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Abstract

Accurate and reliable measures of cortical thickness from magnetic resonance imag-

ing are an important biomarker to study neurodegenerative and neurological disor-

ders. Diffeomorphic registration-based cortical thickness (DiReCT) is a known

technique to derive such measures from non-surface-based volumetric tissue maps.

ANTs provides an open-source method for estimating cortical thickness, derived by

applying DiReCT to an atlas-based segmentation. In this paper, we propose

DL+DiReCT, a method using high-quality deep learning-based neuroanatomy seg-

mentations followed by DiReCT, yielding accurate and reliable cortical thickness

measures in a short time. We evaluate the methods on two independent datasets

and compare the results against surface-based measures from FreeSurfer. Good cor-

relation of DL+DiReCT with FreeSurfer was observed (r = .887) for global mean corti-

cal thickness compared to ANTs versus FreeSurfer (r = .608). Experiments suggest

that both DiReCT-based methods had higher sensitivity to changes in cortical thick-

ness than Freesurfer. However, while ANTs showed low scan-rescan robustness,

DL+DiReCT showed similar robustness to Freesurfer. Effect-sizes for group-wise dif-

ferences of healthy controls compared to individuals with dementia were highest

with the deep learning-based segmentation. DL+DiReCT is a promising combination

of a deep learning-based method with a traditional registration technique to detect

subtle changes in cortical thickness.
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1 | INTRODUCTION

The human cerebral cortex, a thin ribbon of gray matter constituting

the outer layer of the cerebrum, is on average about 2.5 mm thick

(Fischl & Dale, 2000). Cortical thickness decreases with normal aging

(Salat et al., 2004), a process that is known to be accelerated in

neurodegenerative diseases including dementia (Young et al., 2020).

The pattern of atrophy progression may enable to differentiate the

underlying form of dementia, but also to characterize mild cognitive

impairment (Karas et al., 2004). In the case of Alzheimer's disease

(AD), the onset is usually located in the transentorhinal cortex and

extending into the temporal lobe (Braak & Braak, 1991; Kulason
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et al., 2019) before spreading to other regions in the brain in a well-

defined sequence in later stages of the disease (Thompson

et al., 2003). Numerous studies have demonstrated that cortical thick-

ness can serve as a surrogate marker for the underlying pathological

changes (Frisoni, Fox, Jack, Scheltens, & Thompson, 2010; Lerch

et al., 2005; Singh et al., 2006; Whitwell et al., 2008). Quantitative

morphometry and its regional patterns of atrophy are therefore con-

sidered a potential biomarker of clinical interest (Dickerson

et al., 2009; Young et al., 2020).

However, measuring the cortical thickness from magnetic reso-

nance imaging (MRI) with sub-voxel accuracy is a difficult task. Model-

ing the cortical band as a surface mesh to calculate the thicknesses

has been shown (Fischl & Dale, 2000) to be a capable technique and

is available in the popular FreeSurfer (Fischl, 2012) software. Surface-

based methods are also employed in tools like BrainSuite (Shattuck &

Leahy, 2002), BrainVISA (Mangin, Frouin, Bloch, Régis, & López-

Krahe, 1995), or CIVET (Lerch & Evans, 2005; MacDonald, Kabani,

Avis, & Evans, 2000). Alternative methods like using Laplace's

Equations (Jones, Buchbinder, & Aharon, 2000) or registration-based

solutions (Das, Avants, Grossman, & Gee, 2009) have been proposed.

The accuracy of these methods has been evaluated and compared to

FreeSurfer by others (Clarkson et al., 2011; Tustison et al., 2014).

Registration-based solutions rely on good tissue segmentation of

white-matter (WM), gray-matter (GM), and cortical (sulcal) cerebrospi-

nal fluid (CSF). Under the assumption that the interfaces of WM/GM

and GM/CSF share a common topology, the WM/GM boundary is

deformed toward the GM/CSF boundary using a diffeomorphic regis-

tration and a thickness map is derived from the distance between

corresponding points (Das et al., 2009). An open-source implementa-

tion of this diffeomorphic registration based cortical thickness (DiReCT)

algorithm is available in ANTs (Avants et al., 2014) as part of the ANTs

cortical thickness pipeline (Tustison et al., 2013) which applies DiReCT

to segmentations derived from Atropos (Avants, Tustison, Wu,

Cook, & Gee, 2011), an atlas-based segmentation method.

Deep-learning (DL) (LeCun, Bengio, & Hinton, 2015) is a promising

technique for medical image analysis (Litjens et al., 2017), with image

segmentation currently being the most used application of DL in

neuroimage analysis (Yao, Cheng, Pan, & Kitamura, 2020). However,

the adoption of deep neural networks for advanced tasks like extrac-

tion of biomarkers or direct prediction of diagnosis is challenged by the

lack of interpretability, especially for clinical applications where trust in

the model and traceability of the results is required (Ching et al., 2018).

For neuroanatomy segmentation, numerous recent publications

have shown the superiority of DL over traditional methods (Dalca,

Balakrishnan, Guttag, & Sabuncu, 2019; Roy et al., 2019; Wachinger,

Reuter, & Klein, 2018). We hypothesize that registration-based thick-

ness measures benefit from more accurate and reliable segmentations

than usually available from atlas-based methods. Therefore, we pro-

pose DL+DiReCT: A Deep learning-based anatomy segmentation

including parcellation of the cortex followed by DiReCT to derive cor-

tical thickness measures directly from T1-weighted (T1w) MRI as out-

lined in Figure 1. We demonstrate its reliability with extended

validation experiments on two datasets and show its potential to

detect regional patterns of atrophy in dementia patients.

2 | MATERIALS AND METHODS

2.1 | Deep learning-based anatomy segmentation
and cortex parcellation

For DL+DiReCT we used DeepSCAN, an in-house developed Deep

learning-based model for neuroanatomy segmentation (McKinley

et al., 2019; McKinley et al., 2019). The network architecture is, in

brief, based on densely connected blocks of dilated convolutions

(Huang, Liu, Van Der Maaten, & Weinberger, 2017) in a U-net

(Ronneberger, Fischer, & Brox, 2015) like structure. The model was

trained with a total of 840 T1w MRI by combining publicly available

F IGURE 1 DL+DiReCT:
Deep learning-based
neuroanatomy segmentation
followed by a diffeomorphic
registration to estimate cortical
thickness from MRI
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and internal data. From public datasets, we used data from 160 nine

to ten year old children from ABCD (Casey et al., 2018), 160 healthy

adults from IXI (brain-development.org/ixi-dataset), and 160 elderly

people from ADNI (Jack Jr et al., 2008). Internal data from our institu-

tion (Inselspital) from previous studies comprised 160 healthy controls,

128 patients with multiple sclerosis, 48 patients with epilepsy, and

24 cases with Parkinson's disease. The input data was minimally

preprocessed (see Section 2.2.1). For the supervised training, the follow-

ing 96 weak labels from FreeSurfer 6.0 were used: left/right cerebral

white matter, cortical gray matter including its Desikan-Killiany

parcellations (Desikan et al., 2006), lateral ventricle, cerebellum (WM

+ GM), accumbens area, amygdala, caudate, hippocampus, pallidum,

putamen, thalamus, ventral DC, and the central structures 3rd ventricle,

4th ventricle, brainstem, and corpus callosum. As we use a multi-label

classification scheme accounting for class imbalances (Cui, Jia, Lin,

Song, & Belongie, 2019), a voxel may be assigned more than one label,

which allows robust identification of the cortical gray matter and an

independent assignment of parcellation labels. The model was trained

with focal loss (Lin, Goyal, Girshick, He, & Dollár, 2017) and a cosine

annealing learning rate schedule for 100 epochs and a batch size of two.

2.2 | Cortical thickness estimation

2.2.1 | FreeSurfer

Results for FreeSurfer were generated using the recon-all pipeline of

FreeSurfer 6.0 (Fischl, 2012) running on Linux on a single CPU. No

manual corrections were made. Regional mean cortical thickness was

extracted from the surface statistics (lh.aparc.stats, rh.aparc.stats).

Using the output from FreeSurfer, minimal preprocessing of the

original T1w images was performed: resampling into FreeSurfer's

space (mri_vol2vol) followed by an application of the brain mask from

FreeSurfer. These 1 mm iso-voxel images with skull-stripped brains

serve as input for the two methods below.

2.2.2 | ANTs

The results for ANTs were generated with the default cortical thick-

ness pipeline (antsCorticalThickness.sh) (Tustison et al., 2013) running

on Linux restricted to a single CPU. The publicly available OASIS-

30_Atropos_template (Klein, 2016; Klein & Tourville, 2012) was used

as population level template for Atropos (Avants et al., 2011). The

resulting output is a voxel-wise volumetric thickness map.

2.2.3 | DL+DiReCT

Preliminary results by directly using the probability maps from the DL

model as input for DiReCT suggested that preprocessing is required

such that the input is more alike a hard segmentation. In particular, we

actually used a binary image for the WM as suggested by Clarkson et al.

(2011), which is reasonable knowing that the WM is the moving image

in the registration that does not change topology (Das et al., 2009).

Where Pw is the sigmoid of the logit output for the classification

of WM labels, and equivalently Pg for GM by taking the maximum logit

of the cortical GM, Amygdalae, and Hippocampi labels, we calculated

the input for DiReCT for every voxel x in the image volume as

follows:

Pseg xð Þ=

argmax Pg xð Þ,Pw xð Þð Þ+2, if Pg xð Þ+Pw xð Þð Þ>0:7
2, if Pg xð Þ>0:5
3, if Pw xð Þ>0:5
0, otherwise

8>>><
>>>:

ð1Þ

Pw
0 xð Þ= 1, if Pw xð Þ>Pg xð Þ and Pseg xð Þ>0

0, otherwise

�
ð2Þ

Pg
0 xð Þ=

1, if Pg xð Þ>0:5
Pg xð Þ, if Pg xð Þ>Pw xð Þ
0, otherwise

8><
>: ð3Þ

In the hard segmentation Pseg (Equation (1)), 2 corresponds to GM

and 3 to WM, and argmax returns the position of the largest element

starting at index 0. The probability maps Pw0 (Equation (2)) for WM

and Pg0 (Equation (3)) for GM were constructed such that there is a

well-defined WM/GM boundary. These preprocessing steps were

determined empirically on an independent internal validation set.

From these volumes, the thickness map of DL+DiReCT was calculated

by a diffeomorphic registration using DiReCT with convergence set-

tings identical to ANTs.

2.2.4 | Parcellation-wise average cortical thickness

From the volumetric voxel-wise thickness map of ANTs and

DL+DiReCT, we calculated average cortical thickness statistics for

regions of interest (ROI) according to the Desikan-Killiany (DK) atlas

(Desikan et al., 2006), providing 34 ROIs per hemisphere. For ANTs,

we used the parcellation labels from FreeSurfer (aparc+aseg) and

for DL+DiReCT the labels from the DL model. For DL+DiReCT we

additionally calculated complementary results by also using the

parcellation labels from FreeSurfer instead of the DL model. All voxels

constituting the inner boundary of the gray-matter segmentation

were identified and assigned the label of the closest parcellation.

Voxels further away than an Euclidean distance of
ffiffiffiffiffiffiffi
3:0

p
voxel dimen-

sions were masked in order to exclude deep gray-matter structures.

Within this defined region of interest, the average over all nonzero

voxel from the thickness map was calculated.

2.3 | Data for evaluation

For evaluation, we used T1-weighted (T1w) MRI from two publicly

available datasets: OASIS-3 (LaMontagne et al., 2018) and SIMON
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(Duchesne et al., 2019), yielding a total of 2,736 images. OASIS-3 con-

tains cross-sectional and longitudinal samples from cognitively normal

adults, as well as participants at various stages of dementia, as

assessed by the Clinical Dementia Rating (CDR) (Morris, 1991). Data

from SIMON stem from a single healthy male volunteer known as

“the traveling human phantom,” providing repeated measures from

different sites over a time span of 16 years. Demographic information

is listed in Table 1. The images from OASIS-3 were all acquired on

three different models of Siemens scanners (1.5 T MAGNETOM

Sonata, and 3T Biograph mMR and MAGNETOM Trio), whereas

SIMON contains data from various models of Siemens, Philips, and

GE. No data from the OASIS-3 or SIMON datasets were used to train

the brain anatomy segmentation model described above.

2.4 | Evaluation

We processed the MR images (2,643 from OASIS-3 and 93 from

SIMON) with all three methods, yielding 70 cortical thickness mea-

sures per image (34 ROI-averages and mean thickness for left and

right hemisphere). As a primary outcome measure of interest, we use

the average mean thickness of the left and right hemisphere, which

we refer to as global mean thickness in the manuscript. We consid-

ered subjects with CDR = 0 as healthy controls (HC), CDR = 0.5 as

questionable, and CDR > = 1 as confirmed dementia (Manning &

Ducharme, 2010).

For assessing robustness, we used re-scans where two or more

images of an individual were acquired during the same session. Under

the assumption that consecutive measures should ideally produce the

same result and reflect reproducibility (Jovicich et al., 2013), we calcu-

late for each measure m the average absolute changes relative to the

mean (%):

ϵμ =
100
N

XN
i=1

1
n ið Þ

Xn ið Þ

t =1

jm i,tð Þ−μ ið Þ j
μ ið Þ

 !
ð4Þ

where N is the number of sessions with re-scans, n(i) the number of

re-scans in the session i for a subject, m(i, t) the measurement at time-

point t, and μ ið Þ = 1
n ið Þ
Pn ið Þ

t=1m i,tð Þ the within-session mean.

To regress out the effects of brain size, age, sex, and scanner on

cortical thickness, we fit a linear model (lm) to the thickness of the

healthy controls with the normalized (zero-mean, unit SD) co-variates

estimated total intracranial volume (eTIV; Buckner et al., 2004; from

FreeSurfer) and age, and categorical variables sex and scanner model.

In agreement with Im et al. (2008) the co-variate sex was not signifi-

cantly related to thickness and was subsequently removed. Likewise,

the scanner had no significant effect after accounting for multiple

comparisons (Mundfrom, Perrett, Schaffer, Piccone, & Roozeboom, 2006),

resulting in a lm(thick � eTIV + age) that was then applied to all sam-

ples. On these thickness measures corrected for brain size and age, we

calculated the effect size using Cohen's d (Torchiano, 2019) to quantify

group-wise differences between healthy controls (CDR = 0) and sub-

jects with dementia (CDR > = 1).

Additionally, we quantified longitudinal annual cortical GM atro-

phy rates separately for the three OASIS-3 sub-cohorts (HC,

CDR = 0.5, and dementia) by using subjects who had more than one

scan at least 1 year apart and who did not change sub-cohort

(e.g., from HC to dementia) in that interval. Atrophy rates between

methods were compared with a paired t-test and a significance level

α = .05. Statistical analyses were performed using R with the stats

package version 3.6.2 (R Core Team, 2019).

3 | RESULTS

The deep learning-based anatomy segmentation, when compared to

FreeSurfer, reached median Dice coefficients above .97 for WM and

above .95 for cortical GM on both datasets. Detailed performance for

the relevant structures is reported in Supplementary Table S1. The

average runtimes per image for the three methods were

9.34h ± 2.68h for FreeSurfer, 12.68h ± 0.90h for ANTs, and

1.18h ± 0.17h for DL+DiReCT.

Three selected qualitative examples are shown in Figure 2. These

cases were chosen from the OASIS-3 dataset as follows: Best agree-

ment between regional thickness measures between FreeSurfer and

DL+DiReCT (highest Pearson correlation across all regions), largest

absolute difference of the thickness measure in the left postcentral

gyrus (FreeSurfer = 2.4 mm, DL+DiReCT = 1.5 mm), and largest differ-

ence in the left inferior temporal gyrus (FreeSurfer = 2.8 mm,

DL+DiReCT = 3.9 mm). The large deviation for the thickness of the

postcentral gyrus (cf., second row) was caused by a mislabeling where

FreeSurfer erroneously identified the precentral gyrus (blue) as post-

central gyrus (red) in the left hemisphere.

3.1 | Correlation with FreeSurfer

On the OASIS-3 dataset (n = 2,643 images), the global mean thickness

of DL+DiReCT was Pearson correlated with FreeSurfer with r = .887

TABLE 1 Demographic information
for the two datasets used for the
evaluation # Subjects Mean age (range) # T1w

# per CDR

0 0.5 1 2 3

OASIS-3 1,038 70.7 (42.7–97.0) 2,643 2014 420 159 40 10

SIMON 1 43.5 (29.7–46.4) 93 — — — — —

Abbreviation: CDR, clinical dementia rating.

REBSAMEN ET AL. 4807



while the results of the same test for ANTs were r = .608. A visual-

ization of the region-wise correlation coefficients can be seen in

Figure 3. For DL+DiReCT, the unweighted average over all ROIs

was r = .716 and was highest in the parietal lobe (mean r = .836)

followed by frontal (r = .763), temporal (r = .763), and occipital

lobe (r = .599), and was lowest in the cingulate cortex (r = .440).

Accordingly, the results for ANTs was r = .452 for the ROI-average

and for the lobes: parietal (r = .599), frontal (r = .391), temporal

(r = .545), occipital (r = .329), and cingulate cortex (r = .297). For

comparison, the ROI-average for DL+DiReCT when using the

FreeSurfer parcellation was r = .734. Remaining results for

DL+DiReCT relate to the deep learning-based parcellation unless

noted otherwise.

As can be seen in the Bland–Altman plots in Figure 4, both

DiReCT-based methods underestimate smaller thicknesses and

overestimate the larger in comparison to FreeSurfer. This also results

in larger cross-sectional annual age-related GM atrophy rates for

DL+DiReCT (−0.007 mm/year) and ANTs (−0.023 mm/year) com-

pared to FreeSurfer (−0.005 mm/year). Additional plots of thickness

measures for all regions can be found in Section S5.

3.2 | Robustness

The mean reproducibility errors are listed in Table 2, for the global

mean thickness measure and as an average over all 68 ROIs. On both

datasets, OASIS-3 (n = 761 sessions) and SIMON (n = 14), we

observed similar errors for FreeSurfer and DL+DiReCT and signifi-

cantly higher error for ANTs as can be seen in Figure 5 for the

OASIS-3 and Figures S1 and S2 for the SIMON dataset.

F IGURE 2 Three samples
(one per row) from the OASIS-3
dataset. Columns show
T1-weighted MRI with pial (blue)
and GM/WM (yellow) surface
from FreeSurfer overlayed,
segmentations from FreeSurfer
and deep learning (DL), and
thickness map from DL+DiReCT.

Slices are in radiological view
(i.e., right hemisphere is on the
left side of the image)

F IGURE 3 Color-coded
Pearson correlation coefficients
(r) of the ROI-wise average
cortical thicknesses compared to
FreeSurfer evaluated on the
OASIS-3 samples
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3.3 | Annual atrophy rates

Longitudinal annual atrophy rates for global mean cortical thickness

are listed in Table 3 for the three sub-cohorts: healthy controls

(n = 368 subjects), CDR 0.5 (n = 31) and Dementia (n = 7). Mean and

standard deviation were consistently lowest in FreeSurfer, slightly but

statistically not significantly higher with DL+DiReCT and substantially

higher with ANTs, which is also visible in Figure S4.

Regional atrophy rates are depicted in Figure 6. The most pronounced

atrophy rates in the dementia cohort were observed in the left entorhinal

cortex (−0.089 mm/year) for FreeSurfer, in the right entorhinal cortex

(−0.129 mm/year) for DL+DiReCT, and in the left temporal pole

(−0.175 mm/year) for ANTs. The corresponding Figure S5 shows these

changes in relation to the global atrophy rate to make regional differences

better visible. An additional cross-sectional analysis is depicted in Figure S3.

3.4 | Group-wise differences

Group-wise differences between HC and dementia for the global

mean thicknesses corrected for brain size and age were largest with

DL+DiReCT (Cohen's d = 1.237, CI95% = 1.090 − 1.384) followed by

ANTs (d = 1.200, CI95% = 1.054 − 1.347), and FreeSurfer (d = 1.041,

CI95% = 0.895 − 1.187), as depicted in Figure 7.

4 | DISCUSSIONS AND CONCLUSION

We propose DL+DiReCT, combining a deep learning-based neuro-

anatomy segmentation with diffeomorphic registration to measure

subtle changes in cortical thickness from MRI. Our experiments sug-

gest that the method is potentially more sensitive than, and
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F IGURE 4 Comparison of the global mean thickness estimations against FreeSurfer (FS) for DL+DiReCT (first row) and ANTs (second row)
for the samples in the OASIS-3 dataset. Left: correlation plot. Middle: Bland–Altman plot, dashed horizontal line indicating ±1.96σ. Right:
Thicknesses plotted against age

TABLE 2 Mean reproducibility errors
Global mean thickness ROI-average

OASIS-3 SIMON OASIS-3 SIMON

FreeSurfer 0.481% 0.674% 1.402% 1.624%

DL+DiReCT 0.492% 0.561% 1.287% 1.319%

ANTs 2.601% 1.517% 3.149% 2.533%

DL+DiReCT (FS parc.) 0.497% 0.589% 1.358% 1.449%

Note: The last row shows supplementary results when using FreeSurfer parcellations.
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comparably robust to, surface-based measurement as used by

FreeSurfer. In the absence of a gold-standard ground truth for cortical

thickness measures, we assessed the accuracy on two independent

datasets by indirect means: correlation with FreeSurfer, robustness

with a large number of re-scans, cross-sectional and longitudinal gray-

matter atrophy rates, and sensitivity to detect group-wise differences

of healthy controls compared to individuals with dementia. We have

used FreeSurfer as the silver-standard ground truth in this study since

we consider it the most established tool in the field. However, these

surface-based measures are not meant to be replicated as close as

possible but serve as a good reference point to complement outcome-

based evaluations like robustness, effect size, and plausibility of

observations in the light of underlying biological processes.

In agreement with the large-scale evaluation by Tustison et al.

(2014) on OASIS-3, we found almost identical values of the Pearson

correlation coefficients with FreeSurfer for ANTs (r = .45). We also

observed the higher sensitivity of ANTs to detect age-related gray-

matter atrophy. However, we conclude this additional sensitivity

comes at the cost of lower robustness (mean reproducibility error of

3.1%, that is, more than twice the value of FreeSurfer) due to inferior

atlas-based segmentation. By replacing the atlas-based segmentation

with a deep learning-based model in DL+DiReCT, correlation with

Freesurfer thickness measures can be significantly increased (r = .72),

while also achieving robustness (mean reproducibility error 1.3%)

comparable to FreeSurfer (mean reproducibility error 1.4%). These

observations are in concordance with the study of Clarkson et al.

(2011) which also reports generally lower robustness for ANTs and

higher standard deviations for longitudinal atrophy rates compared to

FreeSurfer.

The sensitivity and robustness of DL+DiReCT permits the mea-

surement of (cf., Table 3) subtle longitudinal annual atrophy rates of

0.008 mm/year in the group of healthy controls (n = 368 samples) and

0.025 mm/year in the CDR = 0.5 cohort (n = 31). These absolute

values show a remarkably high agreement with FreeSurfer

(no statistically significant difference), and it is worth noting once

again that the surface-based cortical thickness measures of FreeSurfer

were not used in any way in the training process of the DL+DiReCT

method (only the segmentation from FreeSurfer was used during

training).

For DL+DiReCT we observed (cf., Figure 6) regional patterns for

the CDR = 0.5 and dementia cohort similar to what has been reported

by others: Higher atrophy rates in the medial and lateral temporal lobe

(Fennema-Notestine et al., 2009; Fujishima et al., 2014; Lerch

et al., 2005; Thompson et al., 2003), most pronounced in the

F IGURE 5 Color-coded
reproducibility errors of the ROI-
wise average cortical thicknesses
evaluated on the OASIS-3
samples

TABLE 3 Mean (SD) annual cortical
GM atrophy rates in mm/year for the
longitudinal data in OASIS-3

HC CDR = 0.5 Dementia (CDR > = 1)

FreeSurfer −0.00711 (±0.01164) −0.02290 (±0.02871) −0.02020 (±0.03076)

DL+DiReCT −0.00815 (±0.01444) −0.02545 (±0.03260) −0.02290 (±0.04069)

ANTs −0.02039 (±0.06500)* −0.04383 (±0.06308)* −0.04983 (±0.08488)

DL+DiReCT (FS parc.) −0.00820 (±0.01457) −0.02538 (±0.03287) −0.02309 (±0.04130)

Note: The last row shows supplementary results when using FreeSurfer parcellations. Entries marked with

‘*’ are statistically significant (paired t-test, p < .05) different from FreeSurfer.
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entorhinal cortex (Lerch et al., 2005; Thompson et al., 2003),

supporting the hypothesis of disease onset in these regions (Atiya,

Hyman, Albert, & Killiany, 2003; Braak & Braak, 1991; Thompson

et al., 2003). The results also suggest relative sparing of the somato-

sensory cortex (Fennema-Notestine et al., 2009; Frisoni et al., 2010;

Lerch et al., 2005; Thompson et al., 2003). Putative increase of thick-

ness in the cuneus and lingual gyrus in the dementia cohort reported

by ANTs are likely due to lower robustness of the method as well as

the reported increasing thickness in the right entorhinal cortex by

FreeSurfer.

F IGURE 6 Color-coded annual atrophy rates in mm/year of the ROI-wise average cortical thicknesses evaluated on the OASIS-3 samples
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DL+DiReCT runs in about 1 hour, producing segmentations and a

volumetric thickness map (see Figure 1) that allows a visual inspection

of the result by humans, partially opening the black-box of fast deep

learning-based morphometry methods (Rebsamen, Suter, Wiest,

Reyes, & Rummel, 2020).

4.1 | Limitations

Minimally preprocessed (skull-stripping and resampling into

FreeSurfer space) input data was used to facilitate a direct comparison

of results using FreeSurfer parcellations. As the original data was

already in 1 mm iso-voxel resolution, we are confident that this does

not significantly influence the results. By using the same skull-

stripping for all methods, we can avoid side effects from different

brain extraction techniques.

We have not tried other deep learning-based segmentation

methods, since finding the best network architecture was not the

focus of this study. Other methods likely yield similar results if the

model achieves high accuracy even with a large number of labels

required for the cortex parcellation.

The number of longitudinal samples in the confirmed dementia

cohort was low (n = 7), limiting the power of statistical tests. However,

the plausibility of the results is supported by the observed atrophy

patterns suggesting a trajectory of the disease known from literature

and the additional cross-sectional analysis (n = 209). For specific anal-

ysis of longitudinal changes, the robustness might be further improved

with the dedicated longitudinal pipeline available in FreeSurfer

(Reuter, Schmansky, Rosas, & Fischl, 2012) and ANTs (Tustison

et al., 2019), none of which was used in the current study to facilitate

a direct comparison of the methods.

4.2 | Outlook

We intend to continue optimizing the proposed method. Namely

investigating whether applying DiReCT to segmentations with higher

spatial resolution, either from 7T imaging or via super-resolution,

increases the sensitivity while preserving the good robustness. While

DL+DiReCT is already substantially faster than the frequently used

methods FreeSurfer and ANTs, the computationally most expensive

step of the current solution is the 3D registration: replacement by a

(separate) deep learning-based registration is expected to reduce the

total runtime to a few minutes (Dalca et al., 2019; Mok, 2020). Addi-

tionally, measures for the cortical curvature and surface area could be

derived from the diffeomorphic model. A dedicated longitudinal mode

for DL+DiReCT is conceivable by deriving thickness changes from

registering the inner and outer surface of two or more time points,

which would also allow a direct comparison to FreeSurfer's longitudi-

nal pipeline. The current deep-learning model is trained to predict

96 different labels. Further increasing the number of labels with a

more fine-grained atlas like Destrieux (Destrieux, Fischl, Dale, &

Halgren, 2010) with its 74 parcellations per hemisphere would be of

interest as it is used in many morphometry studies, and might reveal

where the model's segmentation performance starts deteriorating.

Future work will also extend the evaluation to further applications

where subtle changes of cortical thickness are of high clinical interest.
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