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Background: Aging is characterized by the gradual loss of physiological integrity, resulting
in impaired function and easier death. This deterioration is a major risk factor for major
human pathological diseases, including cancer, diabetes, cardiovascular disease and
neurodegenerative diseases. It is very important to find biomarkers that can prevent aging.

Methods: Q-Exactive-MS was used for proteomic detection of young and senescence
fibroblast. The key senescence-related molecules (SRMs) were identified by integrating
transcriptome and proteomics from aging tissue/cells, and the correlation between these
differentially expressed genes and well-known aging-related pathways. Next, we validated
the expression of these molecules using qPCR, and explored the correlation between
them and immune infiltrating cells. Finally, the enriched pathways of the genes significantly
related to the four differential genes were identified using the single cell transcriptome.

Results: we first combined proteomics and transcriptome to identified four SRMs. Data
sets including GSE63577, GSE64553, GSE18876, GSE85358, and qPCR confirmed that
ETF1, PLBD2, ASAH1, and MOXD1 were identified as SRMs. Then the correlation
between SRMs and aging-related pathways was excavated and verified. Next, we
verified the expression of SRMs at the tissue level and qPCR, and explored the
correlation between them and immune infiltrating cells. Finally, at the single-cell
transcriptome level, we verified their expression and explored the possible pathway by
which they lead to aging. Briefly, ETF1may affect the changes of inflammatory factors such
as IL-17, IL-6, and NFKB1 by indirectly regulating the enrichment and differentiation of
immune cells. MOXD1 may regulate senescence by affecting the WNT pathway and
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changing the cell cycle. ASAH1 may affect development and regulate the phenotype of
aging by affecting cell cycle-related genes.

Conclusion: In general, based on the analysis of proteomics and transcriptome, we
identified four SRMs that may affect aging and speculated their possible mechanisms,
which provides a new target for preventing aging, especially skin aging.

Keywords: single cell transcriptome analysis, transcriptome, proteomics, skin aging, senescence, fibroblast

INTRODUCTION

The physiological changes in human aging are mainly reflected in
the loss of tissue cells and constituent substances, the slowdown
of metabolic rate, and the decrease of the function of body and
organs. In vivo, senescence is an important mechanism to prevent
damaged cells from transforming into tumor cells (Baker et al.,
2016), and plays an important physiological role in wound
healing (Demaria et al., 2014). The long-term existence of
senescent cells and their secretory components in tissues can
lead to aging-related tissue decline, and can even be used as a
factor in promoting tumorigenesis (Tchkonia et al., 2013). Skin
aging is the most obvious manifestation of body aging, which can
be used as a predictor of life expectancy and health. The main
physiological changes of skin aging are decreased skin elasticity,
wrinkles and age spots. The human desire for lasting beauty has
further aroused people’s interest in this topic, so a lot of means
and efforts have been invested in basic and applied research to
study the mechanism of skin aging (Gruber et al., 2020).

Fibroblasts are the main cellular components in the dermis.
Collagen fibers, elastic fibers, and matrix components secreted by
fibroblasts constitute the main body of the dermis together with
fibroblasts. A large number of studies have proved that fibroblasts
play an important role in the process of skin aging because of their
unique biological characteristics. Replicative aging of fibroblasts
in vitro has often been used as a cell model for aging (Maier and
Westendorp, 2009).

Genomic instability, telomere wear, epigenetic changes, loss of
protein balance, nutritional perception disorders, mitochondrial
dysfunction, cell aging, stem cell depletion, and changes in
intercellular communication are major characteristics
representing the common ground of aging in different
organisms (López-Otín et al., 2013). A major challenge is to
dissect the relationship between candidate features and their
relative contribution to aging. Disorders of the immune
system can lead to significant changes in aging-related
intercellular communication, known as inflammaging
(Salminen et al., 2012), which is accompanied by the
accumulation of pro-inflammatory phenotypes in mammals.
On the other hand, the function of adaptive immune system is
decreased, which occurs in parallel with inflammatory senescence
(Deeks, 2011). Immunosenescence can aggravate the aging
phenotype at the systemic level, which is due to the inability
of immune system disorders to eliminate infectious factors,
infected cells and precancerous cells. Another function of
immune cells is to recognize and remove senescent cells and
hyperploid cells, which accumulate in aging tissues and

precancerous lesions (Senovilla et al., 2012; Cabreiro et al.,
2013). However, the relationship between immunity and aging
and the mechanism of interaction still needs to be further
explored.

Therefore, exploring the new mechanism of aging and
exploring the biomarkers of aging is very important for
delaying senescence. In addition, the study of the relationship
between aging and immunity can further clarify the mechanism
of aging. The analysis process of this study is shown in Figure 1.
Here, combined with the comprehensive analysis of proteomics,
single cell transcriptome, and transcriptome, we identified four
new aging markers and the correlation between SRMs and aging-
related pathways would be excavated and verified. we would
validate the expression of SRMs at the tissue level and qPCR, and
explored the correlation between them and immune infiltrating
cells to elucidated their possible mechanisms leading to aging.

METHODS AND MATERIA

Cell Culture
Primary normal human foreskin fibroblasts were isolated 3 donors
(7 years donor, 15 years donor and 16 years donor) and cultured in
DMEM (Gibco;Waltham,MA, United States) with 10% FBS (Gibco;
Waltham, MA, United States) as previously described (Xie et al.,
2021). The young (6~8 passage) and senescent (34~42 passage)
fibroblasts were verified using SA-b-Gal staining and then used for
further analysis. Informed consent to participate in the study have
been obtained from participants (or their parent or legal guardian in
the case of children under 16 or illiterate participants). Three human
foreskin specimens involved in this study were collected in June 2021.

qPCR Analysis
The RNA of young and senescent fibroblasts was collected using
TRIzol (Invitrogen). 2 μg RNA was used for reverse transcription
(Maxima H Minus First Strand cDNA Synthesis Kit with
dsDNase, ThermoScience, K1682, United States), and gene
expression was analyzed using an Applied Biosystems ® 7,500
machine (Life Technologies, United States). The primers were
shown in Table 1.

Proteomic Analysis
The whole-cell extracts of young and senescent fibroblasts were
prepared in NP40 buffer (Beyotime). After separation on SDS-
PAGE, the protein from different bands were excised and used
for trypsin digestion. The peptides were separated using an
Ultimate 3,000 RSLCnano system and then analyzed on the Q
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Exactive (Thermo Fischer Scientific, San Jose, CA, United States).
Proteome discoverer 1.4 (PD1.4, Thermo Fisher Scientific) with
Masccot was used for protein identification, as previously
described (Huang et al., 2010). The tandem mass spectrometry
data was converted into a PKL file using Masslynx v 4.0 software
(Micromass, Waters, United States), and then was imported into an
local Mascot 2.1 search engine (Matrix Science Ltd., London, UK),
which was licensed to Hunan Normal University, Changsha, China

(KA108-2433), against the National Center for Biotechnology
nonredundant database (NCBInr 2008.09.07; 7020262 sequences).
The search parameters were as follows: the enzyme was trypsin; the
taxonomywas selected as Homo sapiens; themass tolerance was ±0.3
Da; the MS/MS tolerance was ±0.3 Da; the peptide charge is 1+, 2+
and 3+; the missed cleavage sites were allowed up to 1; the fixed
modifications were selected as carboxymethyl (cysteine); the variable
modification was selected as oxidation (methylation) or none; the

FIGURE 1 | The analysis process of this study. We first combined proteomics and transcriptome to identified four key SRMs. Then the correlation between SRMs
and aging-related pathways was excavated and validated. Next, we validated the expression ofSRMs at the tissue level and qPCR, and explored the correlation between
them and immune infiltrating cells. Finally, at the single-cell transcriptome level, we validated their expression and explored the possible pathway by which they lead to
aging.

TABLE 1 | Primer Sequences for qRT-PCR.

Gene Name Forward Primer Reverse Primer

ASAH1 5’- AGATGTCATGTGGATAGGGTTCC -3’ 3’- GGGGCCAATATCTTGGTCTTG -5’
ETF1 5’- CACGAGTGGCAAAAATGTTAGC -3’ 3’- CCAGGACTGAAAGGCGGTTTA -5’
MOXD1 5’- AGAGTTTGCGGTTATTGAATCCT -3’ 3’- CGCTGTCGTTAAAGTTGTTGC -5’
PLBD2 5’- GGCCCCTTCGAGTATGAAGTC -3’ 3’- TCCTGCATCCACTCTAGGTTG -5’
GAPDH 5’- GAAAGCCTGCCGGTGACTAA -3’ 3’- GCCCAATACGACCAAATCAGAG -5’

qRT-PCR, quantitative real-time polymerase chain reaction.
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data format was selected as micromass PKL format; and the
instrument was selected as ESI-Q-TOF. Individual ions scores >31
indicate identity or extensive homology (p < 0.05), and were
considered significant. But for those protein matching unique
peptides, individual ions scores >38 indicate identity or extensive
homology (p < 0.01) were considered significant (Huang et al., 2010).
The results after data standardization obtained from proteomic
sequencing are stored in a supplementary file named “
Supplementary Table S1”.

Data Acquisition and Processing
Gene Expression Omnibus (GEO) database stores curated gene
expression DataSets, as well as original Series and Platform
records in the GEO repository. Data sets such as GSE63577,
GSE64553, GSE151177, GSE85358, and GSE18876 are
downloaded on the GEO database (https://www.ncbi.nlm.nih.
gov/geo/). The GSE85358 and GSE18876 matrices are merged
into large matrices using R language, and the batch effect is
removed by using the “combat” function of the R software “sva”
package (Leek et al., 2012) (version 3.45.0). The aging gene set
was downloaded from the MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp).

Principal Component Analysis
Principal component analysis (Principal Component Analysis,
PCA) is a reduced-dimensional data processing method. We use
the “prcomp” function in the “stats” package (version 3.6.1) of R
language for PCA analysis, and then use the “scale” function to
normalize z-score. Finally, the visualization is carried out by using
the “scatterplot3d” package (version 0.3.41) in R software.

Venn and Upset Analysis
We conducted Venn analysis by using the “venn.diagram”
function of the “VennDiagram” package (Chen and Boutros,
2011) (version 1.6.20), and then use the “calculate.overlap”
function to calculate the duplicates between each data set. The
“Upset” analysis is done by executing the “Upset” function in the
“UpSetR” package (Conway et al., 2017) (version 1.4.0), and the
venn circle is drawn by using the “ggvenn” function in the
“yyplot” package (version 0.0.8).

Gene Difference Analysis
In this study, we used the “limma” (Robinson et al., 2010) package
(version 3.50.3) of R software to screen differentially expressed
genes. The screening criteria was that the adjusted-P value was
less than 0.05 and the absolute value of Fold Change (FC) was
greater than 2. Advanced volcano plot was performed using the
OmicStudio tools at https://www.omicstudio.cn/tool.

GSVA and Enrichment Analysis
Gene set variation analysis is a non-parametric and unsupervised
algorithm. Input the chip data standardized by log2 as gene
expression matrix, and then input a specific gene set. The GSVA
enrichment score is calculated by “GSVA” (Hänzelmann et al., 2013)
package (version 1.42.0) and “GSEABase” package (version 1.56.0).
The final output is the datamatrix corresponding to each sample with
each gene set. Drawing heat map of correlation coefficient using

“pheatmap” package. The enrichment analysis of GO and KEGG is
carried out by using the “ClueGO (Bindea et al., 2009)” plug-in in
Cytoscape (V3.8.2), and the visual adjustment is made by
“CluePedia”. We exclude the terms that the p value in the
enrichment pathway is less than 0.05 or that the enrichment
pathway contains less than 3 genes.

Single Cell Data Analysis
We annotated and analyzed the GSE151177 dataset using the Seurat
package (version 4.0.6) (Hao et al., 2021). In the quality control stage,
we filtered out the cells with the minimum number of expressed
genes less than 300 and the genes with the minimum number of
expressed cells less than 4. Then we conducted the second screening
according to the conditions that the proportion of mitochondrial
genes is less than 50% and the proportion of ribosomal genes is more
than 3%. Finally, we filtered out the housekeeping gene and scored
the cell cycle.

Protein-Protein Interaction and Correlation
Analysis
We did a PPI analysis using the STRING (V11.5) online website,
setting minimum required interaction score as 0.4. Enrichment
analysis and network visualization are carried out by using
“string” and “string enrichment” plug-ins in Cytoscape (V3.8.2)
(Shannon et al., 2003) software. In addition, we use stats package
to calculate the person correlation coefficient between the two
expression matrices. And the “igraph” package (version 1.2.6) is
used to visualize the correlation network.

Estimation of Immune Cell Abundance
Based on the matrix of GSE18876 and GSE85358, we calculated the
abundance of immune cells by using Cibersort (https://cibersortx.
stanford.edu/index.php) (Newman et al., 2015), MCP Counter
(version 1.1) (Becht et al., 2016), and Xcell (https://xcell.ucsf.edu/)
(Aran et al., 2017) software packages, and excluded the samples with
p < 0.05 among them.

Ethics Approval and Consent to Participate
All experiments were performed in accordance with relevant
guidelines and regulations. All the experiments in this study
were approved by the Clinical Medical Ethics Committee of
Xiangya Hospital of Central South University (202103574).

Data Statistics
All the analyses in this study are carried out using R software
(version 4.1.2), and all the codes used are stored in the
Supplementary Table S2.

RESULTS

18 Differentially Expressed Proteins Were
Identified by Qualitative Proteomics
PCA showed that the expression patterns of 6 samples (proteomics
from 3 senescence and 3 young fibroblasts) were normal and there
were no outlier samples (Figure 2A). Because of the qualitative
data, the specific expression can not be obtained, so we judge
whether a specific molecule is differentially expressed between
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the two groups according to the expression of a specific
molecule in the experimental group (or not) (Figure 2B).
Through the comparative analysis of the aging group and the
young group in the proteomic matrix, we found that 8 proteins
(ASAH1, CAMK2D, CD59, GPX1, MOXD1, PLBD2,
PPP1R14B, and VASP) were not detected in the young
group, but detected in the senescence group, while 10
proteins (COL1A1, ETF1, MMP14, P4HA2, RHOG, RPL31,
SLC38A2, TUBAL3, RSL1D1, and G3BP1) were not expressed
in the senescence group, but expressed in the young group
(Figure 2C). Proteomic data are presented in Supplementary
Table S1. In addition, using the expression matrix of the 16th
generation fibroblasts and the 74th generation fibroblasts in the
GSE63577 data set, we found that 1,220 genes were highly
expressed in the young fibroblasts, while 823 genes were highly
expressed in the senescence fibroblasts (Figure 2D). By
comparing and combining the differential molecules in
proteome and transcriptome, we identified four molecules

(ASAH1, CAMK2D, PLBD2, and ETF1) as SRMs in
fibroblast (Figure 2E).

Four key Senescence-Related Molecules
Are Significantly Associated With
Aging-Related Pathways
The results of GSVA suggest that there are significant differences in
aging-related pathways between the young group and the senescence
group (Figure 3A). Next, 304 genes in aging-related pathway were
detected and 41 of them were significantly differentially expressed
between the aging group and the young group (adjust-pvalue<0.05, |
FC|>2). Then we analyzed the pearson correlation between SRMs
and 41 differential aging genes in the training set GSE63577
(Figure 3B) and the validation set GSE64553 (Supplementary
Figure S1B), respectively. We find that PLBD2 has a significant
positive correlation with WNT16 and CDKN1A and a
significant negative correlation with HMGA2 in both

FIGURE 2 | Identification of differentially expressed genes in transcriptome and proteome at the same time. (A). PCA analysis showed that there was no deviation
from the 6 samples in the protein group; Identification of co-existing molecules in different data sets by VENN (B) and UPSET (C) analysis; (D). Volcanic map of difference
analysis; (E). Identification of differentially expressed genes in transcriptome and proteome at the same time.
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training set and validation set. What’s more, in the two data sets,
ASAH1 was significantly negatively correlated with HGMA2
and TNFRSF1B, but positively correlated with WNT16,
CDKN1A, and LOLX2. ETF1 was negatively correlated with

CDKN1A, but positively correlated with HMGA2. Finally, there
is a significant positive correlation between MOXD1 and
WNT16 and FOS in the two datasets. Crucially, in the
GSE64553 data set, the expression of four SRMs was also

FIGURE 3 | Explore the relationship between four SRMs and aging. (A). GSVA confirmed that there were significant differences in the pathways of senescence and
cell senescence between the young group and the old group; (B). Analysis of the relationship between four SRMs and aging genes. The yellow solid line represents
positive correlation, the gray dotted line represents negative correlation, and the thicker the line, the stronger the correlation.

FIGURE 4 | Explore the relationship between four SRMs and immune cell. (A). The landscape of immune cell infiltration in the tissue was calculated by CIBERSORT.
(B). The correlation between the expression of four SRMs and the abundance of immune cell infiltration in tissue, which was calculated by CIBERSORT. (C). The
correlation between the expression of four SRMs and the abundance of immune cell infiltration in tissue, which was calculated by Xcell. (D). The correlation between the
expression of four SRMs and the abundance of immune cell infiltration in tissue, which was calculated by MCPcounter. The yellow solid line represents positive
correlation, the gray dotted line represents negative correlation, and the thicker the line, the stronger the correlation.
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significantly different between the aging group and the young
group (Supplementary Figure S1A).

Senescence-RelatedMolecules Are Closely
Related to Immune Cells Infiltration
We eliminate the batch effect of GSE18876 and GSE85358 datasets
through the “SVA” package, and merge them into one dataset
(Supplementary Figure S2A). There are 11164 common genes
between the two datasets (Supplementary Figure S2B). In
addition, there were significant differences in the expression of
SRMs in the transcriptome of dermis (Supplementary Figure
S2C). Next, according to the gene expression in the fusion
matrix, we calculated the infiltration abundance of immune cells
in the skin tissue by CIBERSORT (Figure 4A), MCPcounter, and
Xcell. According to the expression of SRMs and the abundance of
immune cell infiltration, we calculated the person correlation
between them (Figures 4B–D). The results suggest that ETF1,
PLBD2, MOXD1, and ASAH1 have a significant negative
correlation with immune cells related to T cells CD8, T cells
follicular helper, T cell CD4 memory activated, NK cells activated
and Macrophages M2, but has a significant positive correlation with

immune cells such as T cells CD4 memory resting, Dendritic cells
resting, and Mast cells resting.

ETF1 May Play a Role in the Aging Process
by Regulating Immunity
We integrated all normal skin samples (a total of 5 cases) in
GSE151177 data set for analysis. After three steps of strict
initial quality control screening (Supplementary Figure S3),
the results showed that we stratified the integrated data into
14 types of cells according to the biomarkers of various cells in
skin tissue, including fibroblasts (Figures 5A,B). We
examined the expression of SRMs in the dermis single-cell
sequencing dataset GSE151177 and found that SRMs were
highly expressed in fibroblasts (Figures 5C–F). After
annotation, we obtained the expression matrix of 1,162
fibroblasts. Next, we screened the genes significantly related
to SRMs (|R|>0.15, p < 0.05) and analyzed the functional
enrichment of these genes. The results of KEGG and GO-BP
enrichment analysis of 151 genes significantly related to ETF
suggested that the enrichment pathway was mainly
concentrated in IL-17 signaling pathway (Figures 6A,B)

FIGURE 5 | Single cell data analysis. (A). Cell specific biomarkers in skin tissue can well distinguish cell subsets. (B). The umap map shows that the integrated data
containing five normal skin tissue samples are divided into 14 cell clusters by specific biomarkers of skin tissue cells. Examined the expression of four SRMs in the dermis
single cell dataset GSE151177 and found that four SRMs were highly expressed in fibroblasts (C–F).
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FIGURE 6 |GO and KEGG enrichment analysis of genes significantly related to ETF1. (A). KEGG enrichment analysis of genes significantly related to ETF1; (B). The
proportion of each pathway in the results of KEGG enrichment analysis; (C). GO-BP enrichment analysis of genes significantly related to ETF1; (D). The proportion of
each pathway in the results of GO-BP enrichment analysis.

FIGURE 7 | Immune pathway analysis of genes significantly related to ETF1. In order to explore the relationship between ETF1 and immune system, I conducted
immune pathway enrichment analysis of genes significantly related to ETF1. The results suggest that a large number of immune-related pathways, including T cell
differentiation, B cell differentiation, and immune system processed, are enriched.
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and apoptotic signaling pathway (Figures 6C,D). This
suggests that ETF1 may play a role in aging through
immune-related genes. In order to explore the relationship
between ETF1 and immune system, I conducted immune
pathway enrichment analysis of genes significantly related
to ETF1. The results suggest that a large number of immune-
related pathways, including T cell differentiation, B cell
differentiation, and immune system processed, are enriched
(Figure 7). PPI analysis of 151 genes showed that there may be
direct interaction between ETF1 and immune related
molecules such as CXCL1, CXCL3, CDKN1A, and IL6, thus
regulating immunity (Supplementary Figure S4).

MOXD1, ASAH1, and PLBD2 Are Closely
Related to Skin Aging
36 genes significantly related to MOXD1 were analyzed by GO-BP
enrichment analysis. the results showed that regulation of Wnt
signaling pathway, collagen fibril organization, and supramolecular
fiber organization pathways were enriched (Supplementary
Figure S5). In addition, PPI analysis showed that MOXD1
might interact directly with STAR molecules of Wnt pathway
and collagen production pathway such as WNT5A, COL3A1,
TNN, COL1A1(Supplementary Figure S6). Next, the molecules
significantly related to ASAH1 are mainly enriched in epithelium
development, tissue development and other pathways
(Supplementary Figure S7). Finally, the molecules significantly
related to PLBD2 are mainly enriched in HIF-1 signaling pathway
and ficolin-1-rich granule lumen pathway (Supplementary
Figure S8).

PCR Validation of the Expression of
Senescence-Related Molecules
We validated the expression of SRMs by qRT-PCR experiment
using the senescence model of passage fibroblasts. The results
showed that the expression of MOXD1, PLBD2, and ASAH1
was up-regulated in the aging group, while the expression of

ETF1 was down-regulated in the aging group, which was
consistent with the difference between the protein group
and the transcriptional group (Figure 8).

DISCUSSION

In this study, we first combined proteomics and transcriptome to
identified four key SRMs. Then the correlation between SRMs and
aging-related pathways was excavated and validated. Next, we
validated the expression of SRMs at the tissue level and qPCR,
and explored the correlation between them and immune
infiltrating cells. Finally, at the single-cell transcriptome level, we
validated their expression and explored the possible pathway by
which they lead to aging.

Eukaryotic translation termination factor 1 (ETF1) encodes a
class-1 polypeptide chain release factor. The encoded protein plays an
essential role in directing termination of mRNA translation from the
termination codons UAA, UAG and UGA. In our study, there was a
significant negative correlation between ETF1 and the famous aging
promoting gene CDKN1A (p21) (Sharpless and Sherr, 2015). What’s
more, it has a significant positive correlation with the famous aging
inhibitory gene HMGA2 (Zhu et al., 2013). Surprisingly, ETF1 was
significantly down-regulated in both senile passage cells and aging
skin tissue. Data from single-cell groups showed that ETF1 was
significantly associated with tendentious and inflammatory factors
such as CXCL1 (De Filippo et al., 2013), CXCL2, CXCL3,
NFKB1(Fock et al., 2010), JUN(Weitzman, 2002), and IL-6
(Eckmann and Neish, 2011). We later analyzed its relationship
with inflammation and immunity and found that most of the
genes significantly related to it were enriched in IL-17 signaling
pathway, Th17 cell differentiation pathway, Cellular senescence,
autophagy signaling pathway, and immunomodulatory pathways.
IL-17 can significantly reduce the expression of P21, and Th17 cells
secreting IL-17 can induce fibroblast senescence (Faust et al., 2020).
Therefore, we speculate that ETF1 may affect the changes of
inflammatory factors such as IL-17, IL-6, and NFKB1 by
indirectly regulating the enrichment and differentiation of

FIGURE 8 | qPCR technique was used to detect the expression of ETF1 (A), ASAH1 (B), MOXD1 (C), and PLBD2 (D) in fibroblasts of young and old generations,
and the differences were compared. * means the p value is less than 0.05.
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immune cells. Autophagy is closely related to aging. The diversity of
cell functions of different types of autophagy and the interaction
between autophagy and other aging determinants are putting
autophagy at the center of the aging process (Kaushik et al.,
2021). ETF is significantly associated with 34 autophagy-related
molecules, including ATF4 (Rutkowski and Kaufman, 2003), so
ETF1 is likely to affect aging through autophagy.

MOX (monooxygenase X), is a member of the copper
monooxygenase family that includes dopamine beta-
monooxygenase (DBM) and peptidylglycine alpha-hydroxylating
monooxygenase (PHM) (Xin et al., 2004). As a member of MOX,
Monooxygenase DBH like 1 (MOXD1) has not been studied in the
field of aging. In our study, MOXD1 was positively correlated with
senescence and cell cycle famous molecule WNT16 (Binet et al.,
2009) and FOS(Jiang et al., 2021), and the molecules COL1A1,
KREMEN1, PTK7, SEMA5A (D’Aguanno et al., 2018), TNN, and
WNT5A (Kawarazaki et al., 2020), whichwere significantly positively
related to MOXD1 were mainly enriched in WNT signal pathway
and collagen fiber formation pathway. PPI analysis showed that
MOXD1 might interact directly with WNT5A, COL3A1, TNN, and
COL1A1. In addition, compared with non-aging fibroblasts and non-
aging skin tissues, the expression of MOXD1 in aging fibroblasts and
tissues were significantly higher. Therefore, we speculate that the high
probability of MOXD1 may regulate senescence by affecting the
WNT pathway and changing the cell cycle.

N-acylsphingosine amidohydrolase 1 (ASAH1) encodes a
member of the acid ceramidase family of proteins. It is essential
for the formation of mature lysosomal enzymes, which are
overexpressed in many human cancers and may play a role in
cancer progression (Robak et al., 2017). Rachel et al. found that
ASAH1 increased highly in senescent cells. Silencing ASAH1 in pre-
senescent fibroblasts decreased the levels of senescence proteins p16,
p21 and p53, and decreased the activity of β-galactosidase related to
senescence. ASAH1 promotes senescence, protects senescent cells,
and endows it with resistance to anti-aging drugs (Munk et al., 2021).
In this study, the expression of ASAH1 was up-regulated in aging
fibroblasts and aging skin tissues. Correlation analysis shows that
ASAH1 was significantly negatively correlated with HGMA2 and
TNFRSF1B, but positively correlated with Well-known cell cycle
related genes WNT16, CDKN1A, and LOXL2 (Kim et al., 2014).
GSTK1, DCN, CTSB, and SFRP2, which are significantly positively
related to ASAH1, are enriched in tissue development pathway and
epithelial development pathway, suggesting that ASAH1 may affect
development and regulate the phenotype of aging by affecting cell
cycle related genes.

Little research has been done on phospholipase B domain
containing 2 (PLBD2, also known as P76) in human tissues. In
the present research, PLBD2 was significantly up-regulated in aging
tissues and fibroblasts and was significantly positively correlated with
p21 and WNT16. In addition, the molecules significantly related to
PLBD2 are mainly enriched in HIF-1 signaling pathway and ficolin-
1-rich granule lumen pathway. Although there is no previous
research guidance, our work suggests that PLBD2 may play a key
role in the aging process.

CONCLUSION

In general, based on the analysis of proteomics and
transcriptome, we identified SRMs that may affect aging and
predicted their possible mechanisms, which provides a new target
for preventing aging, especially skin aging.
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