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Abstract: In this work, the authors present the possibility of modification of polymer membranes by
TiO2 + AgO coating created by the magnetron sputtering method. The two-component TiO2 + AgO
coating can improve and shape new functional properties such as bactericidal and photocatalytic
properties. The influence of magnetron power changes on the structure of the membrane was
investigated as well. The structure and elemental composition of TiO2 + AgO coatings were analyzed
using SEM and EDS technique. All deposited coatings caused a total inhibition of the growth of
two investigated colonies of Escherichia coli and Bacillus subtilis on the surface. The photocatalytic
properties for membranes covered with oxide coatings were tested under UV irradiation and visible
light. The filtration result show that polymer membranes covered with two-component TiO2 + AgO
coatings have a permeate flux similar to the non-coated membranes.

Keywords: polyamide membranes; surface modification; magnetron sputtering; TiO2 + AgO coat-
ings; low-pressure plasma; plasma treatment

1. Introduction

Microfiltration (MF) processes conducted with polymer membranes play an increas-
ingly important role in many areas of the industry [1,2]. Due to their advantages, such as
simplicity and application flexibility, these techniques are used in a variety of technological
processes. However, membrane filtration processes also have disadvantages. The speci-
ficity of this process creates good conditions for the formation and deposition of biofilm
on the active surfaces of membranes (biofouling). This requires membranes to be cleaned
or replaced more frequently leading to a reduction in filtration efficiency and an increase
in filtration costs [3–5]. Membranes made from polymers in many cases can be easily
exposed to biofouling [6]. Microbial biofilm can form in both cases: living or non-living
surfaces and are prevalent in natural, industrial and hospital settings [7]. The deposition of
components from the feed solution and the growth of bacteria on the surface and inside
the pores of the membrane causes malfunctions of devices or the increase in material and
energy consumption [8,9].

Previous results evidenced an efficient modification of polymeric membrane surface
by magnetron sputtering of metal oxide coatings that have the potential to prevent biofilm
growth on the surface of the membranes [10,11]. This technology enables the production
of thin coatings on the surface of the membrane providing various functional properties,
which can improve the efficiency of membrane filtration and reduce the operating costs.
The most extensively studied new material solutions (including membranes) concern
hydrophilic and self-cleaning properties, which are based on metal oxides e.g., TiO2 [12–14].
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These coating are non-toxic and characterized by high thermal and chemical stability and
resistance to unfavorable environmental factors. Photocatalytic properties also determine
the wide area of application for TiO2 as a self-cleaning coatings enabling the degradation
of organic and inorganic compounds. In addition, these types of coating are characterized
by a low water contact angle [15]. Nevertheless, the TiO2 coating itself shows bactericidal
activity only in the presence of UV radiation [16,17]. The state of the art shows that doping
the TiO2 coating with various metals, such as Cu, Zn, Cr or Ag, can contribute to the
improvement of its functional properties [18–21]. As observed in our previous work,
the best solution is to dope titanium oxide (TiO2) with silver oxide (AgO), mainly due
to the strong bactericidal activity of this material. The work carried out by the authors
showed, that by using AgO coating for the modification of polymer membranes resulted in
a 100% reduction of bacteria on its surface [11]. Moreover, it has been proved that the Ag
doping expands the light absorption of TiO2 in the visible light region [22–24]. It should
contribute to the improvement of the efficiency of the degradation of organic and inorganic
compounds on the membrane surface.

The study investigated how changes in the technological parameters of the TiO2 +
AgO coating deposition process influence the antibacterial effect as well as the structure
and filtration efficiency of membranes. The application of magnetron sputtering technology
is an innovative method, which generates functional thin films on the surface of the mem-
brane. Herein, the authors have shown the possibility of using the magnetron sputtering
technique to deposit of TiO2 + AgO coatings on the surface of polymer microfiltration
membranes in order to obtain antibacterial and photocatalytic properties. The influence
of magnetron power changes on the structure of the membrane was also investigated.
Structure and morphology of native and modified membranes were characterized. The
bactericidal and photocatalytic properties of modified membranes, while retaining their
filtration properties were confirmed as well.

2. Materials and Methods
2.1. Coatings Deposition

The TiO2 + AgO coatings were deposited by reactive magnetron co-sputtering tech-
nology (MS-PVD) using a Standard 3 device produced by Ł-ITeE (Radom, Poland). The
device was equipped with a two magnetron plasma sources located on the same wall in the
chamber. Titanium and silver targets were used at the same time of the deposition process.
The purity of both targets was 99.99%. The targets diameter was about 100 mm and the
distance between the sample and the targets was 200 mm. The coatings were deposited
with a reactive gas atmosphere composed of a mixture of 10% oxygen (99.9999% purity)
and 90% argon (99.9999% purity). The TiO2 + AgO coatings were prepared without the
negative potential substrate polarization. The power of Ti magnetron source was variable
in the range 650–1000 W. The power of Ag magnetron source was variable in the range
2580 W. The time of the MS-PVD process was 30 s.

2.2. Structure and Elemental Composition Characterization

The Hitachi Su-8000 scanning electron microscope (SEM; Tokyo, Japan) equipped
with an electron gun with cold field emission was using for structure characterization of
prepared coatings. The very good resolution with a relatively low beam current in this
type of electron source is beneficial for observing materials sensitive to the electron beam,
such as the analyzed membranes. The secondary electron signal (SE) was used for material
observation but there was not deposited a conductive layer on the sample. The elemental
composition of the tested material was determined by the EDX method.

2.3. Bactericidal Properties

Antibacterial properties of membranes modified with TiO2 + AgO were examined
for microorganisms that were representative of Gram-negative (Escherichia coli) and Gram-
positive (Bacillus subtilis) bacteria. Before microbiological tests, the membranes were
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sterilized with a UV-C lamp for t = 30 min. Microbiological tests were carried out using a
vacuum filtration kit. An inoculum of the used bacteria was prepared in a saline buffer
(KH2PO4, Chempur) from a 24-hour culture at a concentration of 1.5–3.0 * 105 CFU/cm3.
The obtained suspension was further diluted using the serial dilution method to achieve a
countable number of colonies on the membranes. From the prepared dilutions, 0.04 cm3

(for Escherichia coli) and 0.1 cm3 (for Bacillus subtilis) of the suspension were taken and
transferred to a sterile 1000 cm3 phosphate buffer. Then 10 cm3 of such prepared suspension,
which was prepared in this way was filtered through the membranes under a pressure of
500 mbar using vacuum filtration kit. The membranes were placed on the plates containing
Luria Bertani (LB, VWR) growth medium and incubated at 37 ◦C for 24 h. After this time,
the bacterial colonies that had grown on the membranes were counted. The reference
sample in the research was the unmodified membrane. Results of antibacterial activity of
the membranes were expressed as the percentage (%) reduction in the colony (CFU) counts.

2.4. Photocatalytic Properties

Photocatalytic properties of the membranes were evaluated on the degree of methylene
blue degradation (0.1% v/v, Science Company) under the UV and visible light. Polyamide
membranes unmodified and modified with two-component TiO2 + AgO coatings were
placed in Petri dishes. A 20 cm3 volume was applied to their surface. Both UV-A lamp and
daylight were used to study the effect of the type of UV radiation on the photocatalytic
properties. After 8, 24, 48 and 72 h of UV and visible light irradiation, spectrophotometric
measurements were made at 665 nm using a Hach DR 6000 spectrophotometer (Hach
Company, Loveland, CO, USA). The tests were repeated three times for each tested sample.
In order to investigate the effect of doping TiO2 coatings with AgO on the photocatalytic
properties in visible light, one-component coatings were also tested according to the
same methodology.

2.5. Filtration Properties

The permeate flux was determined by measuring the time required to filter deion-
ized water (100 cm3) through the membrane (8 cm2) under defined transmembrane pres-
sure (500 mbar). The deionized water was characterized by the conductivity and pH of
5.3 µS/cm and 6.5, respectively. For this purpose, the laboratory “dead-end” filtration
set-up was used. The filtration properties of the membranes were evaluated based on the
permeate flux (Equation (1)).

A “dead-end” vacuum system, operating at a pressure of 0.5 bar, was used to deter-
mine the permeate flux. The permeate flux (Jp) was calculated from the time (t) taken to
filter 100 cm3 (Vp) of deionized water through a membrane with an area of 8 cm2 (A) in
accordance with Equation (1).

JP =
Vp

A·t (1)

3. Results and Discussion
3.1. Structure and Elemental Composition Characterization

The SEM images of the membranes coated with TiO2 + AgO were prepared for a
different power of the magnetron source (PM-Ag = 25 W, 50 W and 80 W, PM-Ti = 650 W
and 1000 W) used for modification were shown in Figures 1 and 2. The SEM analysis
of the structure of membrane with TiO2 + AgO coatings showed the comparison of the
differences to non-coated membrane presented in Figure 3.
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Figure 1. SEM images of the membranes with TiO2 + AgO coatings deposited at the different mag-
netron powers PM (a) PM-Ag = 80 W, PM-Ti = 1000 W, t = 30 s, (b) PM-Ag = 50 W, PM-Ti = 1000 W, t = 30 s, 
(c) PMAg = 25 W, PM-Ti = 1000 W, t = 30 s. 

Figure 1. SEM images of the membranes with TiO2 + AgO coatings deposited at the different
magnetron powers PM (a) PM-Ag = 80 W, PM-Ti = 1000 W, t = 30 s, (b) PM-Ag = 50 W, PM-Ti = 1000 W,
t = 30 s, (c) PMAg = 25 W, PM-Ti = 1000 W, t = 30 s.

The SEM analysis showed that the structure of the membrane’s surface changed
depending on the magnetron power. In the case of coatings created with the magnetron
power PMTi = 1000 W (Figure 1), the multiple bright AgO particles smaller than 100 nm were
observed in their structure. The proportion of these particles decreased as the power PM-Ag
of the magnetron decreased. In the case of coatings created with smaller magnetron power
PM-Ti = 650 W (Figure 2), much fewer light particles were observed on the surface. The
particles were localized mainly inside the pores, as presented in Figure 3. The correlation
between the magnetron power and the number of AgO particles on the membrane surface
has remained unclear.

The elemental composition analysis included the assessment of the magnetron power
effect on the percentage content for individual metallic elements in the elemental composi-
tion of the coating. The obtained results showed, that the TiO2 + AgO coatings (Figure 4)
created at the higher magnetron power PMTi = 1000 W were characterized by a higher con-
tent of Ti compared to the coatings deposited at the power of PM-Ti = 650 W. The increase
of the magnetron power PM-Ag resulted in the increase of Ag content in the elemental
composition of the tested coatings.
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18,000×. 

Figure 2. SEM images of the membranes with TiO2 + AgO coatings deposited at the different
magnetron powers PM (a) PM-Ag = 80 W, PM-Ti = 650 W, t = 30 s, (b) PM-Ag = 50 W, PM-Ti = 650 W,
t = 30 s, (c) PMAg = 25 W, PM-Ti = 650 W, t = 30 s.
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3.2. Antibacterial Properties

The antibacterial activity of membranes modified by TiO2 + AgO coatings was speci-
fied against two representative bacteria such as Escherichia coli (E.coli) and Bacillus subtilis
(B.subtilis), respectively. The coatings generated with the following power of magnetron
source (PM-Ag = 25 W, 50 W and 80 W, PMTi = 650 W and 1000 W) lead to the complete
growth inhibition of the colonies of E.coli and B.subtilis on the membranes which is shown
in Figure 5. Both bacteria showed no growth on the agar plates after incubation.
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These results were similar to those obtained in the previous study, where the AgO
coated membranes with different power of magnetron source caused total growth inhibition
of E. coli and B. subtilis [11]. The results of reduction (%) in CFU counts are presented
in Figure 6. For each TiO2 + AgO modified membranes the antibacterial activity of the
membrane amounted to 100% compared to the no-coated membrane.
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The obtained results may be associated with the elemental composition of the coatings,
which created with MS-PVD technique. The deposited coatings on the polymer membrane
were in the form of a solid titanium oxide matrix where Ag/AgO nanoparticles were
embedded, (Figures 2 and 3). The bactericidal properties of the TiO2 + AgO composite
coating were probably related to the presence of silver/silver oxide (Ag/AgO) nanoparti-
cles in this coatings. Research by Thukkaram et al. confirmed that the enrichment of the
titanium oxide coating with silver nanoparticles increases the antimicrobial activity against
Gram-positive and Gram-negative bacteria [25]. Navabpour et al. proved that TiO2 + AgO
coatings formed by using the reactive magnetron sputtering have stronger bactericidal
properties than TiO2 coatings produced in the same ways [26]. The strong bactericidal
properties of silver/silver oxide (Ag/AgO) nanoparticles were confirmed in many stud-
ies [27–29]. Silver and silver oxide nanoparticles have an affinity for functional groups
included in cellular proteins and nucleic acids. The binding silver ions in the cytoplasmic
membrane of the bacterial cell cause their accumulation and its destabilization and increase
in membrane permeability. As a consequence, this leads to the uncontrolled transport
of protons and depolarization of cell membrane, and death of microorganisms [30]. The
antibacterial activity of silver and silver oxide nanoparticles can be associated with free
radicals, which they generated. The free radicals cause oxidative stress in bacterial cells.
Li et al. compared the relationship between the antimicrobial activity of nanoparticles of
various metal oxides and oxidative stress. The viability of E.coli cells in solutions of metal
oxide nanoparticles under the influence of UV radiation was reduced [31].

3.3. Photocatalytic Properties

The membranes with two-component coatings were subjected to photocatalytic tests.
The results obtained for TiO2 + AgO coatings after irradiation with a UV lamp and daylight
are presented in Figures 7 and 8, respectively.
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As shown in Figure 7 the membranes with TiO2 + AgO coatings deposited with the
magnetron power PM-Ti = 1000 W showed better photocatalytic properties after irradiation
UV lamp than the coatings deposited with the magnetron power PM-Ti = 650 W (Figure 7).
For all types of coatings with PM-Ti = 1000 W over 90% reduction of the dye was achieved
after 72 h. The literature and own research data show that titanium oxide is a substantial
photocatalytic factor in UV light [32,33]. The doping of the coatings with silver oxide (AgO)
for bactericidal and photocatalytic properties in visible light does not negatively influence
photocatalytic properties under UV light.

The highest degree of dye reduction was achieved for membranes with magnetron
power 1000 W Ti/50 W Ag and coatings with magnetron power 650 W Ti/25 W Ag (35 and
28% respectively) can be observed when two-component coatings are exposed to daylight.
The achieved degree of dye reduction was much lower than that of UV irradiation. This is
due to the fact that both TiO2 and AgO do not have photocatalytic properties in visible light.
Normally, with light irradiation UV for titanium oxide, an electron from the valence band
can be promoted to the conduction band, leaving an electron. This deficiency is known as
a hole in the valence band and is causing an excess of negative charge in the conduction
band. These generated species can participate in surface redox reactions and generate
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secondary reactive oxygen species. However, the excited reactive electron is unstable, and
it can return to the valence band, to be stable again, provoking recombination. Studies
revealed, that doping of silver improves the photocatalytic activity of TiO2 inducing an
efficient surface plasmon resonance effect under sunlight. That prevents the recombination
of e−-h+ pairs, which is responsible for the decreasing process of the photocatalytic activity
of TiO2 [34–38]. In order to assess the effect of doping titanium oxide coating with silver
oxide, additional experiments were conducted in visible light for one-component coatings.
The results are presented in Figure 9.
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The obtained results showed that the tested one-component TiO2 coating and AgO
coatings have lower photocatalytic activity and yielded an approx. 10% reduction of the
dye after 72 h. Doping the titanium oxide coating with silver oxide caused an even more
than threefold increase in the photocatalytic properties of these membranes. The catalytic
properties of such prepared membranes are influenced by many factors, including the
quantity and size of the silver particles [35,36], which was confirmed during this study. In
the case of the tested two-component coatings, the highest dye reduction was obtained for
coatings with a silver content between 50 and 60% (Figure 2). The decomposition of MB
dye in visible light was not as intense for the coating with the highest Ag content (90% for
1000 W Ti/80 W Ag coatings) or the lowest one (about 15% for 650 W Ti/50 W Ag and
650 W Ti/80 W coatings).

3.4. Filtration Properties and Stability of the Coatings

The results of the filtration and transport properties analysis for polymer membranes
coated with two-component TiO2 + AgO coatings showed an inconsiderable decrease in
the permeate flux compared to the native membrane (Figures 10 and 11). The highest
(27%) decrease in the permeate flux compared to the native membrane was recorded
(Figure 10) in the case of the membrane with the coating deposited at the magnetron
powers PM-Ti = 650 W and PM-Ag = 80 W. Reducing the power of the PM-Ag magnetron
resulted in an improvement of the permeate flux. After increasing the magnetron power to
PM-Ti = 1000 W, a significant improvement in the filtration properties was observed. The
permeate flux was comparable to the non-coated membrane (Figure 11) for the membrane
with the coating deposited at the magnetron powers PM-Ag = 25 W and PMAg = 50 W.
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The increasing of the magnetron power PM-Ti caused the increase of the proportion of
hydrophilic TiO2 [15] in the coating structure and it can improve the hydrophilic properties
of the whole coating, and consequently also the membrane surface. As a consequence,
the filtration performance of the membrane will be most likely improved. The opposite
situation was observed when the power PM-Ag was increased. It caused an increase in
the proportion of hydrophobic AgO in the coating structure. This can lead to a reduction
in the hydrophilic properties of the membrane surface, which results in a decrease in its
filtration properties.

4. Conclusions

In this study, the importance of an interdisciplinary approach was highlighted towards
novel trends in the development of materials based on polymer membranes. Using the
MS-PVD method can provide new functional properties for polymeric membranes. In the
article, the different magnetron powers of Ti and Ag were used to create two-component
coatings with new, common properties. Based on the surface analysis of the membrane the
presence of AgO nanoparticles were observed. The size of these particles was smaller than
100 nm for magnetron power PM-Ti = 1000 W. Research has shown that the magnetron power
has effects on the percentage content for individual metallic elemental composition. The
presence of AgO nanoparticles was related to the island nature of the AgO coating grown
on a polymer substrate [11]. The antibacterial properties of TiO2 + AgO coatings were
determined for the two following bacteria: Escherichia coli and Bacillus subtilis. The TiO2
+ AgO coatings deposited at different magnetron powers resulted in complete reduction
of growth of two representative bacteria. It was related to the presence of Ag/AgO
nanoparticles in the coating structure, which exhibits strong antibacterial properties. All the
tested membranes with TiO2 + AgO coatings indicated very good photocatalytic properties
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when irradiated with UV. The doping of TiO2 coating with AgO led to an increase in
photocatalytic properties in visible light compared to the one-component coating on the
polymeric membranes. At the same time, the authors reported no negative influence of the
coating on the filtration properties of the membrane. In the case of the membrane with the
TiO2 + AgO coating deposited on the membrane at the magnetron powers, PM-Ti = 1000 W
the permeate flux was similar to the no-coated membrane. The achieved results are very
promising for polymeric material science, giving a prospect for potential application of
thin film TiO2 + AgO coatings onto the surface of polyamide membranes.
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of Polymeric Membranes Modification Technology Using Surface Engineering Techniques. In Proceedings of the 9th International
Conference Nanomaterials: Applications & Properties (NAP), Odesa, Ukraine, 15–20 September 2019; pp. 01TFC31-1–01TFC31-3.
[CrossRef]

17. Alotaibi, A.M.; Williamson, B.A.D.; Sathasivam, S.; Kafizas, A.; Alqahtani, M.; Sotelo-Vazquez, C.; Buckeridge, J.; Wu, J.; Nair,
S.P.; Scanlon, D.O.; et al. Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and
Experiment. ACS Appl. Mater. Interfaces 2020, 12, 15348–15361. [CrossRef]

18. He, X.; Zhang, G.; Wang, X.; Hang, R.; Huang, X.; Qin, L.; Tang, B.; Zhang, X. Biocompatibility, corrosion resistance and
antibacterial activity of TiO2/CuO coating on titanium. Ceram. Int. 2017, 43, 16185–16195. [CrossRef]

19. Sethi, D.; Sakthivel, R. ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli. J. Photochem. Photobiol. B Biol.
2017, 168, 17–123. [CrossRef]
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