Δx at each FEM node within the domain using
measurements Δy. Since J h in Eq. 1 is non-invertible, the Moore–
Penrose generalized inverse (Penrose, 1955) was applied in the
inverse problem to provide the least squares solution:

Δx = Ĵ T
h

(
Ĵh Ĵ T

h + α2I
)−1

Δy (2)

where α2 is a regularization factor and Ĵh is the spatially regularized
sensitivity given by

Ĵh = Jh√
JhJ T

h + β(max(diag(JhJ T
h ))

(3)

where β is the spatial regularization factor. This scheme is applied
to regularize the hyper sensitivities often observed in regions near
the optodes (Boas and Dale, 2005; Li et al., 2011), allowing a more
homogenous spatial distribution of the sensitivity. The optimal
values chosen in this work were α = 10−2 × the maximum singu-
lar value of J h, and β = 10−2, which were found to provide good
imaging metrics based on values used in our previous human
(White and Culver, 2010b) and animal (Culver et al., 2003) DOT
studies.

Based on the spatial a priori information, the sensitivity matrix
J h can be segmented into two parts such that J b contains the
sensitivities of all the nodes in the brain (white and gray matter)
and J nb includes the sensitivities of all the nodes not belonging to
the brain (CSF, skull, and scalp). In order to constrain the image
recovery problem to nodes that are only associated with the brain,
J b can be used instead of J h in the spatial-regularization step, Eq.
3, and consequently Eq. 2. The use of whole-brain constraint in
image reconstruction in this study is similar to the cortical con-
straint applied by (Boas and Dale, 2005) which limits the recovered
activation to only the gray matter. However a key issue with the
cortical constraint is that it requires accurate subject-specific gray
matter segmentation. In comparison, the whole-brain constraint
as applied in this work should, in principal, be more robust with
respect to tissue segmentation errors, gray and white matter specif-
ically. Subsequently model mismatch errors due to gray and white
matter segmentation should be minimized which are common
issues with the incorporation of structural a priori information
within in vivo DOT.

TOTAL SPATIALLY REGULARIZED SENSITIVITY
The total spatially regularized sensitivity Ĵ total (for either Ĵh or Ĵb)
is calculated as the sum of the spatially regularized sensitivity over
all measurement pairs at each spatial node within the head model.
This is effectively the sum of the elements in each column of the
spatially regularized sensitivity matrix Ĵ :

Ĵ total
j =

∑NM

i=1
Ĵi,j (4)

where Ĵ total is the total spatially regularized sensitivity at node
j, and Ĵi,j is the spatially regularized sensitivity at node j due to
source-detector pair measurement i for a total number of NM
measurements. This provides a measure of the system’s sensitivity
profile throughout the imaging domain.

POINT-SPREAD-FUNCTION ANALYSIS
In order to evaluate image quality, point-spread-function (PSF)
analysis was performed at each of the 40,281 gray matter (visual
cortex) nodes within the ROI as defined in Section “Optode Array
Arrangements” and Figures 2A,B. The simulated absorptive per-
turbation, Δx, was assumed to come from a small (a single node,
corresponding to 1 mm3, given that the FEM model consists of
spatial node distribution of 1 mm resolution) focal hemodynamic
visual response located within the visual cortex. The magnitude
of perturbation at the gyri of the cortical surface was determined
to match the acquired measurement in in vivo studies within the
visual cortex (Zeff et al., 2007), and was kept constant for all sub-
sequent perturbations deeper within the brain. For each simulated
focal activation, Eq. 1 was used to compute the noiseless data (Δy-
noiseless). In line with our current in vivo performance, 0.1, 0.14,
and 1% Gaussian random noise was added to first, second, and
third nearest neighbor measurements to provide realistic data,
Δy. In order to mimic our current data collection strategy, for
each focal activation, 10 sets of noise added data were generated
which were then appropriately averaged and images of each focal
activation were reconstructed with and without the application of
whole-brain constraint.
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METRICS OF IMAGE QUALITY
Consider an example target and two reconstructed activations as
shown in Figure 3. It is clearly evident that in Case A, whereby a
single activation has been recovered, the use of localization error
(displacement between actual and recovered peak value) is an intu-
itive and commonplace image quality metric. Additionally for Case
A, the use of full volume half maximum (FVHM) is an appropriate
evaluation of the spread (size) of the recovered parameter. There
exists however scenarios, such as demonstrated in Case B, whereby
multiple activations are reconstructed, instead of the expected sin-
gle activation. As such the use of localization error and FVHM
alone is not straightforward, since it is not clear which recovered
activation should be used for accurate analysis. To this end, we
will next define and clearly state the specific image quality metrics
utilized in this work, which aims to minimize the uncertainty due
to multiple recovered activations.

Following from above, three metrics were utilized to provide a
quantitative measure of the imaging performance. First the local-
ized full volume half maximum (LVHM) was defined as the single
volume enclosing the peak-response node in the PSF as well as
other contiguous nodes having a value above half of the peak
response. In case A of Figure 3, this would correspond to the
FVHM of the single recovered activation, whereas in Case B, it cor-
responds to a single volume containing the peak-response node.
Second, the localization error was defined as the Euclidian differ-
ence between the peak-response node in the LVHM (also PSF) and
the target node:

localization error

=
√(

xpeak − xtarget
)2 + (

ypeak − ytarget
)2 + (

zpeak − ztarget
)2

(5)

where (x, y, z) represents the nodal coordinate in the standard x-
y-z 3D coordinate system. By such definitions it is assumed that
the LVHM reveals useful localization information about the actual

FIGURE 3 | An example of a “target” focal activation on the cortical

surface and two examples of reconstructed activations: Case A where

a single activation is recovered and Case B where multiple activations

are recovered.

target, which may not be valid when multi-regional artifacts are
reconstructed due to low sensitivity and/or poor signal to noise
ratio (SNR). Since the presence of imaging artifacts could affect
the integrity of the localization error and LVHM as quantified
above, we also introduced the third metric “focality,” given by:

focality = LVHM

FVHM
(6)

where full volume half maximum (FVHM) is defined as the total
(sum) volume of all nodes having a value above half of the max-
imum reconstructed response. While a focality of 1 indicates a
single-regional PSF, a focality value above 0.5 describes a recon-
structed activation well separated from the background artifacts,
assuring a good level of integrity in the corresponding localiza-
tion error and LVHM. As in Case A of Figure 3, the focality value
clearly is equal to 1, whereas in Case B, it would correspond to a
value of less than 1. Since a reasonable objective within the field of
neuroimaging is 10 mm resolution, we set the maximum tolerance
for localization error at 10 mm, and 1000 mm3 for LVHM (White
and Culver, 2010b).

RESULTS
TOTAL SPATIALLY REGULARIZED SENSITIVITY
Figure 4 shows the spatial distribution of the total spatially reg-
ularized sensitivity (from Eq. 4) with the full head (left column
“Head”) and with a whole-brain constraint (right column“Brain”)
at three different axial slices with different positions relative to
sources and detectors. Since the spatial distribution of sensitivity
is highly dependent on optode placements, variations are expected
between the slices when utilizing sparse optode placement. In
Figure 4 however the three sensitivity distributions within the
same column show similar spatial coverage owing to the high
spatial sampling of tissue by a large number of overlapping mea-
surements and the spatial regularization scheme applied in Eq. 3.
Without using a whole-brain constraint, the regions with larger
than 50% sensitivity (indicated by warm color in Figure 4) reside
mainly within the scalp, skull and CSF, which is a distribution
not ideally suitable for imaging visual cortex activations that take
place in the gray matter. While the gyri are also well covered by high
sensitivity, sulcal folds show a significant decrease in sensitivity.

On the other hand the use of a whole-brain constraint pro-
duces a more gradual decay of sensitivity in the brain region as
depth increases. The sensitivity profile throughout the gray mat-
ter is more uniform with the whole-brain constraint, potentially
indicating a better recovery of focal activations within the visual
cortex both in the sulcal folds and gyri.

METRICS OF IMAGE QUALITY
Figure 5 (Head) shows the color-coded scatter plots of the
three defined imaging performance metrics (localization error,
LVHM, and focality) versus imaging depth for all the PSFs
(40,281 individual focal activations from the gray matter (visual
cortex) nodes within the ROI) obtained using full head (non-
constrained) reconstruction. The color-coded plots have been
utilized to identify the cases whereby the localization error is either
less than 10 mm (green) or greater than 10 mm (red). From these
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FIGURE 4 |Total spatially regularized sensitivity (normalized to 1) Ĵ total
h

[column (Head)] and Ĵ total
b

[column (Brain)] are shown at three axial MRI

slices (1, 2, and 3) with different positions relative to sources and

detectors, and also at posterior view on the 3D cortical surface

(bottom row).

Figures, a “high image quality zone” between 9 mm and 13 mm
imaging depth can be identified, where localization error increases
from (0.72 ± 0.62) to (2.67 ± 2.54) mm, LVHM increases from
(578 ± 64) to (842 ± 185) mm3, indicating that the upper bound-
ary of the “mean ± standard deviation” window for both metrics
(specifically the LVHM) are below or roughly equal to its specified
tolerance level. Beyond 13 mm depth there is a growing number
of poor quality PSFs (red dots) appearing in the form of high
localization error, low LVHM and more crucially lower focality,
indicating a gradual takeover by imaging artifacts due to poor
signal to noise ratio at these higher depths.

Figure 6 (Head) shows the spatial distribution of localization
errors up to 10 mm on top of the corresponding MRI, where the
white solid and dashed lines represents a depth of 13 mm and
18 mm below the scalp, respectively. These data points have high
integrity as all of the displayed results have a focality above 0.5 as

evident in Figure 5 (Head). A key observation in Figure 6 (Head)
is that although the localization error is low and constant at depths
of up to 13 mm, it increases with imaging depth.

Figure 5 (Brain) shows the same scatter plots of the three
metrics using the whole-brain constrained reconstruction. The
“high image quality zone” in this case can also be identified as
between 9 mm to 13 mm below the scalp, where localization error
increases from (0.54 ± 0.67) mm to (3.85 ± 5.98) mm, and LVHM
increases from (96 ± 43) to (286 ± 120) mm3. While the focality
plot is given, it is important to note that the 0.5 focality toler-
ance may not be directly applicable in this case, since the PSF is
constrained to the gray and white matter only. In cases where the
focal activation lies within a fold of the visual cortex, the recovered
activation using the whole-brain constrain may be “split” across
this fold, thereby decreasing the calculated “focality” metric [see Y
in Figure 8 (Brain) for an example].

Figure 6 (Brain) shows that localization error of less than
10 mm covers up to 18 mm below the scalp surface with better
and more uniform localization accuracy beyond the 13 mm con-
tour as compared to Figure 6 (Head), owing to the improved
depth localization. It is worth noting the existence of minor
variations in localization accuracy between spatial locations of
the same depth, as noticed in Figure 6 (Brain), which is likely
to be the result of the complicated physical structure of the
brain (and therefore the applied constraint), due to the folds of
the brain.

Figure 7 shows the spatial distribution of LVHM up to
1000 mm3 on top of the corresponding MRI, where the white
solid and dashed lines represent a depth of 13 mm and 18 mm
below the scalp respectively. In the case of using non-constrained
reconstruction, there exists a high magnitude and a non-uniform
variation of LVHM within the gray matter, whereas the application
of “whole-brain” constrained image reconstruction dramatically
reduces the magnitude of the LVHM and provides a much more
uniform degree of parameter recovery throughout the visual cor-
tex. This is substantially evident in the 3D cortical surface maps
(Figure 7, bottom row), which is inline with the scatter plots shown
in Figure 5.

DISCUSSION
In this study we have presented a routine for conducting subject-
specific HD-DOT studies and quantitatively evaluated the corre-
sponding image performance throughout a ROI within the visual
cortex. The first step is to construct a high-resolution 3D finite
element head model that incorporates realistic tissue spatial infor-
mation (Figure 1), which requires both T1 and T2 MRI data set
from the subject and an appropriate tissue segmentation proce-
dure. Compared with using simplified generic head models (Zeff
et al., 2007; White et al., 2009; White and Culver, 2010a,b) this
approach reduces the systematic imaging error due to mismatch
between in vivo and computational models. After a spatial reg-
ularization scheme is applied, the full head total sensitivity is
shown to have high sensitivities (larger than 50% of maximum
value) covering non-brain regions and no further than super-
ficial regions of the cortex [Figure 4 (Head)]. This reveals a
deeper sensitivity coverage than the Dehghani et al. (2009b) study
which reported total sensitivity on the cortical surface at 10% of
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FIGURE 5 | Scatter plot of localization error, LVHM and focality

versus imaging depth (up to 20 mm) for all PSFs reconstructed with

full head [column (Head)] and brain constraint [column (Brain)].

Each dot, which represents a reconstructed PSF, is color-coded in green if
its localization error is less than 10 mm or otherwise in red. The

mean ± standard deviations are reported at 1.0 mm imaging depth
interval (black solid plot) up to 13 mm. The blue dashed line in each figure
represents tolerance level for each metric as stated in Section “Metrics
of Image Quality.” In all cases the x -axis has been limited to 20 mm for
conciseness.

maximum value. However the head model used in that study was
based on fewer segmented regions, which were also less complex
in structure.

The reconstructed PSF for each gray matter node within the
ROI is evaluated by three metrics of image quality. Traditionally
FVHM and localization error have been the standard metrics for
evaluating imaging quality. We have demonstrated that in pres-
ence of noise where multi-regional activations are reconstructed,
the FVHM may not be the best parameter as it is not trivial to
isolate the true recovered activation from background noise and
artifacts. Therefore we have introduced two parameters LVHM and
focality that aim to provide more information regarding the image
quality. We have found that in presence of noise these parameters
provide a more consistent evaluation of image quality when used
in conjunction with localization error, as compared to FVHM and
localization error alone.

A “high quality region” down to 13 mm imaging depth below
the scalp is identified Figure 5 (Head) based on defined thresholds
of each image quality metric. Localization error and FWHM (as
derived from LVHM) at 10 mm imaging depth are (0.86 ± 0.67)
mm and (10.6 ± 0.4) mm respectively, which are within good
agreement with White and Culver (2010b) findings on a simplified
head model.

When a whole-brain constraint is applied within the image
recovery algorithm, the total sensitivity yields a more homogenous
spread of sensitivities on the 3D cortical FOV [Figure 4 (Brain)].
Consequently focal activation up to 18 mm below the scalp can
potentially be better localized as shown quantitatively by metrics
of image quality in Figure 6 (Brain). This improvement in local-
ization with depth (from 13 mm without whole-brain constraint
to 18 mm with whole-brain constraint) has not been evaluated in
any other previous study, highlighting the utility and benefit of the
proposed scheme.

If an image quality goal is set at less than 10 mm localization
accuracy (and image resolution), these comprehensive simula-
tions suggest that HD-DOT is capable of imaging focal activa-
tions within the visual cortex up to 13 mm below the scalp using
full head reconstruction [Figures 6 and 7 (Head)], and up to
18 mm using whole-brain constrained reconstruction [Figures 6
and 7 (Brain)]. Both depths roughly correspond to the 30%
contour in their respective total spatially regularized sensitivity
(Figure 4).

It can be observed that the lack of a spatial constraint pulls the
activations toward the surface to regions of higher sensitivity, sacri-
ficing 5 mm imaging depth capability and image resolution which
is also in line with a previous study (Boas and Dale, 2005). Such
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FIGURE 6 | Spatial distribution of localization error for image

reconstruction with the full head [column (Head)] and a brain

constraint [column (Brain)] are shown at three axial MRI slices (1, 2,

and 3) with different positions relative to sources and detectors, as

well as a posterior view on the 3D cortical surface (bottom row). The
white solid contour on each MRI slices represents imaging depth of 13 mm
below the scalp while the white dashed contour represents imaging depth
of 18 mm below the scalp.

a phenomenon has been qualitatively demonstrated in Figure 8
(Head): while a perturbation moves from location X to Z, its recov-
ered location stops moving beyond the 13 mm contour. Effectively
at location Z the PSF is been pulled toward the skull/scalp region
where the sensitivity is much higher [see Figure 4 (Head)]. Thus
such decrease in localization accuracy represents a stronger effect
on the depth accuracy than the lateral localization accuracy. On
the other hand, localization errors at given specific depths (regard-
less of lateral locations), show good consistency as shown in
Figure 6 (Head). Figure 9 (Head) confirms this finding by show-
ing the recovered activations at three similar depths but different
lateral location (I, J, K). Specifically Figure 9 (Brain) demon-
strates that while the whole-brain constraint biases the recovery of

FIGURE 7 | Same as Figure 6, but for spatial distribution of localized

volume half maximum.

activations toward a deeper depth than the actual focal location,
their localization errors are 5.8 mm (I), 2.8 mm (J), and 3.0 mm
(K) respectively, all below the 10 mm tolerance.

In terms of imaging resolution, the use of “whole-brain” con-
straint for image recovery, a more homogenous (and less than
1000 mm3) LVHM spread provides the capability to distinguish
between gyri as shown by activation X in Figure 8 (Brain), and
between gyrus and sulcus as shown by activation Z in Figure 9
(Brain). Finally, the 3D cortical surface maps of localization error
and LVHM in Figures 6 and 7 (Brain) also illustrate a much
more homogeneous distribution of image accuracy and resolu-
tion throughout the FOV of the visual cortex as compared with
Figures 6 and 7 (Head).

The quantitative results reported in this work (as obtained from
a subject-specific anatomical head model with a chosen set of
baseline tissue optical properties) will certainly vary by subject.
Previous works suggest the variations on image quality due to dif-
ferent anatomies and tissue thickness (Heiskala et al., 2009b; Custo
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FIGURE 8 | Images of three target perturbations located along the

same cortical fold but different depth: 10.22 mm (X ), 13.14 mm (Y ), and

18.13 mm (Z ), and the corresponding PSFs shown at FVHM using full

head [column (Head)] and brain constrained [column (Brain)]

reconstruction. The white contour on each MRI slice represents the
13 mm imaging depth.

et al., 2010) and uncertainty in tissue optical properties (Heiskala
et al., 2009a; Zhan et al., 2011) can be minimal when consider-
ing temporal imaging but there could exist abnormal variations
in anatomy that cause the image quality to be affected signifi-
cantly and this warrants further investigation in future studies.
Additionally the effect of superficial physiology in the scalp may
play a role in the results presented in this work, however, we have
shown in previous studies that using appropriate functional data
processing, it is possible to minimize their effects (White et al.,
2009).

The work presented in this study, for conciseness, is limited to
a single NIR wavelength and parameters relating to errors such as
optode placements and variations to underlying optical properties
are ignored. The choice of a using a specific wavelength (750 nm
in the presented work) is appropriate, since most systems rely
on specific wavelength measurements for the recovery of optical
parameters and the methods and findings can easily be expanded
for other wavelengths. Although the assumptions regarding the
optode placements and underlying tissue optical properties are
important when relating any findings to clinical applications, it
is critically important to understand the underlying physical lim-
its of optical parameters recovery when utilizing HD-DOT for
neuroimaging studies.

FIGURE 9 | Images of three target perturbations located at different

lateral positions but similar depth: 13.14 mm (I), 13.01 mm (J), and

13.07 mm (K), and the corresponding PSFs shown at FVHM using full

head [column (Brain)] and brain constrained [column (Head)]

reconstruction. The white contour on each MRI slice represents the
13 mm imaging depth.

CONCLUSION
Simulations have shown that HD-DOT methods that incorpo-
rate a head model which provides a realistic description of the
spatial distribution of tissue optical properties are capable of
imaging focal hemodynamic response up to 18 mm below an
adult human scalp using whole-brain constrained reconstruc-
tion scheme within a 10 mm localization accuracy and resolution,
which would allow the distinguish-ability of gyri. Yet further yield
in imaging depth may be expected via the utility of more overlap-
ping measurements, e.g., up to fourth and fifth nearest neighbors,
as the dynamic range of future HD-DOT systems increase, or for
subjects with less optically absorptive head tissues, e.g., neonates
and young children.

The results presented herein provide the first comprehensive
study evaluating the resolution and accuracy of HD-DOT with an
anatomical head model and the use of a whole-brain constraint. It
can serve as guidance on what image quality to expect throughout
the cortical folds and approaches that might be taken to vali-
date with fMRI. Admittedly the MRI-guided routine used in this
study still relies on subject-specific MRIs to generate the forward
head model. However recently studies which utilize a deformable
atlas to construct subject-specific head model using various head
surface geometry fitting schemes, have shown promise in both
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simulation (Heiskala et al., 2009b) and in vivo (Custo et al., 2010).
Therefore a possible future work would be to evaluate the imaging
performance for atlas-based HD-DOT methods.
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