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ABSTRACT

The observed diversity of protein coding sequences
continues to increase far more rapidly than knowl-
edge of their functions, making classification algo-
rithms essential for assigning a function to pro-
teins using only their sequence. Most pipelines for
annotating proteins rely on searches for homolo-
gous sequences in databases of previously anno-
tated proteins using BLAST or HMMER. Here, we de-
velop a new approach for classifying proteins into
a taxonomy of functions and demonstrate its utility
for genome annotation. Our algorithm, IDTAXA, was
more accurate than BLAST or HMMER at assigning
sequences to KEGG ortholog groups. Moreover, ID-
TAXA correctly avoided classifying sequences with
novel functions to existing groups, which is a com-
mon error mode for classification approaches that
rely on E-values as a proxy for confidence. We
demonstrate IDTAXA’s utility for annotating eukary-
otic and prokaryotic genomes by assigning func-
tions to proteins within a multi-level ontology and
applied IDTAXA to detect genome contamination in
eukaryotic genomes. Finally, we re-annotated 8604
microbial genomes with known antibiotic resistance
phenotypes to discover two novel associations be-
tween proteins and antibiotic resistance. IDTAXA
is available as a web tool (http://DECIPHER.codes/
Classification.html) or as part of the open source DE-
CIPHER R package from Bioconductor.

BACKGROUND

Classification is a fundamental task in bioinformatics where
sequences are assigned to an ontology that is often hierar-
chical, such as a taxonomy of organisms or functions. Clas-
sifiers can be used for the purpose of gene annotation, where
a coding sequence is assigned a name based on its putative
function (1). These names are of great importance because
they suggest the role a protein plays within the cell and pro-

vide context that links new protein sequences to the universe
of known functions. Many gene annotation approaches in-
volve finding the most similar sequence within a training
set (i.e. database) of previously annotated sequences and in-
heriting a gene name or gene ontology (GO) term when se-
quence similarity is sufficiently high (2,3). In this way, pro-
tein classification is largely dependent upon fundamental
search algorithms followed by curation of the resulting hits.
Annotation software typically rely on BLAST (4–6) or HM-
MER (7) for homology searches and often differ in which
databases they search. Due to the incredible diversity of pro-
teins, this technique only allows for naming of about 25–
75% of the proteins in bacterial genomes depending on the
sequence databases employed (8). Gene annotation is such
a challenging problem that the goal has historically been to
assign names to the highest fraction of proteins. Less atten-
tion has been paid to false positive identifications, in part
because the error rate of gene annotation is often difficult
to establish.

Protein classifiers for gene annotation have been devel-
oped largely independently of the nucleotide classifiers that
are commonly employed for taxonomic classification of or-
ganisms. In the nucleotide domain, robust approaches have
been developed for quantifying classification error rates (9).
Errors can be partitioned into misclassifications (MCs) and
overclassifications (OCs), which have different importance
depending on the training data. MCs occur when a classi-
fier assigns a sequence to the wrong class when represen-
tatives of the correct class exist in the training set. This
type of error is problematic but relatively rare for most nu-
cleotide classifiers. In contrast, OCs occur when the classi-
fier assigns the sequence to a group when the correct group
is missing from the training set. OC errors are common
in biological problems because training sets sparsely cover
the repertoire of possibilities. For example, microbiome se-
quences contain a substantial fraction of ‘microbial dark
matter’ that is unrepresented in nucleotide training sets
composed of phylogenetic marker gene sequences (e.g., ri-
bosomal RNA genes) (10,11). Similarly, bacterial genomes
contain many ‘hypothetical proteins’ with low similar-
ity to previously described sequences in curated protein
databases.
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We previously published IDTAXA (12), a classification
algorithm for nucleotide sequences that outperforms exist-
ing approaches, including homology searching, for taxo-
nomic classification in both MC and OC error rates. Our
approach is a hybrid of traditional distance-based classi-
fiers and machine learning approaches based on k-mers. In
this study, we extended our IDTAXA algorithm to work on
amino acid sequences and benchmarked it against funda-
mental approaches for label assignment to protein coding
sequences. This required major changes to our algorithm
to accommodate the wide breadth of protein sequences, in-
cluding the incorporation of amino acid alphabet reduc-
tion. We demonstrate IDTAXA’s utility with the KEGG
(13) database containing orthologs of experimentally char-
acterized proteins. The extension of IDTAXA to protein
sequences enables users to annotate protein coding genes
with confidence and is a major step toward avoiding the
propagation of errors (14–16) made by gene annotation ap-
proaches that simply match to the nearest known sequence.
Therefore, IDTAXA offers an improvement over homol-
ogy searches for classification of proteins into a sequence
database.

MATERIALS AND METHODS

Extending the IDTAXA algorithm to amino acid sequences

We extended our previously published algorithm for nu-
cleotide classification, IDTAXA (12), to incorporate fea-
tures specific to amino acid classification. This required four
substantial changes to the original algorithm:

First, IDTAXA now computes the equivalent entropy of
a user-supplied alphabet and uses this to automatically cal-
culate the size (k) of k-mers for classification. This enables
the algorithm to accommodate any size of reduced amino
acid alphabet provided as input without requiring the user
to manually specify k. Given that the frequencies (f) of dif-
ferent characters (c) in the alphabet (a) are typically non-
uniform, we calculate the size (x) of an alphabet having uni-
form character frequency and equivalent entropy:

x = e
− ∑

c∈a
fc ∗ log( fc)

Then, k can be calculated using the formula:

k = logx(n ∗ l)

Where l is the length of sequences in the training set, and
n is the number of random k-mers that must be drawn before
one match is expected to occur by chance. We base l off of
the upper 1-percentile of sequence lengths. The parameter
n is user-specified with a default value of 500, meaning that
k-mers are found by chance on average once per 500 k-mers
sampled. In practice, we found that lower values of n (e.g.
100) selected sub-optimal values of k, whereas higher values
offered no benefit.

Second, we modified IDTAXA to work with amino acid
characters in the same way it works with nucleotide char-
acters. We also enabled users to specify reduced amino acid
alphabets as input rather than the standard 20-letter amino
acid alphabet. Reduced alphabets are specified by the user
as groupings of amino acids, and the optimized reduced al-
phabet is used by default (see Results).

Third, since amino acid sequences vary considerably in
length, we implemented a pre-filter to subset relevant se-
quences within the training set to those within a multiple of
the query sequence’s length. By default, the fold-difference
in length is set by the 1st and 99th percentile of the distri-
bution of full-length sequences in the training set. The fold-
difference can be specified by the user via the fullLength pa-
rameter. This pre-filter improved both accuracy and speed
when classifying full-length protein sequences; however, it
may preclude rare correct matches that differ considerably
in length from representatives of their group.

Fourth, due to the wide diversity of protein sequences, the
algorithm now detects the minimum number of k-mers (S)
that must be sampled in each bootstrap replicate to avoid
spurious hits in large training sets. In our previous study
(12) S was set to L0.47, where L is the number of k-mers in the
query sequence. This is problematic for very short sequences
because a few k-mers can often be found by chance in large
databases. We now impose the constraint that the probabil-
ity of observing at least half of the sampled k-mers (≥ S/2)
in one or more sequences is <1% per bootstrap replicate. In
practice, this sets a lower bound on S of about 10 k-mers
per bootstrap replicate, which excludes extremely small se-
quences (L < S + k) from testing.

IDTAXA is implemented in the LearnTaxa and IdTaxa
functions within the DECIPHER (17) package for the R
programming language (18). Users first train the classi-
fier with LearnTaxa by supplying a training set of nu-
cleotide or protein sequences and their associated classifi-
cations. The resulting classifier object can be given along
with query sequences to IdTaxa to obtain classifications
and their associated confidences at each hierarchical level
of a taxonomy. All tests were performed using R v4.1.0 and
DECIPHER v2.19.0 available from Bioconductor v3.13
(19) (https://bioconductor.org/packages/release/bioc/html/
DECIPHER.html). We used the non-default parameters
maxChildren = 1 in LearnTaxa and fullLength = 0.99 in Id-
Taxa. The argument maxChildren is set to avoid the tree de-
scent algorithm described in our prior publication (12) be-
cause amino acid training sets are typically far more diverse
than the nucleotide training sets composed of a single gene
for which tree descent was originally designed. These non-
default parameters are recommended for classifying protein
sequences. All tests were performed on either a 2.6 GHz In-
tel i7 processor with 64 GB of RAM or run on Open Science
Grid compute nodes with at least six processors, 32 GB of
RAM, and 4 GB of available disk.

Optimizing a reduced amino acid alphabet

Reduced amino acid alphabets, where residues in the same
group are viewed as interchangeable, can facilitate detection
of distantly related sequences. Due to the immense space
of possible alphabet reductions, it is challenging to deter-
mine an optimal reduced alphabet for protein classification.
The number of possible alphabets is a Stirling number of
the second kind, totaling more than 51 trillion possibilities.
Searching through all possible alphabets is infeasible since
testing each alphabet’s performance can take minutes. How-
ever, it is feasible to search through only a small fraction of
possible alphabets because many reductions are unlikely to
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improve classification. We used a directed acyclic graph to
query the space of possible reduced alphabets, using only
high performing alphabets to seed new candidate alphabets
for the next reduction level. This approach tested all size 20,
19 and 18 alphabets, after which point, only the top 500 size
18 alphabets were used to generate size 17 alphabets for test-
ing. We repeated this process of selecting the top 500 from
each reduction level down to an alphabet of size 2, testing a
total of 419 130 unique alphabets.

To construct a test set for alphabet optimization, all single
function, non-provisional and unambiguous enzyme clas-
sifications (EC) numbers were extracted from Swiss-Prot
(20), including both eukaryotes and prokaryotes. This re-
sulted in an initial set of 251 944 sequences. Long (>5000
amino acids) and short (<100 amino acids) sequences
were removed from the training set, and gene names (if
present) were trimmed of special characters and converted
to lower case. The EC numbers and gene names were
concatenated to create a group label for each sequence
(e.g. ‘1.14.14.1.cyp2h1’ – a cytochrome p450). Since some
groups contained many nearly identical sequences, we re-
duced this set to up to 10 randomly selected sequences per
group. This final set contained 58 887 sequences assigned to
one of 27 863 unique groups.

We randomly selected 2000 sequences for use as a hold-
out set for testing alphabet performance. Hold-out se-
quences were split into two subsets: 1000 singletons (only
member of their group) for determining the OC rate and
1000 non-singletons for determining the MC rate. Single-
ton sequences cannot be assigned to a group in the training
data and, therefore, the only correct option is to assign them
a very low confidence classification. As described in our pre-
vious publication (12), OC and MC error rates can be com-
pared at a given fraction of sequences classified (based on
non-singletons) to calculate accuracy. This benchmarking
approach offers the advantage of being independent of an
algorithm’s reported confidence, which allows comparing
classification approaches having different confidence scales.
Reduced alphabets were judged by the combined area under
their OC and MC curves (AUC), where lower AUC corre-
sponds to better accuracy.

Comparing against standard approaches for gene annotation

We performed benchmarking using the KEGG (v95.1)
database containing functionally orthologous groups of
experimentally characterized proteins (13). The complete
KEGG database (including eukaryotes and prokaryotes)
was randomly subsampled to maximize species diversity
while enforcing a limit of 100 sequences per KEGG Or-
thology (KO) category. Only KEGG entries with both a nu-
cleotide and amino acid sequence were allowed, and those
with ambiguous positions (e.g., ‘X’ for amino acids or ‘N’
for nucleotides) were removed. The resulting set of 1 672 354
sequences were labeled according to KEGG’s four-level
BRITE hierarchical classification (13) appended with a
lineage (taxonomic) classification for increased resolution.
For example, the KEGG classification ‘09100 Metabolism;
09101 Carbohydrate metabolism; 00010 Glycolysis / Glu-
coneogenesis [PATH:ko00010]; K00844 HK, hexokinase
[EC:2.7.1.1]’ might be appended with ‘; Eukaryotes; Ani-

mals; Vertebrates; Reptiles’ if the training sequence orig-
inated from Gekko japonicus (Schlegel’s Japanese gecko).
This process resulted in 21 157 unique groups at the
KO-level and 568 912 groups at the lineage-level (i.e. af-
ter appending lineage information). KEGG training sets
are available on Zenodo (https://doi.org/10.5281/zenodo.
5057026).

MC and OC error rates were computed using cross-
validation (CV) by removing 10 unique hold-out sets of up
to 1000 singleton and 1000 non-singleton sequences. Se-
quences were randomly selected such that no more than one
non-singleton sequence was removed per group when con-
structing hold-out sets. For each fold of CV, IDTAXA was
trained on the KEGG sequences minus the hold-out using
LearnTaxa and the hold-out set was tested with IdTaxa. We
compared IDTAXA’s results to those of BLAST (2.10.1)
(21) by constructing a BLAST database from the KEGG
sequences minus the hold-out set and querying the hold-
out set using blastp or blastn with an E-value (EVL) cutoff
of 10–3 and Smith–Waterman traceback enabled in blastp.
To compare against HMMER (3.3.1) (22), protein multi-
ple sequence alignments were constructed for each group
of sequences using DECIPHER (v2.19.0) (23). Individual
hidden Markov models (HMMs) were constructed using
hmmbuild for each group without including the hold-out se-
quences, which required re-training HMMs for each fold of
CV. The set of HMMs were combined with hmmpress to
create a library of HMMs and the hold-out sequences were
tested with hmmscan using default arguments.

Error rates for IDTAXA were contrasted to those of
choosing the BLAST and HMMER top hit. We compared
two proxies for BLAST confidence: EVL (-log10(EVL)) and
local percent identity (PID) output by BLAST. In the case
of PID, the top hit was selected based on PID rather than
BLAST’s default ranking by EVL. In cases where BLAST
or HMMER did not return any hits, we assigned the se-
quence to an unclassified placeholder at 0% confidence (i.e.
a 0% PID or the maximum EVL). Scripts for reproduc-
tion of all cross-validation results are available on GitHub
(https://github.com/npcooley/AAClassification), and cross-
validation results are available on Zenodo (https://doi.org/
10.5281/zenodo.5071173). The training set used to iden-
tify contamination is present on the DECIPHER website
(http://DECIPHER.codes/Downloads.html).

Discovering novel antibiotic resistance associations with KO
categories

To uncover associations between KEGG categories and
antibiotic resistance, the NCBI pathogens Isolates Browser
(https://www.ncbi.nlm.nih.gov/pathogens/isolates/) was
used to download the proteome of all assemblies with
corresponding antibiotic susceptibility test (phenotype)
data. These data were subset to antibiotics with at least
1000 test results, species with 30 or more genomes, and
antibiotics that were tested against >10% of the strains in
a species. This resulted in seven testable species: Staphy-
lococcus aureus (43 assemblies), Pseudomonas aureuginosa
(148), Klebsiella pneumoniae (398), Escherichia coli (585),
Campylobacter jejuni (928), Acinetobacter baumanii (1085)
and Salmonella enterica (5417). Susceptibility tests with
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intermediate results were considered resistant. Protein
sequences were classified with IDTAXA at 60% confi-
dence. The program treeWAS (24) was used to determine
statistically significant associations between the antibiotic
resistance phenotypes and KO categories. Default settings
were used with the exception of adjusting the P-value
threshold (0.01) for multiple testing (Bonferroni correc-
tion) and supplying a neighbor-joining tree generated from
a distance matrix based on the presence/absence matrix of
classifications in each species. Only ‘simultaneous scores’
from treeWAS were evaluated, and treeWAS’s reported
contingency tables were used to generate log-odds ratios
for associations reported as significant. KO categories that
were never associated with an antibiotic at a log-odds of
3.5 or greater were omitted.

RESULTS

Optimization of a reduced amino acid alphabet for classifica-
tion

A major difference between amino acid and nucleotide se-
quences is that amino acids can be reduced by merging let-
ters of the standard 20-letter alphabet into a lower dimen-
sional space. For example, the amino acids isoleucine and
valine are reducible to a single letter because the two are
frequently substituted during protein evolution. This per-
mits related k-mers to match in the reduced alphabet that
would be mismatched in the standard 20-letter alphabet.
We employed an iterative procedure to optimize a reduced
alphabet for assigning enzyme classifications to Swiss-Prot
sequences (see Materials and Methods). IDTAXA’s accu-
racy steadily improved from the standard 20 letter alphabet
down to a 6 letter alphabet and then became worse with
further reduction (Figure 1A). The optimal reduced alpha-
bet consisted of ‘ACHKNPQRST’, ‘DE’, ‘FY’, ‘G’, ‘ILMV’
and ‘W’. This alphabet merges amino acids with similar val-
ues of hydrophobicity quantified in previous studies (Figure
1B,C) (25–28).

We compared our optimized amino acid alphabet to a set
of 103 previously published (29) reduced amino acid alpha-
bets. However, none of the previously published alphabets
outperformed the standard 20-letter amino acid alphabet
on the Swiss-Prot test set (Figure 1D). The best performing
alphabet from literature was ‘AST’, ‘CFWY’, ‘DEQ’, ‘G’,
‘HN’, ‘ILMV’, ‘KR’ and ‘P’. Notably, none of these pub-
lished alphabets were constructed specifically for the pur-
pose of amino acid classification.

Benchmarking IDTAXA for protein sequence classification

Having optimized a reduced amino acid alphabet for clas-
sification on the Swiss-Prot test set, we sought to com-
pare IDTAXA’s performance to alternative classification
approaches on an independent training set. We calculated
MC and OC error rates for predicting the KO categories
(from the BRITE hierarchy) using cross-validation with the
KEGG orthology database. As expected, amino acid clas-
sification of the protein sequences resulted in far fewer er-
rors than nucleotide classification of the equivalent coding
sequences (Figure 2A). However, there was minimal differ-
ence on the KEGG training set among the optimized re-

duced alphabet, the 20-letter amino acid alphabet and the
best performing reduced alphabet from literature. We ob-
served similar results for classifying down to the lineage-
level in the KEGG training set (Figure 2B). Here, the stan-
dard 20-letter alphabet slightly outperformed the other al-
phabets, which we attributed to the higher-resolution of-
fered by use of all amino acids for sequences belonging to
different lineages within the same KO functional category.
This reflects the fact that different groups at the lineage-level
can contain k-mers that are identical in the reduced amino
acid space but different in the standard 20-letter amino acid
space.

IDTAXA outperformed BLAST and HMMER in MC
and OC error (Figure 2C and Table 1), although both
BLASTP and IDTAXA both had exceptionally low error
rates (Figure 2C). With BLASTP, E-value (EVL) offered
lower MC error rates at the expense of much higher OC er-
ror rates than using percent identity (PID) as a proxy for
confidence. At the lineage-level, IDTAXA outperformed
BLAST in MC error rate by a larger margin than at the
KO-level (Figure 2D). HMMER exhibited the lowest MC
error rates at high fractions of sequences classified but had
very high OC error rates. Nevertheless, OC error rates were
too high for practical application above the point where
60% of test (hold-out) sequences were classified with the
KEGG training set. At this point, IDTAXA’s confidence
was 51% at the KO-level and 40% at the lineage-level, cor-
responding to a BLAST PID of ∼80% (Table 1). Such a
high PID threshold suggests that sequences must be very
similar to ensure membership in the same KO functional
category.

Comparison of IDTAXA and BLAST assignments on a eu-
karyotic genome

Our benchmarking revealed that BLAST performed the
best among previously existing approaches to classification.
To investigate differences between BLAST and IDTAXA,
we annotated the proteome of the yeast Brettanomyces
bruxellensis using both classification approaches (Figure 3).
We chose this genome because it was recently added to Ref-
Seq and therefore was absent from our training dataset.
IDTAXA’s assignment and BLAST’s top hit were largely
in agreement when IDTAXA’s confidence was above 10%.
BLAST’s PID and IDTAXA’s confidence were correlated,
except for some proteins given low confidence assignments
by IDTAXA despite high PID. This is expected to hap-
pen whenever there are competing assignments with high
sequence homology and highlights the merits of assign-
ing based on IDTAXA’s confidence rather than homol-
ogy alone. In contrast to PID, EVL showed little corre-
lation with IDTAXA’s confidence. There were many pro-
teins with maximally low (1e-180) EVLs assigned low con-
fidence by IDTAXA. This result partly explains why PID
greatly outperformed EVL as a proxy for confidence in
cross-validation.

Utility of IDTAXA for gene annotation and quality control

Since IDTAXA exhibited lower rates of incorrectly as-
signing annotations to novel proteins, we wished to re-
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Figure 1. Amino acid alphabet reduction leads to reduced error. (A) Reduced alphabets (dots) led to lower combined area under the MC and OC curves
on the Swiss-Prot test set. The best performing alphabet of each size is circled and performance of the standard 20 letter amino acid alphabet is shown as
a horizontal line. Lower error results in a smaller area under the curve with the best reduced alphabet identified at size 6. The best performing reduced
alphabet (color groups) correlated with two measures of hydrophobicity: (B) transfer energy (28) and (C) SWEIG index (26). (D) Optimized alphabets
(circles) outperformed 103 previously published literature alphabets (triangles) (29) on the Swiss-Prot test set.

annotate more genomes and visualize the resulting clas-
sifications. To this end, we trained IDTAXA on taxon-
specific subsets of the complete KEGG database and
then applied them to a diverse set of symbiont micro-
bial genomes available from NCBI. Symbiont genomes are
known to undergo genome reduction that results in main-
tenance of fewer genes. At 50% confidence, 7.2–90% of the
genes in each genome were classifiable (Figure 4A). No-
tably, the Buchnera aphidicola genome, which belongs to
the order Enterobacterales, had a low percentage (11%)
of classifiable genes. This suggests that even members of
well-annotated phylogenetic groups do not always yield
high annotation coverage when the OC error rate is very
low.

Another advantage of IDTAXA is its ability to as-
sign confidences at each level of a hierarchical classifica-
tion. We applied this feature to identify contaminating se-
quences during genome annotation. Genome contamina-
tion is a major issue in public sequence databases (30),
especially among eukaryotic genomes. Contamination has
been deemed responsible for controversial claims of exten-
sive horizontal gene transfer between bacteria and some eu-
karyotes (31–33). We used the KEGG database with lin-
eage information to identify possible bacterial genes within
the top 10 eukaryotic genomes in RefSeq reported to har-
bor (eukaryotic or prokaryotic) contaminants in a recent
study (30). This training set enables us to classify proteins
past the KO-level to the taxonomic lineage from which the
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Figure 2. Error rates for classification on the KEGG test set. Plots show the MC and OC error rates versus the fraction of classified non-singleton sequences
as confidence is adjusted from 0% (right) to 100% (left). Classification of amino acid sequences yielded lower error rates than classifying the equivalent
nucleotide (coding) sequences with IDTAXA on the KEGG test set at the (A) KO-level and (B) lineage-level. (C) IDTAXA outperformed BLAST and
HMMER for classification of amino acid sequences on the KEGG test set at the KO-level. BLASTP PID as a proxy for confidence offered substantially
lower error rates than using EVL. (D) At the lineage-level, IDTAXA even more substantially outperformed BLAST in both MC and OC error rates.

Table 1. Error rates and confidence levels at 60% of non-singleton sequences classified

KEGG KO-level KEGG lineage-level

OC error rate MC error rate Confidence OC error rate MC error rate Confidence

IDTAXA−OPT 0.051 0.001 51% 0.134 0.051 40%
IDTAXA−LIT 0.046 0.001 49% 0.126 0.046 40%
IDTAXA−NT 0.11 0.004 6% 0.148 0.051 4%
IDTAXA−STD 0.051 0.002 48% 0.113 0.042 39%
BLASTP−EVL 0.235 0.005 EVL = 2e-177 0.340 0.096 EVL = 9e-177
BLASTP−PID 0.071 0.006 PID = 81% 0.167 0.075 PID = 82%
BLASTN−EVL 0.130 0.004 EVL = 2e-149 0.189 0.061 EVL = 2e-140
BLASTN−PID 0.145 0.064 PID = 83% 0.195 0.125 PID = 82%
HMMER 0.320 0.009 EVL = 4e-138 0.271 0.059 EVL = 1e-197
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Figure 3. Comparison of eukaryotic protein assignments to KO categories.
Each point represents one of 5243 protein sequence belonging to the
genome of the yeast Brettanomyces bruxellensis (RefSeq accession number
GCF 011074885.1). IDTAXA’s confidence was correlated with BLAST’s
PID but largely uncorrelated with EVL. Most proteins that IDTAXA as-
signs a 40% or greater confidence were also found to have a BLASTP local
PID above 60%, although many proteins with high PID were assigned low
confidence classifications by IDTAXA (top). Proteins given low confidence
classifications often had very low (∼0) BLAST EVLs (bottom). Note the
inverted y-axis where higher EVLs are shown at the bottom.

training sequences originated. Proteins with annotations
arising from bacterial training sequences represented a no-
table fraction of some genomes (Figure 4B). Most of these
sequences were classified to proteins originating from Pro-
teobacteria and likely represent contaminants.

Re-annotating proteomes to discover novel antibiotic resis-
tance associations

We next sought to apply IDTAXA’s high quality annota-
tions to identify genotype–phenotype associations. We re-
annotated the genomes of 8604 bacterial pathogens with
known antibiotic resistance phenotypes using the KEGG
training set. The resulting dataset contained assignments to
5215 KO categories and phenotypes specifying resistance or
susceptibility to 38 possible antibiotics. We used treeWAS
(24) to identify 151 statistically significant associations be-
tween an antibiotic and a KO category for each of seven bac-
terial pathogens and narrowed these results to the 69 with
log-odds ratios of at least 3.5 (Figure 5). Of these, 32 (out
of 34) KO categories were already documented in the litera-
ture as implicated in antibiotic resistance, validating our ap-
proach. We identified two novel associations in Salmonella:
K15269 (PecM) associated with tetracycline resistance (log-
odds = 4.8) and K18640 (ParM) associated with resistance
to three cephalosporins (log-odds = 3.9 to 4.6). PecM is an
efflux pump known to be associated with virulence in Pro-
teobacteria, and is part of a two-component system with
PecS, which belongs to the multiple antibiotic resistance
(mar) family of regulatory proteins implicated in antibiotic
resistance (34,35). PecM’s partner, PecS, was not detected
because it is not represented by a KO category. ParM is
involved in plasmid maintenance, which might be benefi-
cial for maintaining resistance genes located on mobile ele-
ments (36). Similar to the PecM/PecS two-component sys-
tem, ParM’s associated partner (ParR) is not included in
a KO category. Overall, these results verified the utility of
high-quality annotations produced by IDTAXA for discov-
ering genotype–phenotype associations.

DISCUSSION

Modern approaches to annotation are based on similar-
ity searches in databases of previously annotated proteins
(6,37). Such approaches assign genes to their nearest neigh-
bor if they are within a pre-specified similarity threshold,
typically using HMMs or BLAST. Unfortunately, as we
have shown, HMMER results in unacceptably high OC er-
ror rates. The widespread application of this approach prop-
agates errors among genomes and encourages skepticism
in automatic annotations (14–16). A major advantage of
IDTAXA is that it assigns a percent confidence to each
classification that supersedes ambiguous terms commonly
prepended to gene annotations, such as possible, proba-
ble, predicted and putative. This confidence also makes it
straightforward to annotate across multiple databases by
selecting the label with highest confidence. We anticipate
that these features will be appreciated by users who are con-
cerned with the accuracy of their gene annotations.

Another major advantage of IDTAXA is that it can clas-
sify proteins into a hierarchical taxonomy with multiple lev-
els of names. For example, KEGG’s BRITE hierarchy con-
sists of four levels that are each assigned a confidence by
IDTAXA. This allows higher-level functional comparisons
to be drawn (Figure 4), analogous to examining the enrich-
ment of gene ontology terms. Also, using multiple levels al-
lows for an appropriate level of ambiguity in assignments
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Figure 4. Using IDTAXA to re-annotate published genomes. (A) Microbial symbionts are known to undergo genome reduction, which results in smaller
genome sizes and a skewed distribution of core gene functions. Bar heights show the number of genes in each symbiont genome annotated as belonging
to KO categories involved in genetic information processing (e.g. transcription and translation), metabolism, other categories, or unclassified at 50%
confidence. Notably, the fraction of unclassified proteins varies from species-to-species and can be high even for members of well-studied groups (e.g.
Buchnera aphidicola, a member of Enterobacterales). (B) Using the full KEGG training set with lineage information, IDTAXA reports both a KO category
and a taxonomic lineage for each query sequence. Bar heights show the number of taxonomic assignments from the set of protein sequences belonging
to the top 10 contaminated genomes in RefSeq according to a recent study (30). The presence of prokaryotic proteins in eukaryotic genomes suggests
contamination and may serve to alert the authors of the genome assembly. Most contaminated proteins are classified as originating from the Proteobacteria
bacterial phylum.

where enzymes belong to several categories at the lowest
level of a hierarchy (e.g. multi-functional or promiscuous
enzymes). When a query sequence matches more than one
category it is assigned a low confidence at the lowest-level
but a greater confidence in upper levels. Unfortunately, only
a subset of protein databases adhere to multi-level ontolo-
gies, such as the BRITE hierarchy or the EC numbering
scheme. Nevertheless, these are some of the most compre-
hensive databases of classified proteins, so we expect multi-
level hierarchies to be a useful feature in practice.

Our results led to several surprising conclusions. First,
EVL is an unacceptable proxy for confidence with nu-
cleotide or amino acid sequences. Even at the most stringent
EVL, sequences belonging to novel functional categories
were incorrectly assigned to a group in KEGG 23% of the
time in amino acid space (blastp) and 11% in nucleotide
space (blastn). Second, PID values at low error rates imply
that commonly used PID thresholds are too lenient. At a
PID threshold of 60% the OC error rate was 26% for blastp
and 23% for blastn at the KO-level, meaning that a sequence
belonging to a novel group would be incorrectly assigned
to an existing KEGG category over 20% of the time. Third,
HMMER’s high OC error rate in comparison to BLAST
and IDTAXA was unanticipated given its frequent usage
for gene annotation. We attributed this to HMMER’s high
sensitivity, which results in detection of weak hits that lower

its MC error rate at the expense of raising its OC error rate.
We believe IDTAXA outperforms approaches based on ho-
mology searches because it not only accounts for the degree
to which a protein matches the training data but also ac-
counts for the number of competing candidate categories
where a protein could be assigned.

IDTAXA was designed to be simple for users to ap-
ply to their own gene sequences using the DECIPHER
R package and is also accessible as a web tool (http://
DECIPHER.codes/Classification.html). Users only need to
supply their protein or nucleotide (coding) sequences and
choose an appropriate database for classification. Notably,
we also decided to split the complete KEGG database into
subsets by major taxonomic group to speed up classifica-
tion, and because we noticed that assignments originated
from organisms predominantly related to that of the query
sequence when contamination was not present. We pro-
vide pre-trained classifiers for prokaryotic and eukaryotic
groups, as well as the entire database for protein sets hav-
ing multiple origins (e.g. metagenomes). Annotations with
lineage information are provided when classifying with the
entire KEGG database, which can offer insight into assem-
bly quality when contamination might be present. We an-
ticipate that users will find the ease of gene annotation with
IDTAXA to be a major advantage in addition to its high
accuracy classifications.

http://DECIPHER.codes/Classification.html
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Figure 5. Significant associations between KEGG categories and antibiotics. Proteomes belonging to pathogens were re-annotated with IDTAXA and
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