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ABSTRACT: A new concept of the molecular structure
optimization method based on quantum dynamics computations
is presented. Nuclei are treated as quantum mechanical particles, as
are electrons, and the many-body wave function of the system is
optimized by the imaginary time evolution method. The numerical
demonstrations with a two-dimensional H2

+ system and a H−C−
N system exemplify two possible advantages of our proposed
method: (1) the optimized nuclear positions can be specified with
a small number of observations (quantum measurements) and (2)
the global minimum structure of nuclei can be obtained without
starting from any sophisticated initial structure and getting stuck in
the local minima. This method is considered to be suitable for
quantum computers, the development of which will realize its
application as a powerful method.

1. INTRODUCTION

Accurate quantum chemistry computations remain a challenge
on classical computers, especially for molecules with
industrially relevant sizes, despite the significant efforts and
developments of recent years. The computational cost of exact
methods for quantum chemistry on classical computers grows
exponentially with the molecular size,1,2 whereas the cost can
be suppressed in polynomial scaling on quantum computers.3

For this reason, quantum chemistry computations have been
considered to be a promising application of quantum
computers. By the manipulation of quantum states of matter
and with the advantage of their unique features, such as
superposition and entanglement, quantum computers promise
to efficiently deliver accurate results for many important
problems in quantum chemistry, such as the electronic
structure of molecules.4,5

In quantum chemistry computations, the Born−Oppen-
heimer (BO) approximation6 has typically been used to speed
up the computation of molecular wave functions and other
properties for large molecules. The BO approximation is the
assumption that the wave functions of atomic nuclei and
electrons in molecular systems can be treated separately, on the
basis of the fact that the nuclei are much heavier than the
electrons. In many cases of quantum chemistry computations
by classical computers, nuclei have been treated as point
charges (classical particles). Many quantum algorithms for
quantum chemistry computations on quantum computers are
also typically based on the BO approximation: for example, the

quantum phase estimation (QPE) method7,8 for a fault-
tolerant quantum computer (FTQC) and the variational
quantum eigensolver (VQE) method9,10 for a noisy inter-
mediate-scale quantum (NISQ)11 device are often employed
to solve systems under the BO approximation. On the other
hand, it is also possible to think of methods beyond the BO
approximation with quantum computers, and such methods
have been proposed in the literature.4,12−17 Kassal et al.,13 for
instance, reported that a completely nonadiabatic grid-based
method on FTQCs, where nuclei are treated as quantum
particles and correlated with electrons, is not only more
accurate but also faster and more efficient than the methods
based on the BO approximation. Moreover, the molecular
orbital theory beyond the Born−Oppenheimer approxima-
tion18 has been extended to the NISQ algorithms such as
VQE.17

Optimization of the geometry of molecules is an important
process to obtain the equilibrium molecular structures in
quantum chemistry computations.19 Since the physical and
chemical properties of molecules are dependent on their
specific geometrical structures, elucidation of the optimized
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structures enables the prediction of properties and identi-
fication of chemical products. In the conventional molecular
structure optimization methods, which are based on the BO
approximation and treat nuclei as classical particles, the
electronic states should be computed to obtain the forces
acting on nuclei and update the molecular structure for each
optimization step. These conventional methods can be
accelerated through the use of quantum computers to perform
the electronic state calculations.
However, a large number of circuit executions and

observations (measurements for qubits) are required to obtain
expectation values of observables (the forces acting on nuclei
in this case) because we collapse the state of qubits and destroy
a great deal of the information when we measure the qubits.
Moreover, it is necessary to repeat the above repetition (force
computations) at each iteration in the geometry optimization
process. Furthermore, as gradient-driven descent routines are
often used to optimize the molecular structure, the system
tends to be relaxed to the closest local minimum from an initial
structure for the geometry optimization. It is thus a difficult
task to find the global minimum structure in systems that have
multiple local minima (i.e., many isomers), such as alloy cluster
systems.19

In this study, we propose a method for optimizing molecular
structures based on quantum dynamics computations with
working on an FTQC in mind. In our method, the many-body
wave functions of nuclei and electrons are directly treated as
wavepackets and optimized by the imaginary time evolution
method. The many-body wave function on the lattice can be
mapped to a state on a quantum computer with the number of
qubits growing only logarithmically with respect to the number
of lattice points.5,12 Although the imaginary time evolution is a
nonunitary operation that is not straightforward to implement
on a quantum computer, which is based on the unitary
evolution of quantum systems, probabilistic methods20−22 and
measurement-based methods23 for FTQC have been proposed.
The method of linear combination of unitaries could also be
useful.24,25 For NISQ devices, a variational method has also
been proposed,26 as we will review later. Since nuclei are
treated as quantum particles, the nuclear quantum effects are
naturally included in our method. More importantly, our
method is expected to have the following favorable character-
istics. First, it is theoretically expected that the global minimum
of the molecular structure can be obtained just by starting with
an initial many-body wave function that covers all molecular
structures. This is because the imaginary time evolution is not
a gradient-based optimization and in principle will not suffer
from being trapped in the local minima of the molecular
structures. Second, the optimized many-body wave functions
have large stochastic amplitudes at the most stable structure of
nuclei, so that the determination of the optimized nuclei
positions, i.e., the molecular structure optimization, can be
performed with a small number of observations (quantum
measurements). We demonstrate our concept of the molecular
structure optimization method based on quantum dynamics
computations for a two-dimensional H2

+ system and a H−C−
N system with numerical simulations by a classical computer.

2. METHODS
In this section, we explain our proposal for the molecular
structure optimization.
2.1. Quantum Imaginary Time Evolution. In non-

relativistic quantum dynamics computations, the time

evolution of quantum systems can be described by the time-
dependent Schrödinger equation

ψ ψℏ ∂
∂

=i
t

t H t( ) ( )
(1)

where H is the Hamiltonian that describes the system. The
solution of the time-dependent Schrödinger equation is
formally written by

ψ ψ= − ℏt( ) e (0)i H t (2)

That is, if an appropriate initial wave function ψ(0) can be
prepared, then the time evolution of the system can be
obtained by application of the time evolution operator

= − ℏU t( ) e i H t (3)

If ψ(0) is the eigenstate of H, i.e. ψ(0) = ϕi and Hϕi = Eiϕi,
then eq 3 becomes

ψ ϕ= − ℏU t( ) (0) e i
E

t
i

i

(4)

If not (in general cases), then the exponential operator must
be applied to the wave function to compute the time evolution
of the system. A number of methods have been developed to
apply the exponential operator to the wave function.27,28 Here
we explain the method based on the second-order Suzuki−
Trotter decomposition.4,5,29 It should be noted that the first-
order decomposition is also used frequently in quantum
computing, though it is subject to errors due to the
noncommutativity of the terms in the Hamiltonian. The
second-order decomposition compensates for noncommuta-
tivity and eliminates some error terms. One might think that it
would be better to use a third- or higher-order decomposition
in order to increase accuracy, but this is not practical because
the number of terms for the decomposition increases
exponentially with the order.30 We have to minimize the
number of quantum gates to reduce errors in exectuting
quantum gates to obtain meaningful results in quantum
computing, especially when NISQ devices are used. Therefore,
lower-order decompositions are preferred. In this study, the
second-order decomposition is used because of its balance
between accuracy and number of terms.
Denoting the kinetic energy term of H by T and the

potential energy term by V, the second-order Suzuki−Trotter
decomposition is

= +− ℏ − ℏ − ℏU t O t( ) e e e ( )i T t iV t i T t
2 2 3 (5)

The error arises because T and V are noncommutative. To
reduce the error, we set t = Nstepdt and express the time
evolution operator as the product of Nstep operators in time
increments of dt

= = − ℏU t U dt( ) ( ( )) (e )N i H dt Nstep step (6)

Because T is diagonal in wavenumber space, when we apply
− ℏe iT dt

2 in the second-order Suzuki−Trotter decomposition, the
wave function is expressed in wavenumber space by performing
a fast Fourier transformation (FFT) for the wave function in
real space, when the calculation is run on classical computers.

Similarly, V is diagonal in real space; thus, the operator − ℏe i dtV
is

applied to the wave function in real space after application of
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the inverse FFT to the wave function in wavenumber space,

ψ− ℏe iT dt
2 . Note that if a matrix is diagonal

= ∏
∏

i

k

jjjjjjjjjjjjjjjjjjjj

y

{
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0

0
n
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2

(7)

then its exponential can be obtained by exponentiating each
entry on the main diagonal

= ∏
∏

i
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e
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(8)

Using these procedures, the application of the time
evolution operator U(dt) can be computed without expanding
the exponential function operator. When these calculations are
repeated Nstep times, the wave function at the desired time t
can be obtained.
Now let us convert time into an imaginary number, it → τ.

The solution of the time-dependent Schrödinger equation then
becomes

ψ τ ψ= τ− ℏe( ) (0)
H

(9)

When we formally expand ψ(0) by the eigenfunctions of H,
{ϕi}, we have

∑ψ τ ϕ= τ− ℏc e( )
i

i

E

i

i

(10)

where ∈ ci is a coefficient for the expansion ψ(0) = ∑iciϕi

and Ei is the eigenvalue of ϕi. If we increase τ, the factor
τ− ℏe

Ei

attenuates more quickly for large Ei, and the ground state ϕ0,
which has the smallest eigenvalue E0, remains until the end as
long as the coefficient (overlap between the initial state ψ(0)
and the ground state) c0 is nonzero. This is how we obtain the
ground state by an imaginary time evolution. Note that the
norm of the wave function decreases during the imaginary time
evolution; thus, it is necessary to renormalize the wave
function after the evolution.
2.2. Geometry Optimization with Fully Quantum

Wave Function for Nuclei and Electrons. In the previous
section, we showed that the most stable quantum state of the
system can be obtained by the imaginary time evolution
method. In this section, we show that this property can be used
to obtain the most stable structure of a molecule where the
atomic nuclei are regarded as quantum mechanical particles as
well as the electrons, in contrast to the conventional method
based on the BO approximation. We consider the many-body
wave function ψ(R, r, τ = 0), including the degrees of freedom
of nuclei and electrons, where R represents the coordinates of
Nnuc nuclei, =R R R R, , ..., N1 2 nuc

, and r represents the
coordinates of n electrons, r = r1, r2, ..., rn. From any initial
wave function as the starting point (ultimately, it may be a
constant over the entire simulation region in real space but
should have nonzero overlap with the desired ground state),
the most stable state (ground state) of the nuclei and the

electrons can be obtained by the imaginary time evolution of
the initial wave function under the Hamiltonian

∑ ∑ ∑

∑ ∑ ∑

= − ℏ ∇ − ℏ ∇ +
| − |

+
| − |

−
| − |

<

<

H
m M

q

r r

Q Q

R R

q Q

R r

2 2

,

i

n

i
r

i

N

i
R

i j

e

i j

i j

i j

i j i

N

j

n
e i

i j

2
2

2
2

2

i i

nuc

nuc

(11)

where Qi is a electric charge of the ith nucleus and qe (>0) is a
charge of an electron. The optimized wave function is expected
to have a large norm at the state of the most stable molecular
structure; thus, the stable structure can be obtained with a high
probability by performing the measurement to the state after
imaginary time evolution. This calculation includes quantum
effects such as the zero-point oscillation effect and the
nonadiabatic effects that are ignored under the Born−
Oppenheimer approximation.31 If we take an initial state (for
the nuclei part of the wave function) as the superposition state
for all possible molecular structures, the most stable structure
among all isomers of the molecule would be obtained. Because
the search for the most stable isomer generally becomes
difficult as the number of atoms increases,19 it is an appealing
feature of this method that treats the atomic nuclei as quantum
mechanical particles.
Such an approach could not be taken to date due to the

difficulty of describing many-body wave functions with a
classical computer. In contrast, a many-body wave function can
be described with a reasonable number of qubits on a quantum
computer. This is discussed in more detail later.

2.3. Computational Setups for Numerical Demon-
strations of the Proof of Concept. We present numerical
demonstrations of our method by taking a two-dimensional
(2D) H2

+ molecule and a H−C−N system as examples to
show that the molecular structure optimization is possible with
a small number of observations and illustrate the feature that
the most stable molecular structure can be found without being
trapped in local minima.

2.3.1. Computational Setup for the 2D H2
+ Molecule. A

H2
+ molecule is a three-particle system with two protons and

an electron that is naively described as a six-dimensional
system, which will be difficult to calculate with a classical
computer. For example, if we take a grid of 25 = 32 per
dimension in that space, the wave function has 230 =
1073741824 elements and the Hamiltonian has 260 =
1152921504606846976 elements in the naive and worst
estimate. On the other hand, in a quantum computer, a
wave function can be expressed with 30 qubits because N
qubits can represent 2N variables: i.e., 2N wave function
elements on grids. In addition, the number of qubits scales
linearly with the number of particles.
In numerical demonstrations, we perform a dimensional

reduction to the system so that the calculation can be
performed on a classical computer. First, the center of mass of
the system is fixed at the origin (0, 0). As a result, the degrees
of freedom of translational motion of the molecule can be
ignored. Now that the purpose is to optimize the molecular
structure, we only need to focus on the internal degrees of
freedom. Classically, the rotational motion around the center
of mass has also been frozen, but quantum mechanically, the
rotational motion and the vibration mode are coupled, so that
the rotational motion cannot be separated. Even if the
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rotational motion is left, observing the optimized wave
function gives only one molecular structure in a specific
orientation of the rotational degrees of freedom. When we
obtain multiple results for the measurements of the positions
of the nuclei, the obtained structures are described in terms of
internal coordinates, which allows a rotational-free description
of molecules. The mean of each nucleus position is then
calculated, which gives the molecular structure. Next, the
relative coordinates R⃗ between the two nuclei are introduced
to further reduce the dimension. The relationship between the
reduced coordinates and the original coordinates is given as

⃗ = ⃗ − ⃗ ⃗ = ⃗ −
→ + →

R r r r r
m r m r

M2 1 c e
p 1 p 2

n (12)

⃗ =
→ + → + →

→R
m r m r m r

M
( set to (0, 0))cm

p 1 p 2 e e

(13)

where ⃗r1, ⃗r2, and mp are the coordinates and mass of the
protons, respectively, and ⃗re and me are the coordinates and
mass of the electron, respectively. ⃗rc are the coordinates of the
electron as seen from the center of mass of the nuclei, and ⃗Rcm
is the center of mass of the system, which is fixed at the origin
in the simulation. We also define the total mass of the system
M = 2mp + me and that of the nuclei Mn = 2mp. The reduced
coordinates have four degrees of freedom, R⃗ = (Rx, Ry) and
⃗ =r r r( , )c x yc c . The reduced masses for R⃗ and ⃗rc are μR

−1=mp
−1

+ mp
−1 and μ = +− − −m Mr

1
e

1
n

1
c

, respectively. By using the

reduced coordinates, the Hamiltonian of the system becomes

μ μ
= − ∇ − ∇ +

| ⃗|
−

⃗ + ⃗

−
⃗ − ⃗

H
R r R

r R

1
2

1
2

1 1

1

r
r m

M

m
M

R
R
2 2

c

c

c

c
2

n

1

n (14)

Here the atomic unit is introduced for simplicity (ℏ = 1, Qp
= 1, qe = 1). We take an evenly spaced isotropic grid of 25

elements per dimension in each two-dimensional spaces for
⃗ ⃗R r, c. See the Supporting Information for more details on the

computational setup.
2.3.2. Computational Setup for the H−C−N System. Since

there are no isomers in the H2
+ system, we cannot illustrate

one of the promising features of our method that the most
stable molecular structure can be found without being trapped
in local minima. Therefore, we present a numerical
demonstration of our method in a H−C−N system, which
has two stable linear isomers: i.e., HCN and HNC. These
isomers have been intensely studied32−35 because this system is
one of the simplest systems in which isomers exist and is
important as a tracer of moderate gas densities in molecular
clouds and galaxies.36 From these studies, HNC is known to be
unstable by about 0.6 eV over HCN.35 In principle, we can
treat the many-body electron−nucleus Hamiltonian and wave
function for this system as we conducted for the H2

+ system,
though antisymmetricity of electrons must be taken into
account in multielectron systems. How to impose antisymme-
try will be discussed later. Due to the limitations of classical
computers, however, it is difficult to simulate the quantum
dynamics for systems with large degrees of freedom. To save
computational resources, one can use ab initio density

functional theory for the electronic degrees of freedom or
empirical potentials to completely omit the calculation of
electronic degrees of freedom. Because the purpose of the
demonstration here is to show the behavior of the method in a
system with isomers, we employ the Lennard−Jones potential
for nuclei to avoid treating electronic degrees of freedom and
consider only nuclear degrees of freedom. Moreover, we treat
the problem as a one-dimensional problem along the molecular
axis since the two isomers, HCN and HNC, have linear
geometries. The Hamiltonian of this system is then expressed
as

= − ∇ − ∇ − ∇

+ | − | + | − |

+ | − |

H
M M M

V R R V R R

V R R

1
2

1
2

1
2

( ) ( )

( )

CH
H
2

C
2

N
N
2

HC
LJ

H C HN
LJ

H N

CN
LJ

C N (15)

where MI and RI are the mass and the coordinate of atom I,
respectively, and VIJ

LJ is the Lennard−Jones potential for the
atomic pair I and J. The parameters of the Lennard−Jones
potential were determined on the basis of the two-body
binding energy and bond length between each atom. With the
Lennard−Jones potential, HCN was found to be the most
stable structure and HNC was 0.184 eV higher in energy. We
take an evenly spaced isotropic grid of 27 elements for each
one-dimensional space of RH, RC, and RN. Details of the
computational setup, including the parameters of the
Lennard−Jones potential, are given in the Supporting
Information.

3. RESULTS AND DISCUSSION

3.1. 2D H2
+ Molecule. We present results of numerical

demonstrations for the method using the 2D H2
+ molecule.

The obtained probability density distribution for all
coordinates is multidimensional, making it difficult to display
on paper. We instead plot the conditional probability density
distribution of the relative distance R⃗ between the protons
when the electron is near the origin (0.0375, 0.0375), i.e.,
|ψ(Rx, Ry, rcx = 0.0375, rcy = 0.0375)|2, in Figure 1 (note that
the grid used in this study does not contain the origin (0, 0)).
We find that the probability density distribution of the

relative coordinates R⃗ between the protons has a donut-shaped
structure. This means that the H2

+ molecule can be oriented in
any direction because it has rotational degrees of freedom. This
probability density distribution must be donut-shaped and

Figure 1. Conditional probability density distribution of the relative
coordinates of protons R⃗ for the H2

+ molecule when an electron is
near the origin point (0.0375, 0.0375).
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uniform for all directions; however, the probability is large and
small in specific directions in Figure 1. The reason for this is
considered to be the following. The roughness of the grid
space used in this study cannot represent the exact internuclear
distance for the equilibrium structure in specific directions.
Therefore, the probability density distributions for such
directions would be small and the probability density
distributions for the specific directions where the grid is
well-matched with the equilibrium internuclear distance would
be large. A better shaped “donut” will be obtained by using a
polar coordinate grid. It should be noted that it is necessary to
repeat the calculations and observations many times to obtain
such a probability density distribution with a quantum
computer since the observation makes the wave function
(superposed state) collapses to a single selected component.
However, it is not necessary to get the probability density
distribution to obtain the optimized molecular structure
because we are interested only in the states with high
probabilities corresponding to the stable structures.
We also calculate the expectation value (mean) of the

proton−proton distance |R⃗|, defined as

∫ ψ| ⃗|| ⃗ ⃗ | ⃗ ⃗R R r R r( , ) d dc
2

c (16)

for our simulation data in Figure 1. The result is 0.41 bohr,
which is slightly larger than the value of 0.37 bohr, where the
protons were treated as point charges (see the Supporting
Information). This larger expectation value is considered to be
due to the spread of the nuclear wave function and its binding
potential, which is very tight for smaller |R⃗| but loose for larger
|R⃗|. It should be noted that these bond distances differ
significantly from those of an ordinary three-dimensional H2

+

molecule. This is because not only the atomic configuration
but also the electronic degrees of freedom were treated as a
two-dimensional system.
Next, we estimate how many measurements for the wave

function would be required to optimize the molecular structure
within an acceptable error. ψ| ⃗ → |R r( , )c

2 gives the simultaneous
probability of finding relative proton-to-proton coordinates in
R⃗ and electrons in→rc . The grid space for{ ⃗ →}R r, c (220 points) is
represented by 20 qubits using the binary encoding (0···000,
0···010, ..., 1···111). Each binary combination corresponds to
the specific coordinates of R⃗ and →rc . If we perform the
projective measurement on these qubits, one of the state (the
coordinates R⃗, →rc) is chosen from (0···000, 0···010, ..., 1···111)
according to the probability ψ| ⃗ → |R r( , )c

2. We conduct the
measurement (observation) simulations by randomly sampling
the qubit states with the pseudorandom numbers generated by
the Mersenne Twister method.37

Figure 2 shows how the mean of |R⃗| for Nobs observations
converges as we increase Nobs. The exact mean and the
standard deviation (corresponding to the zero-point vibration
of the ground state) calculated from p(R⃗) are also shown by
dotted lines. Note that the optimized |ψ(R)|2 (even for τ →
∞) has a distribution with nonzero width by zero-point
vibration. We see that the mean of the sampled |R⃗| gets close to
the exact mean with sufficient accuracy after as small as 200
observations. The mean |R⃗| obtained from 200 observations
was 0.4082 bohr, while the exact value is 0.41 bohr as
explained earlier. The standard deviation for 200 observations
was 0.0611 bohr, and the mode (the value that was obtained

most frequently) was 0.4142 bohr. The reason why the
converged bond length R⃗ was obtained with such a small
number of observations is that the wave function has a peak
(cusp) at the state corresponding to the most stable structure
and that the measurements will pick it up with high probability.
It should be noted that, as the size of the molecule increases,
the number of vibrational modes also increases. As a result, the
fluctuation width of the zero-point vibration also increases,
which may affect the required number of measurements to
determine the molecular structure with a certain precision. As
discussed in the Supporting Information, the standard
deviation of the zero-point fluctuation scales as O N( ),
where N is the number of nuclei. The magnitude of the error
after M measurements under the fluctuation is given by

N M/ . Therefore, the required number of measurements for
a certain precision will scale as O(N).
Finally, we illustrate how the presented result above changes

when we consider heavier nuclei. It is expected that, as a
nucleus becomes heavier, the fewer wavelike properties it has
and the closer it is to a classical particle. It is predicted that the
peaks at the nuclear positions of the wave function will be even
sharper and that converged structures of molecules will be
obtained with a smaller number of observations. To see this,
we consider the deuterium molecular ion D2

+, in which the
protons in the hydrogen molecular ion are replaced with
deuterons (nucleus of deuterium; the mass is 2 times that of a
proton), and the tritium molecular ion T2

+, in which tritons
(nucleus of tritium; the mass is 3 times that of a proton) are
substituted. We perform the same calculations as for H2

+ for
these isotopes. Figure 3 shows the conditional probability
density distributions of the relative coordinates R⃗ for deuterons
and tritons, respectively, when the electron is near the origin
(0.0375, 0.0375).
The absolute values of the peaks are higher than those for

H2
+, and the spreads of the wave functions are narrowed. This

tendency was more significant for the heavier T2
+. In addition,

the peak bias increases for specific directions with the heavier
isotopes D2

+ and T2
+ because, as the wave functions become

narrower, it becomes difficult for the grid points to exist at the
positions where the peaks are in the continuous limit (infinite
number of meshes of the gird) because the grid size is not fine
enough. Subsequently, as in the case of H2

+, we simulate how
many observations were required to optimize the molecular
structure of D2

+ and T2
+ within an acceptable error. Figure 4

Figure 2. Mean of the sampled bond distance |R⃗| drawn from the
optimized wave function. We plot the number of observations Nobs

versus the mean up to Nobs observations, = ∑ | ⃗ |=M N R( )
N i

N
iobs

1
1obs

obs ,

where ⃗Ri is an ith sample of the observed R⃗. The red (blue) dotted
line represents the exact mean (standard deviation) of |R⃗|.
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plots the same quantity as Figure 2, the mean of the sampled |
R⃗| from the optimized wave function, for D2

+ and T2
+

molecules. The exact mean and the standard deviation are
also shown as dotted lines.
In addition, the means, standard deviations, and modes

obtained from 200 observations are summarized in Table 1
along with the result for H2

+ for comparison.
These results in Figure 4 and Table 1 indicate that the

variation of the observed R⃗ becomes smaller and the
convergence becomes faster as the mass increases. This is
because of the smaller fluctuation widths of the zero-point
vibrations for heavier nuclei. Since all the nuclei of atoms after
the He atom in the periodic table are heavier than a triton, it is
expected that molecular structures obtained by measurements
will converge even faster in terms of the number of
measurements. We briefly comment on the bond length |R⃗|
before ending the explanation of numerical demonstrations.
The mean of the bond length approaches the value for point
charges (0.37 bohr) as the mass increases. The tendency for
the bond length to become shorter as the mass increases has
also been confirmed for the 3D hydrogen molecule and its
isotope molecules.38 The modes of the sampled |R⃗| are the
same for D2

+ and T2
+ because the values between 0.3712 and

0.4142 cannot be taken due to the rough grid used in our
calculations. This result indicates that the step size of the grid
must be sufficiently smaller than the desired resolution of the
molecular structures. For calculations on a classical computer,
making the grid finer leads to a exponential increase in
computational cost, but calculations on a quantum computer
will scale polynomially.13

3.2. H−C−N System. The time evolution of the
probability density distribution during the imaginary time
evolution for the H−C−N system is presented in Figure 5,
where the conditional probability density distributions when
the C atom is located at the center of the coordinate (RC = 7
bohr) are shown. Figure 5 indicates that four peaks appear in
the conditional probability density distribution immediately
after the start of the imaginary time evolution. Two of the four
peaks represent the HCN molecule and its oppositely oriented
molecule (NCH). The remaining two peaks represent the
HNC molecule and its oppositely oriented molecule (CNH).
As the imaginary time evolution proceeds further, the peaks
corresponding to the HNC molecule decay and only the peaks
corresponding to HCN molecule, the most stable state,
remain. However, since the two isomers are energetically
close, there are still small peaks corresponding to the HNC
molecule even after 2000 time steps.
Next, a numerical simulation of the measurement (ob-

servation) of the nuclear positions was conducted for the H−
C−N system as we did with H2

+ molecule. The histogram of
the coordinates of each atom obtained from 100 observations
is shown in Figure 6a.

Figure 3. Conditional probability density distributions of the relative
coordinates of nuclei for (a) D2

+ and (b) T2
+ molecules when the

electron is near the origin point (0.0375, 0.0375).

Figure 4. Mean of the sampled bond distance |R⃗| drawn from the
optimized wave function for (a) D2

+ and (b) T2
+ molecules. We plot

the number of observations Nobs versus the mean up to Nobs

observations, = ∑ | ⃗ |=M N R( )
N i

N
iobs

1
1obs

obs , where R⃗i is an ith sample of

the observed R⃗. The red (blue) dotted line represents the exact mean
(standard deviation) of |R⃗|.

Table 1. Mean, Standard Deviation, and Mode of the 200
Observations for |R⃗| in bohr

system mean standard deviation mode

H2
+ 0.4082 0.0611 0.4142

D2
+ 0.3968 0.0494 0.3712

T2
+ 0.3778 0.0355 0.3712
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Note that the optimized |ψ(R)|2 has a distribution with
nonzero width by zero-point vibration. Figure 6 shows that the
most stable state HCN (RHC ≈ 2.2 bohr, RCN ≈ 2.2 bohr, and
RHN ≈ 4.4 bohr) has been the most frequently observed.
However, the HNC isomer (RHN ≈ 2 bohr, RCN ≈ 2.2 bohr,
and RHC ≈ 4.2 bohr) has also been observed, albeit very
infrequently. The reason why RCN has only one peak is because
the distance between C and N does not change between HCN
and HNC. These results indicate that, by deliberately choosing
the number of steps in the imaginary time evolution, the
structures of metastable isomers can also be determined.
Finally, we present the same result obtained by using the

artificial masses for the nuclei (the masses of all atoms are set
to 184000 au) in Figure 6b to see the classical limit. Only one
peak corresponding to HCN can be seen in Figure 6b. The
possible reasons for this are as follows. When actual (natural)
masses were used, the probability density distribution peaked
at two states due to the effect of the zero-point vibrational
energy, which is greater than the energy difference between the
two isomers. However, when the masses are increased, the
contribution of the zero-point vibration energy disappears, and
only the peak of the most stable state remains. We also
conducted a simulation without the kinetic energy terms of the
atoms (corresponding to M → ∞), and got the same result as
in Figure 6b. What these results tell us is that we can ignore the
kinetic energy term of the nuclei and reduce the quantum gates
for that if we only want to know the most stable structure in
the classical limit, ignoring the quantum effects of the nuclei.
This is valid not only for our demonstration where the wave
function of electrons is not directly treated but also for general
cases where it is explicitly considered. We note that the

electron kinetic energy term cannot be neglected even in those
cases.

3.3. Implementation on Quantum Devices. In previous
sections, we have demonstrated the concept of molecular
structure optimization using the imaginary time evolution
method of an electron−nucleus wave function. However, the
method is difficult to apply to general systems, except for very
small systems as used in the demonstrations. This is because of
the difficulty of describing high-dimensional wave functions
with a classical computer. In contrast, high-dimensional wave
functions can be described with a reasonable number of qubits
on a quantum computer.
In this section, we provide a brief idea on how to implement

the imaginary time evolution of wave functions on NISQ
devices. We consider a single-particle Hamiltonian in a one-
dimensional system

∫= + = | ⟩ − ℏ + ⟨ |
i
k
jjjj

y
{
zzzzH

p
m

V x x x
m x

V x x
2

( ) d
2

d
d

( )
2 2

2

(17)

where we expand the Hamiltonian on the position basis. H is
mapped to a qubit model in the following way: we first
discretize the position operator and the squared momentum
o p e r a t o r a s → ∑ | ⟩⟨ |x ka k k( )k a n d

→ −ℏ ∑ | + ⟩⟨ | − | ⟩⟨ | + | − ⟩⟨ |p a k k k k k k/ ( 1 2 1 )k
2 2 2 , r e -

spectively, with a being the size of each mesh. The latter
replacement is derived from the formula ⟨ | = − ℏ∂ ⟨ |x p i xx .
These replacements lead to the discretized model

Figure 5. Imaginary time evolution of the conditional probability density distributions of the H and N atomic coordinates for the HCN molecule
when the C atom is located at the center of the coordinate (RC = 7 bohr).
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= − | ⟩⟨ + | + | − ⟩⟨ |
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H t k k k k

V ka t k k

( 1 1 )

( ( ) 2 )

k

k
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(18)

where t = ℏ2/(2ma). The discretized position basis |k⟩ is
expressed in the computational basis, which yields the qubit
model of Hlat. Any one-particle state ψ(x) is approximated as

∑ψ ψ| ⟩ = | ⟩ka k( )
k (19)

which can be prepared or realized on quantum computers. The
energy expectation value ⟨ψ|Hlat|ψ⟩ can be efficiently computed
with a circuit of polynomial size; it can be shown that the
increment operator ∑k|k⟩⟨k + 1| and its conjugate are
constructed by Toffoli and CNOT gates (see e.g. refs 39 and
40), and also the diagonal part can be expanded as a sum of
unitary operations,41,42 so that the expectation value for each
term can be evaluated using the Hadamard test, whose output
can be measured with a low-depth circuit.43

As was explained in the Introduction, one can use various
methods to perform the imaginary time evolution. To make

our proposal more concrete, we shall review one such method,
the variatonal quantum simulation (VQS).44 VQS is based on
the McLachlan variational principle,45 which seeks the best
parameter θ(t) of a given ansatz θψ| ⟩t( ( )) at each t, to describe
the time evolution. The time derivative is approximated by

θ θψ ψℏ∂ | ⟩ ≅ ℏ ·̇|∇ ⟩i t i( ) ( )t , and θ ̇ is obtained by minimizing
the cost function θψ= ℏ∂ − | ⟩A i H( ) ( )tR . The imaginary
time evolution is also simulated in a very similar manner with
t h e co s t f un c t i on θ θψ= ∂ + − | ⟩τA H E( ( )) ( )I . 2 6

θ θψ θ ψ= ⟨ | | ⟩E H( ) ( ) ( ) should be introduced so as to preserve
the norm of the state.
Moreover, we explain one technical aspect of our method:

the symmetry of many-body wave function. For systems with
identical particles, the wave function should be (anti)-
symmetrical with respect to a particle exchange. In such
cases, one can (anti)symmetrize the wave function by adding a
penalty term in the Hamiltonian.46 For example, let us
consider a system with two fermions which we call Htwo. We
also denote the discretized position the basis of two-particle
states by |k1,k2⟩ ≡ |k1⟩⊗|k2⟩. A projector which projects out
antisymmetric states is written as follows:

Figure 6. Histogram of observed H−C, C−N, and H−N distances for the HCN molecule when (a) the actual masses are used and (b) the artificial
masses (M = 184000 au) are used as a classical limit.
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Note that a corresponding projector for boson is (1 −
Oswap)/2. By adding gP with a sufficiently large coefficient g,
the ground state of Htwo + gP coincides with the lowest energy
state in antisymmetric wave functions of Htwo. Since the
(unitary) operator Oswap is expressed as a sequence of SWAP
gates between qubits for the positions of two particles, the
expectation value of Oswap can be evaluated by a Hadamard-test
type circuit of those gates. The extension to a multiparticle
system is straightforward by adding more penalty terms
corresponding to an exchange of all pairs of particles, which
amounts to M(M − 1)/2 terms, with M being the number of
identical particles. We also note that another quantum
algorithm for preparing antisymmetrical wave functions has
been proposed starting with a Hartree product of molecular
orbitals.47

4. CONCLUSIONS

The concept of a molecular structure optimization method
using quantum dynamics computation has been presented.
The nuclei have been treated as quantum mechanical particles
as were the electrons, and the many-body wave function of the
system was optimized using the imaginary time evolution
method. The optimized wave function has a large probability
amplitude at the most stable structure of the nuclei, which
allows us to determine the optimized nuclear positions with a
small number of observations (quantum measurements). Our
method has a favorable feature that the most stable isomer
structure can be obtained for complex systems without being
trapped in local minima by virtue of the imaginary time
evolution. This method may be particularly promising in the
search for the most stable structure for systems with many
isomers, such as metal alloy clusters. Another aspect of our
method is that it includes nuclear quantum effects (zero-point
oscillation, nonadiabatic correction, etc.) that are typically
ignored by conventional methods. The Coulomb interactions
between multiple particles are explicitly incorporated, and
there is no approximation in nucleus−nucleus, electron−
nucleus, and electron−electron interactions. Although execut-
ing our method for industrially interesting large molecules with
classical computers is difficult because of huge computational
costs in treating the fully quantum wave function for nuclei and
electrons, quantum computers (possibly FTQC) can be
appealing candidates to run our method. Our proposal can
give a new insight into quantum chemistry computations on
quantum computers.
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