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Early decoding of motor states directly from the brain activity is essential to develop brain-machine interfaces (BMI) for natural
motor control of neuroprosthetic devices. Hence, this study aimed to investigate the detection of movement information before the
actual movement occurs. This information piece could be useful to provide early control signals to drive BMI-based rehabilitation
andmotor assisted devices, thus providing a natural and active rehabilitation therapy. In this work, electroencephalographic (EEG)
brain signals from six healthy right-handed participants were recorded during self-initiated reaching movements of the upper
limbs. The analysis of these EEG traces showed that significant event-related desynchronization is present before and during the
execution of themovements, predominantly in themotor-related𝛼 and𝛽 frequency bands and in electrodes placed above themotor
cortex. This oscillatory brain activity was used to continuously detect the intention to move the limbs, that is, to identify the motor
phase prior to the actual execution of the reaching movement.The results showed, first, significant classification between relax and
movement intention and, second, significant detection of movement intention prior to the onset of the executed movement. On
the basis of these results, detection of movement intention could be used in BMI settings to reduce the gap between mental motor
processes and the actual movement performed by an assisted or rehabilitation robotic device.

1. Introduction

Brain-machine interface (BMI) systems are emerging tech-
nologies that provide a novel communication channel for
both healthy people and patients with limited communica-
tion or motor impairments [1, 2]. A BMI system decodes
the mental tasks performed by the user using brain signals
recorded with invasive or noninvasive techniques. This is in
turn used to control an application or an external device such
as the computer cursor, a robotic wheelchair, or an orthosis
device [3, 4]. As the peripheral nervous system is not involved
in this process, a BMI can be a promising assistive technology
for people with partial or complete motor disabilities [5,
6]. The most important application of BMI systems is the
control ofmotor assisted robotic devices, which are employed
for motor restoration or motor rehabilitation [7, 8]. This
also includes rehabilitation scenarios based on virtual reality
environments [9, 10].These applicationsmay provide patients

who suffered stroke or spinal cord injury with the possibility
of shortening the recovery period to improve their motor
functioning.

The cue-based synchronous protocol is the traditional
paradigm employed to decode mental tasks from the brain
activity in BMI settings. In this paradigm, the mental task
is first performed by the user and then the BMI technology
applies decoding algorithms to identify the task [8]. Then, a
control signal or command is provided to drive neuropros-
thesis [11], for example, a real or virtual robotic arm. For
instance, in a BMI based on motor imagery (MI), the user
performs mental imagination of different limb movements
and then the BMI technology identifies the moved limb
which is used to provide a command of movement in the
application [12]. Thus, the user’s mental task is associated
with the movement provided by the application. However,
there exits an inherent delay between the time of the mental
task and the time of the movement performed by the
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application. In consequence, the movements performed by
external devices, either real or virtual, are not found natural
by the user.

Reducing the temporal gap between mental motor tasks
and the actual movement performed by an assisted or reha-
bilitation robotic device might be useful to obtain fast and
natural motor control.This can also promote motor recovery
at the cortical level [13, 14]. To achieve this early detection
of movement information, this work studies the decoding
of natural movement information before a motor task is
performed. Several previous works have studied this kind
of decoding from the noninvasive electroencephalographic
(EEG) brain signals. These studies are based on movement
related cortical potentials (MRCP), spectral power (SP), and
common spatial patterns (SCP) features of the EEG to detect
movement information preceding actual movements. Table 1
presents a summary of the state of the art of the most relevant
works devoted to the detection of movement intention.These
studies have demonstrated the feasibility of detecting motor
information before a movement is performed.

Nonetheless, more research is still required to achieve
early detection of movement in more realistic situations.
For this reason, this work proposed the continuous detec-
tion of movement intention in self-paced natural reaching
movements of the upper limbs. This experimental task was
chosen because it resembles the common daily-live-activity
of grasping an object such as a glass of water or a bottle. It is
important to detect the movement intention with sufficient
preceding time in order to be able to use this information
piece on time to provide natural movement control to
users in BMI-based motor recovery and motor rehabilitation
scenarios. Therefore, this study addresses the detection of
the intention to move irrespective of the moved limb within
a continuous decoding strategy. Six healthy right-handed
subjects participated in the experimental sessions.The results
revealed significant event-related desynchronization before
and during the execution of the reachingmovement task, and
these cortical rhythms were used as features to continuously
detect the intention tomove the limbs. In addition, significant
classification rate ofmovement intentionwas achieved before
the onset of the executed reaching movements.

This paper is organized as follows: the description of
the experiment, the data processing and analysis, and the
evaluation process and metrics are detailed in Section 2;
Section 3 describes the results, in particular the significant
activity of event-related desynchronization/synchronization
and the classification results oriented to detect movement
intention; finally Section 4 presents the conclusions and
future work.

2. Methods

2.1. Design and Execution of the Experiment. The experiment
consisted of self-paced natural reaching movements of the
upper right/left limb. This experiment was selected because
it resembles the common daily-live-activity of grasping an
object such as a glass of water. Participants were comfort-
ably seated with both forearms resting on the chair’s arm
and a computer screen was located in front of them. The

experiment consisted of the execution of many repetitions
or trials of reaching movements with either left or right
arm and was guided by visual cues presented on the screen.
Each trial consisted of three cues. The first cue showed
the text “relax” for three seconds and indicated staying
comfortably seated with the arms placed on the chair’s arms
in complete relaxation. Participants were requested not to
execute or imagine any movement. The second cue showed
for twelve seconds an image with an “arrow” pointing to the
left/right and indicated moving naturally the corresponding
arm towards the center of the screen. Participants were
instructed not to initiate the movement immediately after
the arrow was presented but to initiate it whenever they
wish, waiting for at least five seconds while avoiding any
mental count. Accordingly, the movement initiation varies
across trials. Immediately after the reaching movement was
completed, participants were instructed to return back the
arm towards the chair’s arms. The third cue showed the text
“rest” and indicated resting, moving, or blinking for three
seconds. Therefore, each trial lasted for eighteen seconds in
total. Figure 1 displays the full temporal sequence of a trial
during the experiment. Participants were asked to avoid any
movement and to minimize blinking from the presentation
of the first cue and up to the termination of the reaching
movement.

The experiment was executed in four blocks of 24 trials
(7.2min per block) resulting in a total of 96 trials (28.8min
for all blocks). To avoid fatigue, patients could rest between
blocks as long as they needed. To keep balance of the number
of trials for the left and right arm, each block contained
the same number of left and right movements, which were
presented in a pseudorandom manner. This experiment was
approved by the ethics committee of the university.

2.2. Participants. Six able-bodied right-handed subjects (two
males and four females; age range 23–19 years; mean ±
std 20.33 ± 1.51 years) without diagnosis of neurological
or motor disease voluntarily participated in this study. All
participants were students from the university and did not
have experience with electroencephalogram (EEG) recording
protocols or brain-machine interface (BMI) experiments.
They were duly informed about the objective of the research
and the experimental procedure and all of them signed
informed consent forms.They were informed that they could
leave the experiment when they wanted.

2.3. Recording of EEG and EMG Signals. EEG signals were
recorded using monopolar electrodes at 21 scalp positions
according to the 10/10 international electrode location sys-
tem. EEG signals were recorded from scalp locations 𝐹𝑝1,
𝐹𝑝2, 𝐹7, 𝐹3, 𝐹𝑧, 𝐹4, 𝐹8, 𝑇3, 𝐶3, 𝐶𝑧, 𝐶4, 𝑇4, 𝑇5, 𝑃3, 𝑃𝑧,
𝑃4, 𝑇6, 𝑂1, 𝑂2, 𝐴1, and 𝐴2, with the ground at 𝐹𝑝𝑧 and the
reference at the left earlobe. EMG signals were recorded with
bipolar electrodes located above the biceps brachii muscle
and the triceps brachii muscle. These EMG signals were
recorded from both arms and they were used to establish
the time of the movement initiation of each trial. EEG and
EMG data were recorded at a sampling frequency of 2048Hz
and no filtering was applied. The electrode impedance was
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Table 1: Description of the state of the art of works reporting decoding of motor information preceding actual movements from
electroencephalographic brain signals. ME: motor execution; MI: motor imagery; MRCP: movement related cortical potentials; LDA: linear
discriminant analysis.

State-of-the-art movement intention detection from EEG
Participants Motor task EEG features Classifier Decoding Accuracy Detection time

[27] 8: healthy ME/MI Spectral
power Bayesian Static Varied between

subjects —

[28] 4: stroke ME Spectral
power LDA Static — From −200 to

−600ms

[29] 6: healthy ME Spectral
power Bayesian Static 62.9 ± 7.5% —

[30] 19: healthy
5: stroke ME/MI MRCPs Template matching Continuous

Healthy: ME:
82.5 ± 7.8%, MI:
64.5 ± 5.33%;
stroke: ME:
55.01 ± 12.01%

Healthy: ME:
−66.6 ± 121ms

[31] 20: healthy
5: stroke ME/MI MRCPs Template matching Continuous

Healthy: ME:
69 ± 21%, MI:
65 ± 22%;
stroke: ME:
58 ± 11%

—

[32] 10: healthy
2: stroke ME/MI MRCPs LDA Continuous — −500ms

[33] 10: healthy
2: stroke ME MRCPs LDA Continuous Healthy: 76%;

stroke: 47% −312.5ms

[34] 20: healthy ME
Common
spatial
patterns

LDA Static 83% in 12
subjects —

[35] 6: healthy
3: SCI ME

Spectral
power and
MRCPs

SDA Continuous From 75% to
40%

From −421ms
to −256ms

Self-initiated 
reaching 
movement

Relax Movement 
intention

RestMovement
execution

Relax Rest

1st cue 2nd cue 3rd cue

3 s 12 s 3 s

Figure 1: Temporal sequence of a trial with the three visual cues presented to the participants. Note that the second cue indicated self-initiating
a reaching movement with the left arm.

kept below 5 kΩ for EEG and 20 kΩ for EMG. EEG and
EMG signals were simultaneously recorded using a Nexus-
32 electrophysiology monitoring system from Mind Media.
BioTrace+ software was used to manage the presentation of
the visual cues and the recording of the EEG and EMG signals
and to store the data for offline processing.

2.4. Data Preprocessing. After the experimental sessions,
recorded data were subjected to offline preprocessing and
analysis. EEG and EMG data were trimmed from the pre-
sentation of the first cue up to the presentation of the third
cue; thus, the resulting trials lasted for fifteen seconds. Then,
the time latency of the movement onset of each trial was
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computed with the EMG activity following this procedure: (i)
the EMG signal from the moved arm was selected; (ii) this
EMG signal was high-pass filtered with a cutoff frequency of
10Hz using a sixth-order Butterworth-type infinite impulse
response (IIR) filter; (iii) theHilbert transformwas computed
from the filtered signal; (iv) the magnitude of the Hilbert
transformwas smoothed and normalized 𝑧-score; (v) the first
value greater than zero in the resulting signal was defined
as the EMG-based movement onset. Trials for which the
movement onset was lower than 3 s (early arm movement
initiation) and greater than 11 s (delayed arm movement
initiation) relative to the presentation of the second visual
cue were discharged. Then, the time axis of each trial was
rereferenced to the EMG-basedmovement onset; that is, 𝑡 = 0
represents the initiation of the reaching movement. Finally,
trials were trimmed from the initiation time 𝑡ini (i.e., 𝑡ini is
the time of the presentation of the first cue) up to 1 s relative
to the EMG-based movement onset.

Frontal electrodes (𝐹𝑝1 and 𝐹𝑝2), electrodes located
near to the neap (𝑂1 and 𝑂2), and other electrodes far
away from the motor cortex (𝐹7, 𝐹8, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝐴1,
and 𝐴2) were removed from all participants as they are
usually contaminated by eye blinks,muscle activity, and other
artifacts; thus nine electrodes located on or surrounding the
motor cortex (𝐹3, 𝐹𝑧, 𝐹4, 𝐶3, 𝐶𝑧, 𝐶4, 𝑃3, 𝑃𝑧, and 𝑃4) were
kept and used for the subsequent analysis. EEG data was
resampled to 256Hz, filtered from 0.1Hz to 100Hz using
a zero-phase, four-order, bandpass Butterworth filter, and
rereferenced using the common average reference (CAR)
filter where the average across all channels is subtracted for
each channel independently for each time sample.

2.5. Event-Related Desynchronization/Synchronization. To
compute the significant event-related desynchronization/
synchronization of each electrode, a bootstrap analysis of
the time-frequency representation was performed. The goal
in this analysis was to study the underlying task-related
oscillatory brain activity during intention of motion [15].
All trials were trimmed from −6 to 1 s relative to the
EMG-based movement onset. This allows all trials to have
the same length. For each trial and every channel, the
time-frequency representation TFR(𝑡, 𝑓) was computed
in the frequency band [2, 40]Hz at the resolution of 1Hz
using Morlet wavelets [16]. For each channel individually,
the event-related desynchronization/synchronization (i.e.,
power increase/decrease) relative to the baseline [−6, −3) s
was computed for each time and frequency as ERDS(𝑡, 𝑓) =
100 × (TFR(𝑡, 𝑓) − TFRbaseline(𝑓))/TFRbaseline(𝑓), where
TFRbaseline(𝑓) is the average of TFR(𝑡, 𝑓) in the baseline
interval for frequency 𝑓. The significant event-related
desynchronization/synchronization of each channel was
computed with a bootstrap analysis following [17] at the
significant level of 𝛼 = 0.05.

2.6. Detection of Movement Intention. Detection of move-
ment intention was based on spectral power features and on a
support vector machine (SVM) used to distinguish between
relax and intention.

2.6.1. Features. Spectral power features were computed with
an autoregressive spectrum (ARS) model of order 16 [18, 19],
where Burg’s method was employed to estimate the model
coefficients and the noise variance [20]. For each electrode,
only values of the spectral power in the motor-related
𝛼[8, 14]Hz and 𝛽[14, 25]Hz frequency bands were used.
Spectral power values were computed at the resolution of
1Hz. This resulted in 18 spectral power values per electrode.
Thus, the feature vector is x ∈ R𝐷 where𝐷 = 162 (18 spectral
power values × 9 electrodes), which is associated with a class
label 𝑦 ∈ {relax, intention}. For a given time instant 𝑡 where
𝑡 ∈ [𝑡ini, 1], the spectral power features are computed from the
EEG in the time window [𝑡 − 𝑇, 𝑡], where 𝑇 is the size of the
window. Note that the time 𝑡 corresponds to the endpoint of
the used time window; therefore the computed features were
causal.

2.6.2. Classifier. To discriminate between relax and intention,
a SVM with a radial basis function (RBF) kernel [21] was
employed. The implementation of the SVM relied on the
LIBSVM library [22]. The hyperparameters of the RBF were
𝐶 = 1 for the regularization parameter and 𝜎 = 0.5 for
the width [23, 24]. To train this classifier, the features were
extracted exclusively from the relax phase [𝑡ini, 𝑡ini + 3] and
the movement intention phase [−3, 0] and they were labeled
as relax and intention, respectively. Figure 2(a) illustrates
the segments of relax and intention used to extract features.
Within these segments, the features were computed from
nonoverlapping time windows of length 𝑇. In the relax phase
features were computed at 𝑡

𝑘
= 𝑡ini + 3 − 𝑘𝑇 for 𝑘 = 0, 1, 2, . . .

provided that 𝑡 ∈ [𝑡ini, 𝑡ini + 3]. In the movement intention
phase features were computed at 𝑡

𝑘
= −𝑘𝑇 for 𝑘 = 0, 1, 2, . . .

provided that 𝑡 ∈ [−3, 0]. Prior to training, features were
𝑧-score normalized according to 𝑥

𝑖
= (𝑥
𝑖
− 𝜇
𝑖
)/𝜎
𝑖
, (𝑖 =

1, 2, . . . , 𝐷), where 𝜇
𝑖
and 𝜎
𝑖
are the corresponding mean and

standard deviation of the 𝑖th feature computed exclusively
from training data.

2.6.3. Evaluation Procedure and Metrics. Detection of move-
ment intention was assessed for each subject independently
following this procedure:

(i) Randomly select 80% of the trials as training set and
use remaining 20% as test set.

(ii) For each trial of the training set, extract the spectral
power based features from the relax phase and the
movement intention phase according to 𝑇 and then
train the classifier.

(iii) Apply the classifier to each trial in the test set using
sliding windows of size 𝑇 in steps of 0.1 s (Figure 2(b)
illustrates the process employed to perform classifica-
tion in a test trial).

(iv) Compute performance metrics using the entire test
set.

The following metrics were considered: (i) classification
accuracy (CA) (rate of correct classifications achieved within
the relax [𝑡ini, 𝑡ini + 3] and the intention [−3, 0] s phases),
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Figure 2: Illustration of the data segments used to train and to test the classification. (a) Data segments in the relax phase and the movement
intention phase used to extract features to train the classifier. (b) Data segments used to carry out classification in a test trial.

true positive events (TPE) (movement intention detection
rate obtained in the intention phase), and true negative events
(TNE) (relax detection rate obtained in the relax phase);
(ii) time-resolved movement intention detection accuracy
or DA(𝑡) (rate of movement intention detected at time 𝑡);
(iii) time instant of the movement intention onset or tMI
(the lowest time instant for 𝑡 < 0 at which significant
differences between DA(𝑡) and the chance level are unequiv-
ocally achieved); and (iv) trials where movement intention
is detected or NTD (rate of trials where movement intention
was unequivocally detected prior tomovement initiation, i.e.,
𝑡 < 0).

This evaluation procedure was repeated 30 times and
distributions and the mean ± std of the performance metrics
were computed for each participant and for all of them.
The significant chance level of the detection accuracy or
DAsig(𝑡) was computed empirically by randomly permuting
the class labels during the training of the classifier. This
procedure was conducted also 30 times for each subject
using 80% of the trials for training (with random labels) and
remaining 20% for evaluation. The significant chance level
of the classification accuracy or CAsig was computed as the
maximum empirical chance level in the relax [𝑡ini, 𝑡ini+3] and
intention [−3, 0] s phases. To examine significant differences
between the distributions of CA and the significant chance
level CAsig the Wilcoxon signed rank test was used, while to
examine significant differences between DA(𝑡) and DAsig(𝑡)
the Wilcoxon rank-sum test was employed. These statistical
tests were performed at a confidence level of 𝛼 = 0.01.

3. Results

The time instant of the movement initiation computed with
the EMG activity was estimated in all the trials of all subjects
after the presentation of the second visual cue (i.e., the
one instructed to self-initiate the reaching movement of the
left/right arm). Movement onset was lower than 3 s in 3%
of the trials while it was greater than 11 s in 1% of the trials.

Table 2: Summary of the estimated EEG-based movement onset
for all subjects and the average across all of them. It only includes
trials for which the movement onset was estimated from 𝑡 ≥ 3
and 𝑡 < 11 with respect to the presentation of the second visual
cue which instructed to self-initiate the reaching movement of the
left/right arm.

EMG-based movement onset (s)
Mean Std Min Max

S1 6.19 1.37 3.18 9.35
S2 7.54 1.30 4.04 10.36
S3 7.52 1.39 4.27 10.82
S4 6.69 1.30 3.55 10.00
S5 6.93 1.29 3.77 9.66
S6 7.38 1.30 4.07 10.41
Avg 7.04 1.42 3.19 10.82

These trials were discharged and not used in the rest of the
work. Then, the total number of trials across all subjects
used in this study was on average 92.83 ± 2.79 (minimum
of 89 and maximum of 96). Table 2 shows a summary of
the estimated EMG-based movement onset for all subjects
and the average for all of them.The average movement onset
across all subjects was 7.04 ± 1.42 s (minimum of 3.18 s and a
maximum 10.82 s).

The significant activity of event-related desynchroniza-
tion/synchronization computed across all trials and subjects
is presented in Figure 3. Significant desynchronization (𝑝 <
0.05) is observed in all sensors and in the motor-related
𝛼[8, 13]Hz and 𝛽[14, 30]Hz frequency bands around the
movement onset 𝑡 = 0 s. This significant desynchronization
starts in the movement intention phase roughly at 1 s prior to
the movement onset and remains significant up to the move-
ment execution interval 𝑡 ≥ 0. No significant desynchro-
nization or synchronization (𝑝 > 0.05) is observed before ≈
−1 s. Note that the significant desynchronization is uniformly
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Figure 3: Significant event-related desynchronization/synchronization activity computed for all trials and subjects. Horizontal axis represents
time (units of s) while vertical axis represents frequency (units of Hz). Solid black lines in all graphs represent 𝑡 = 0 s or the movement onset.
Significant desynchronization (𝑝 < 0.05) is observed in all sensors in the motor-related 𝛼[8, 13]Hz and 𝛽[14, 30]Hz frequency bands from
𝑡 ≈ −1.5 s, while no significant desynchronization or synchronization (𝑝 > 0.05) is observed before 𝑡 ≈ −1.5 s.

distributed in all sensors and in both hemispheres; that is,
no spatial pattern of desynchronization/synchronization is
observed across the motor cortex.

The average of significant event-related desynchroniza-
tion/synchronization in the 𝛼[8, 13]Hz and 𝛽[14, 30]Hz
frequency bands of each electrode was computed over time
windows along the entire duration of the trial. These results
are presented in Table 3. In all electrodes, the significant

desynchronization is absent for time windows from [−6, −5)
to [−4, −3) s but then begins to intensify gradually from
[−3, −2) s up to [0, 1) s. Thus, the significant desynchro-
nization starts prior to the movement onset, that is, at
the movement intention phase, and remains significant up
to the movement execution phase. Note that the event-
related desynchronization/synchronization in the 𝛼/𝛽 fre-
quency bands averaged for all electrodes is −4.72/−3.84,



Computational and Mathematical Methods in Medicine 7

Table 3: Across all subjects average of significant event-related desynchronization/synchronization in the motor-related 𝛼[8, 13]Hz and
𝛽[14, 30]Hz frequency bands over several time windows from −6 s to 1 s. Results are presented for each electrode and the last row presents
the integrated values for all channels.

Time window (s)
[−6, −5) [−5, −4) [−4, −3) [−3, −2) [−2, −1) [−1, 0) [0, 1)

𝐹3

𝛼 2.12 0.00 0.00 −0.59 −8.09 −28.66 −40.04
𝛽 0.79 −2.23 0.26 −1.13 −0.83 −15.89 −18.23

𝐹𝑧

𝛼 1.76 0.00 0.00 0.00 −3.99 −22.92 −37.74
𝛽 0.99 −1.05 0.20 −1.16 −1.34 −13.88 −16.39

𝐹4

𝛼 2.07 −0.22 0.00 0.00 −5.82 −28.64 −41.14
𝛽 1.62 −0.70 −1.07 −0.17 −3.58 −16.18 −17.45

𝐶3

𝛼 4.92 −0.39 0.00 0.00 −4.53 −23.90 −38.85
𝛽 0.31 −1.24 0.22 −1.50 −2.56 −14.74 −21.39

𝐶𝑧

𝛼 4.43 −0.38 0.00 −0.37 −4.47 −23.44 −40.67
𝛽 1.36 0.10 0.00 −2.17 −3.97 −15.19 −19.10

𝐶4

𝛼 3.36 −0.20 0.00 −0.77 −5.17 −26.23 −40.19
𝛽 0.60 0.42 0.00 −2.87 −5.01 −18.70 −20.82

𝑃3

𝛼 4.70 −0.20 0.00 −0.44 −6.86 −21.79 −42.01
𝛽 1.01 −1.06 −1.14 −3.64 −2.41 −16.42 −16.79

𝑃𝑧

𝛼 4.25 0.00 0.27 −0.21 −4.38 −16.06 −36.00
𝛽 0.57 −0.26 −2.00 −2.52 −1.71 −11.28 −9.26

𝑃4

𝛼 4.09 0.00 0.00 0.00 −5.02 −21.56 −41.10
𝛽 0.73 0.04 −0.80 −0.94 −1.48 −16.26 −16.55

Avg 𝛼 4.24 −0.32 0.00 −0.38 −4.72 −24.53 −39.90
𝛽 0.76 −0.24 0.07 −2.18 −3.84 −16.21 −20.44

−24.53/−16.21, and −39.90/−20.44 for time windows [−2, −1),
[−1, 0) and [0, 1) s, respectively. This shows that the sig-
nificant desynchronization is more prominent during the
movement execution phase than during themovement inten-
tion phase and that it is stronger in 𝛼[8, 13]Hz than in the
𝛽[14, 30]Hz frequency band.

The first classification analysis explored the impact of the
window size 𝑇 used to compute the spectral power features
to classify between relax and intention. Figure 4 shows, for
each subject and for all of them, the distributions of the
classification accuracy metric CA for window sizes of 𝑇 =
0.5, 𝑇 = 0.75, and 𝑇 = 1 s and the significant chance level
CAsig (maximum chance level across all subjects achieved in
the relax and movement intention phases). For subjects 1, 3,
4, and 6, themedian of the distribution for all𝑇 is greater and
significantly different than the chance level CAsig (𝑝 < 0.01,
Wilcoxon signed rank test). However, for subjects 2 and 5, no
significant differences were found between the median of the
distributions and the chance level CAsig (𝑝 > 0.01, Wilcoxon
signed rank test). The averages of CA for 𝑇 = 0.5 s were
0.64±0.18, 0.55±0.16, 0.65±0.14, 0.65±0.17, 0.54±0.16, and
0.68 ± 0.14, for 𝑇 = 0.75 s were 0.70 ± 0.18, 0.57 ± 0.19, 0.67 ±
0.14, 0.66 ± 0.18, 0.58 ± 0.18, and 0.68 ± 0.14, and for 𝑇 = 1 s
were 0.72±0.19, 0.59±0.20, 0.70±0.16, 0.70±0.19, 0.59±0.20,
and 0.70 ± 0.16, respectively, for subjects 1 to 6. The results
across all subjects showed that themedian of the distributions
of CA for all 𝑇 is also greater and significantly different than
the chance level CAsig (𝑝 < 0.01, Wilcoxon signed rank
test). Table 4 summarizes the results of classification accuracy

Table 4: Summary of the classification accuracy, true positive
events, and true negative events achieved for all subjects for different
window sizes 𝑇 = 0.5, 𝑇 = 0.75, and 𝑇 = 1.0 s.

Classification accuracy
Mean Min Max TPE TNE

0.50 0.62 ± 0.06 0.54 0.68 0.62 0.62
0.75 0.64 ± 0.05 0.57 0.70 0.65 0.64
1.00 0.67 ± 0.06 0.59 0.72 0.67 0.66

(CA), true positive events (TPE), and true negative events
(TNE) obtained across all subjects for the three windows
sizes. The averaged values of CA for 𝑇 of 0.5, 0.75, and 1
were 0.62 ± 0.06, 0.64 ± 0.05, and 0.67 ± 0.06, respectively,
while TPE/TNE were 0.62/0.62, 0.65/0.64, and 0.67/0.66,
respectively. These results show that the performance in the
recognition between relax and intention increases as the time
window size 𝑇 increases. Therefore, a window size 𝑇 = 1 s
was used in the rest of this work to study the detection of
movement intention.

Figure 5 shows the time-resolved detection accuracy
DA(𝑡) and the significant chance level of the detection
accuracy DAsig(𝑡). Results are presented for each subject
separately. In all subjects DA(𝑡) is presented from 𝑡 = −5 s.
This is due to the following: first, the trial’s initiation time
𝑡ini is different across all subjects and trials and the common
initiation time across all of them is 𝑡 = −6 s and, second, the
window size used to compute the causal features is 𝑇 = 1 s.
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Figure 4: Distribution of the classification accuracy CA obtained
for time windows 𝑇 = 0.5, 0.75, and 1. Results are clustered by
subject and the last group of boxplots present the CA for all subjects.
Horizontal line over each boxplot represents themedian,meanwhile
the circle represents the mean.

For all subjects (except number 5), DA(𝑡) is initially at the
chance level and starts to rise before the movement initiation
at around 𝑡 = −1 s. In other words, no movement intention
is detected from −6 to ≈ −1 s while detection of movement
intention is observed from ≈ −1 s. The maximum DA(𝑡) is
0.92, 0.73, 0.97, 0.86, and 0.85 for subjects 1 to 6, respectively,
(excluding subject 5). These peaks of detection accuracy are
achieved at 𝑡 = 0.7, 𝑡 = 0.9, 𝑡 = 0.8, and 𝑡 = 0.8, for
subjects 1 to 4 and for subject 6 the maximum is reached in
𝑡 = 0.2 and 𝑡 = 0.4 (see vertical dotted blue lines in all plots
of figures). Note that DA(𝑡) always peaks at the movement
execution phase 𝑡 > 0. For subject 5, DA(𝑡) is above chance
level from −6 to ≈ 0 s and suddenly drops at about 𝑡 = 0 s.
This indicates that movement intention is always detected,
even before the movement intention phase 𝑡 < −3 s (i.e., it
is not possible to discriminate between movement intention
and no movement intention) and that movement intention
is at the chance level at the movement execution phase 𝑡 >
0 s. Thus, no movement intention information was detected
for this participant. This result agrees with the distribution
and average values of classification accuracy CA presented
in Figure 4 for 𝑇 = 1 where subject 5 presented the lower
performance.

The fraction of trials where movement intention was
detected prior to movement initiation NTD and the time
of movement intention detection tMI are summarized in
Table 5. tMI may also be observed in Figure 5. These metrics
were not computed for subject 5 as no significant time-
resolved detection accuracy DA(𝑡) was achieved for this
participant. On average, movement intention was detected
in 80 ± 0.7% of the trials across all subjects (minimum 69%,

Table 5: Rate of trials wheremovement intentionwas unequivocally
detected (NTD) and the time instant of the movement intention
detection (tMI).

Movement intention detection
NTD 1 − NTD tMI

S1 0.84 0.16 −1.0
S2 0.69 0.31 −0.5
S3 0.87 0.13 −0.8
S4 0.79 0.21 −0.6
S5 — — —
S6 0.84 0.16 −1.0
Avg 0.80 ± 0.07 0.20 −0.78 ± 0.23

maximum 87%). These results reveal that movement inten-
tion is detected in the majority of the reaching movements
performed by the participants. In addition, the time instant
of movement intention detection is 0.78 ± 0.23 s prior to
movement initiation (minimum −0.5 s, maximum −1.00 s).

4. Conclusions

This work proposed the continuous detection of movement
intention from electroencephalographic (EEG) brain signals
during natural self-paced reaching movements of the upper
limbs. In the context of this work, movement intention was
defined as the mental motor task (with no physical output)
that occurs before the initiation of a movement, for example,
motor planning. Six healthy subjects participated in this study
and the EEG and electromyographic (EMG) activities were
recorded.

The event-related synchronization/desynchronization of
the EEG activity showed significant task-related cortical
rhythms that started before the movement initiation, that
is, at the movement intention phase, and remained during
movement execution. Significant desynchronization (𝑝 <
0.05) was observed in the motor-related 𝛼[8, 13]Hz and
𝛽[14, 30]Hz frequency bands in all the selected sensors
which were located above the motor cortex. This signif-
icant power decrease started about 1 s before the initia-
tion of the movement and remains significant up to the
movement execution, while no significant synchroniza-
tion/desynchronization (𝑝 > 0.05) was observed before this
time.This significant desynchronization was detected in both
hemispheres and was consistent with the experimental motor
task which includes reaching movements with either the left
or right arm.

These task related cortical rhythms were then used to
investigate the feasibility of discriminating between the relax
phase and the movement intention phase. Therefore, biclass
classification between relax and intentionwas evaluated using
the spectral power of the ongoing EEG activity and a support
vector machine as classifier. This classification was evaluated
using different window sizes 𝑇 of EEG to compute the
spectral power features.The results showed that classification
accuracy between the relax and the intention phases increases
as the time window size 𝑇 increases. Thus, a window size
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Figure 5: Time-resolved movement intention detection accuracy DA(𝑡) (solid green line) and the empirical significant chance level of
detection accuracy DAsig(𝑡) (solid red line) of each subject. 𝑡 = 0 refers to the initiation of the reaching movement. Shaded regions bounding
the curves indicate the standard deviation. Vertical dotted blue lines represent the time of the maximum DA(𝑡). Vertical dotted red lines
represent the tMI.
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of 𝑇 = 1 s was selected to compute the spectral power
features used to study the continuous detection of movement
intention.

Finally, significant time-resolved detection accuracy was
obtained in 5 out of the 6 participants before actualmovement
initiation. In one of the participants, it was not possible to
distinguish between movement intention from relax. The
significant detection of movement intention starts to rise at
about 1 s before the onset of the movement and remained
during the movement execution phase. The time-resolved
detection accuracy reached the maximum during move-
ment execution. This agrees with the observed significant
desynchronization activity reported above. The initial time
instant of movement intention was on average 0.78 s, that
is, almost half a second before the actual movement, which
was detected in 80% of the trials. The proposed detector
of movement intention could be used in BMI-based robot-
assisted rehabilitation scenarios. The advantage would be
the reduction of the temporal delay between mental motor
processes and the actual movement performed by the robotic
devices. This could in principle provide fast, natural, and
continuousmotor control that enhances and promotesmotor
relearning at the cortical level.

The next steps for this research are (i) detection of
the moved arm, (ii) determination of novel features based
on the estimation of spikes, (iii) testing a novel classifier
based on lattice neural networks with dendritic processing,
and (iv) performing feature reduction and selection using
Fast Correlation Based Filter (FCBF) [25, 26] or sequential
forward selection (SFS).
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