
 International Journal of 

Molecular Sciences

Article

Effects of Nitric Oxide on Voltage-Gated K+ Currents
in Human Cardiac Fibroblasts through the Protein
Kinase G and Protein Kinase A Pathways but Not
through S-Nitrosylation

Hyemi Bae 1, Jeongyoon Choi 1, Young-Won Kim 1, Donghee Lee 1, Jung-Ha Kim 2,
Jae-Hong Ko 1, Hyoweon Bang 1, Taeho Kim 3,* and Inja Lim 1,* ID

1 Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea;
hyemiworld@cau.ac.kr (H.B.); cju415@cau.ac.kr (J.C.); stream00@cau.ac.kr (Y.-W.K.);
ldh8606@cau.ac.kr (D.L.); akdongyi01@cau.ac.kr (J.-H.K.); haena@cau.ac.kr (H.B.)

2 Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro,
Seoul 06973, Korea; girlpower219@cau.ac.kr

3 Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro,
Seoul 06973, Korea

* Correspondence: kdoc97@cau.ac.kr (T.K.); injalim@cau.ac.kr (I.L.); Tel.: +82-2-6299-3146 (T.K.);
+82-2-820-5693 (I.L.)

Received: 12 February 2018; Accepted: 6 March 2018; Published: 12 March 2018

Abstract: This study investigated the expression of voltage-gated K+ (KV) channels in human cardiac
fibroblasts (HCFs), and the effect of nitric oxide (NO) on the KV currents, and the underlying
phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of
KV channels were detected in HCFs: delayed rectifier K+ channel and transient outward K+

channel. In whole-cell patch-clamp technique, delayed rectifier K+ current (IK) exhibited fast
activation and slow inactivation, while transient outward K+ current (Ito) showed fast activation
and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor,
S-nitroso-N-acetylpenicillamine (SNAP), increased the amplitude of IK in a concentration-dependent
manner with an EC50 value of 26.4 µM, but did not affect Ito. The stimulating effect of SNAP on IK

was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823.
8-bromo-cyclic GMP stimulated the IK. The stimulating effect of SNAP on IK was also blocked
by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated
IK. On the other hand, the stimulating effect of SNAP on IK was not blocked by pretreatment of
N-ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances IK, but not Ito, among
KV currents of HCFs, and the stimulating effect of NO on IK is through the PKG and PKA pathways,
not through S-nitrosylation.

Keywords: delayed rectifier K+ channel; human cardiac fibroblasts; nitric oxide; protein kinase A;
protein kinase G; S-nitrosylation; transient outward K+ channel; voltage-gated K+ channels

1. Introduction

Human cardiac fibroblasts (HCFs) are the highest cell population in the myocardium, accounting
for approximately two-thirds of the cells [1], and play a role in cardiac development, myocardial
structuring, cell signaling, and electro-mechanical function in healthy and diseased myocardium [2].
Although HCFs are not electrically excitable, they express a plethora of ion channels that modulate
cardiac electrical function. The distribution and properties of their ion channels are distinct from those
of cardiomyocytes [3]. The electrical coupling between fibroblasts/myofibroblasts and ventricular

Int. J. Mol. Sci. 2018, 19, 814; doi:10.3390/ijms19030814 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-2185-9215
http://dx.doi.org/10.3390/ijms19030814
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 814 2 of 14

cardiomyocytes has been demonstrated not only in co-culture conditions [1,4,5], but also in the
whole heart [6]. In fact, the two types of cells can directly couple to each other via connexin-based
gap junction [7]. High rate of electrical activation from tachy-paced atrial cardiomyocytes induce
them to secret factors into the culture medium that in turn activate fibroblasts [8]. Conversely, cardiac
fibroblasts paracrine factors alter impulse conduction and ion channel expression of cardiomyocytes [9].
In addition, these interactions are enhanced in response to cardiac injury [10].

Voltage-gated K+ (KV) currents are activated on membrane depolarization, regulation of resting
membrane potential, influence the amplitudes and durations of myocardial action potentials, and the
electrical coupling between the cells and cardiac fibroblasts [11,12]. Mainly, two classes of KV currents
have been distinguished based primarily on differences in time- and voltage-dependent properties:
slowly inactivating delayed rectifier K+ current, referred to as IK and rapidly inactivating transient
outward K+ current, Ito, which can be differentiated by electrophysiological and pharmacological
studies [3,13–15]. The two types of KV currents are also present in HCFs [3] but the molecular
determinants underlying IK and Ito have not been extensively studied.

Nitric oxide (NO), a ubiquitous cellular messenger, is synthesized by essentially all cardiac cell
types and plays a key role in the regulation of cardiac functions [16,17], including the direct modulation
of myocardial contractility [18], myocardial regeneration [19], hypertrophic remodeling [20], and
apoptosis [21]. These effects of NO are related to the modulation of the activity of cardiac ion channels
implicated in the generation of cardiac action potential [22]. Previous reports demonstrated that NO
inhibits IK in mouse ventricular myocytes [23], but increases this current in guinea-pig ventricular
myocytes [24]. In addition, NO inhibits Ito in human atrial and ventricular myocytes [25].

NO exerts its biological effects through cyclic GMP (cGMP)-dependent and cGMP-independent
signaling pathways. Specificity of cGMP signals is achieved through cGMP synthesis by soluble
guanylate cyclase (sGC). In cardiomyocytes, the physiological effects of cGMP are exerted through
the activation of protein kinase G (PKG). Increasing evidence suggests that cGMP-dependent
signaling pathways play an important role in inhibiting cardiac remodeling and represent a promising
therapeutic target for treatment of cardiovascular diseases [26].

Although sGC was the first identified receptor for NO, NO exerts a ubiquitous influence in a
cGMP-independent manner. NO can modulate the cAMP/protein kinase A (PKA) signaling pathway;
low levels of NO increase cAMP, by activation of adenylate cyclase (AC) in rat ventricular myocytes [27].
In addition, many effects of NO are mediated by S-nitrosylation, the covalent modification of a protein
cysteine thiol by an NO group to generate an S-nitrosothiol that implicates in all major functions of
NO in the cardiovascular system [28–30].

However, the effects of NO on KV channels of HCFs and the underlying cyclic nucleotide
mechanisms remain unclear. Therefore, this study aimed to analyze the effects of NO on KV channels
in cultured human ventricular fibroblasts, as well as the intracellular signaling pathway responsible
for these effects.

2. Results

2.1. Identification of Two Types of Voltage-Gated K+ Channels in Human Cardiac Fibroblasts by RT-PCR

In the present study, we used RT-PCR targeting human genes for KV channel pore-forming
α subunit in HCFs. The expressions of important genes for KV currents in cardiac myocytes, the
pore-forming α subunits of KV1 (Shaker) family, KV2 (Shab) family, KV3 (Shaw) faimly, and KV4
(Shal) faimly were tested [14]. Strong gene expression was observed with KV1.1, KV1.2, KV1.5, and
KV3.1, while weak gene expression was exhibited with KV1.6, KV1.7, and KV2.1 (Figure 1A). All of the
products of these genes are parts of IK channel. For the Ito channel, strong gene expression of KV3.3
and KV3.4 and weak expression of KV1.4, KV4.1, KV4.2, and KV4.4 were seen in the HCFs (Figure 1B).
Gene expression of KV1.3, KV 2.2 (for IK channel) and KV4.3 (for Ito channel) were not observed in
the HCFs.
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Figure 1. Identification of two types of voltage-gated K+ (KV) channels in human cardiac fibroblasts 
by reverse transcription polymerase chain reaction (RT-PCR). (A) Strong gene expression was shown 
for KV1.1, KV1.2 KV1.5, and KV3.1 for delayed rectifier K+ (IK) channels and (B) KV3.3 and KV3.4 for 
transient outward K+ (Ito) channels. Weak expression was observed for KV1.6, KV1.7 and KV2.1 (for IK) 
and KV1.4, KV4.1, KV4.2, and KV4.4 (for Ito). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
was used as a positive control. 

2.2. Identification of Two Types of Voltage-Gated K+ Channels using Electrophysiological Methods 

The two types of KV currents with typical behavior were recorded (IK and Ito) with the whole-cell 
patch clamp technique. The stimulation voltage protocol consisted of depolarizing steps repeated 
every 10 s with a 10-mV increment for 400 milliseconds (−80 mV of holding potential). To exclude the 
influence of large-conductance Ca2+-activated K+ current (IBKCa), which is another major K+ current, 
iberiotoxin (100 nM) was added to the bath solution and EGTA (10 mM) into the pipette solutions. 
These currents could be distinguished based on their activation and inactivation kinetics. IK exhibited 
fast activation and slow or partial inactivation (Figure 2A) and Ito demonstrated fast activation and 
inactivation kinetics (Figure 2B). 

 

Figure 2. Effect of 4-aminopyridine (4-AP) on KV currents in HCFs. (A) The representative rapid 
activated and slow inactivated, IK recorded in a single HCF in control conditions and after application 
of 4-AP (1 or 10 mM). The current-voltage (I-V) relationship of steady-state currents with IK changed 
in the presence of 4-AP, and the concentration-response bar graphs for the 4-AP effect on IK are shown. 
(B) Typical rapid-activated and inactivated Ito in control and after 4-AP (1 or 10 mM) addition. The I-
V relationship of peak currents changed by the presence of 4-AP on Ito and concentration-response 
bar graphs are shown. * p < 0.05, ** p < 0.01 versus the control. 

Figure 1. Identification of two types of voltage-gated K+ (KV) channels in human cardiac fibroblasts
by reverse transcription polymerase chain reaction (RT-PCR). (A) Strong gene expression was shown
for KV1.1, KV1.2 KV1.5, and KV3.1 for delayed rectifier K+ (IK) channels and (B) KV3.3 and KV3.4 for
transient outward K+ (Ito) channels. Weak expression was observed for KV1.6, KV1.7 and KV2.1 (for IK)
and KV1.4, KV4.1, KV4.2, and KV4.4 (for Ito). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used as a positive control.

2.2. Identification of Two Types of Voltage-Gated K+ Channels using Electrophysiological Methods

The two types of KV currents with typical behavior were recorded (IK and Ito) with the whole-cell
patch clamp technique. The stimulation voltage protocol consisted of depolarizing steps repeated
every 10 s with a 10-mV increment for 400 milliseconds (−80 mV of holding potential). To exclude the
influence of large-conductance Ca2+-activated K+ current (IBKCa), which is another major K+ current,
iberiotoxin (100 nM) was added to the bath solution and EGTA (10 mM) into the pipette solutions.
These currents could be distinguished based on their activation and inactivation kinetics. IK exhibited
fast activation and slow or partial inactivation (Figure 2A) and Ito demonstrated fast activation and
inactivation kinetics (Figure 2B).
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Figure 2. Effect of 4-aminopyridine (4-AP) on KV currents in HCFs. (A) The representative rapid
activated and slow inactivated, IK recorded in a single HCF in control conditions and after application
of 4-AP (1 or 10 mM). The current-voltage (I-V) relationship of steady-state currents with IK changed in
the presence of 4-AP, and the concentration-response bar graphs for the 4-AP effect on IK are shown.
(B) Typical rapid-activated and inactivated Ito in control and after 4-AP (1 or 10 mM) addition. The I-V
relationship of peak currents changed by the presence of 4-AP on Ito and concentration-response bar
graphs are shown. * p < 0.05, ** p < 0.01 versus the control.
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IK and Ito were detected in 82.5% (n = 312 of 378) and 17.5% (n = 66 of 378) of the cells, respectively.
These currents could also be distinguished based on the effects of K+ current blockers. Both KV currents
were sensitive to 4-aminopyridine (4-AP). IK was sensitive to a high concentration of 4-AP (10 mM,
−39.6 ± 6.4% of the control, in steady state current at +30 mV, n = 4, p < 0.05, Figure 2A) and Ito was
sensitive to a lower concentration of 4-AP (1 mM, −30.7 ± 8.6% of the control, n = 4, p < 0.05; 10 mM,
−62.3 ± 7.7% of the control, in peak current at +30 mV, n = 4, p < 0.01, Figure 2B).

On the other hand, when assessing the effects of tetraethylammonium chloride (TEA), another
K+ channel blocker, IK was inhibited at a high concentration of TEA (10 mM, −42.1 ± 9.6% of the
control, n = 4, p < 0.05, Figure 3A) but not at a low concentration of TEA (1 mM). However, Ito was not
inhibited by 10 mM TEA (−4.5 ± 8.2% of the control, n = 4, Figure 3B).
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Various concentrations of SNAP (0.1 to 300 µM) were applied and the IK was then examined to 
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Figure 3. Effect of tetraethylammonium chloride (TEA) on KV currents in HCFs. (A) The representative
IK recorded in a single HCF in control conditions and after application of TEA (1 or 10 mM) are shown.
The I-V relationship of the steady-state current change of IK by TEA and bar graphs for concentration
change are also shown. (B) The typical Ito was not changed by TEA. The I-V relationship of the peak
current change for the TEA of Ito and bar graph for concentration response are shown. * p < 0.05 versus
the control.

2.3. Effect of NO on Two Types of Voltage-Gated K+ Currents

To determine the effect of NO on KV currents in HCFs, SNAP (an NO donor, 100 µM) was added
to the bath solution. The amplitude of IK was significantly increased by SNAP (+46.0 ± 10.9% of the
control, n = 6, p < 0.05, Figure 4A). On the other hand, Ito was not activated by SNAP (+1.6 ± 9.8% of
the control, n = 6, Figure 4B). After the addition of SNAP, the current density of IK at +30 mV increased
from 2.67 ± 0.70 pA/pF to 3.89 ± 0.76 pA/pF. On the other hand, the current density of Ito in the peak
state was not altered by SNAP (2.56 ± 0.96 pA/pF to 2.60 ± 0.94 pA/pF).

Various concentrations of SNAP (0.1 to 300 µM) were applied and the IK was then examined to
explore whether SNAP-induced stimulation was concentration dependent (Figure 4C). IK was elicited
by one-step depolarizing pulses of +30 mV. The IK was increased by increasing concentrations of
SNAP, but the low level of NO observed in the physiologic condition did not affect the IK of HCFs.
Steady-state currents normalized by control data were fitted with the Hill equation, producing an EC50

value of 26.4 µM and a Hill coefficient of 0.96 (n = 7).
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of 100 µM SNAP (–2.6 ± 9.3% of the control, n = 7, Figure 5A). To further confirm the contribution of the 
cGMP signaling pathway, KT5823 (a PKG blocker, 1 µM) was added to the bath, and SNAP then failed 
to increase IK (+2.3 ± 6.2% of the control, n = 7, Figure 5B). 
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showing the effect of SNAP on IK after pretreatment with (A) 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-
1-one (ODQ) or (B) KT5823. (C) Effect of 8-Br-cyclic GMP on IK. (D) Bar graph summarizing current 
density changes for the effects of SNAP on IK after pre-incubation with ODQ or KT5823, and the effect 
of 8-Br-cyclic GMP on IK current. * p < 0.05 versus the control. 

We also assessed the effect of cGMP, which is generated from NO binding to sGC. 8-Bromo-
cyclic GMP (8-Br-cGMP, an activator of PKG, 300 µM) increased IK to +84.0 ± 14.5% of the control (n = 

Figure 4. Effect of nitric oxide (NO) on two subtypes of KV currents. Raw data and the I-V
relationship of steady-state currents changed by the presence of SNAP on (A) delayed rectifier K+

current (IK) and (B) transient outward K+ current (Ito). (C) The concentration-response curve of
S-nitroso-N-acetylpenicillamine (SNAP) on IK. The continuous line represents the fit to the Hill
equation. The normalized currents (percent inhibition) were calculated from the IK in the absence of
SNAP and plotted against various concentrations of SNAP. * p < 0.05 versus the control.

2.4. Effect of NO on Delayed Rectifier K+ Current through PKG Signaling Pathway

NO activates sGC and produces cGMP, which activates PKG. We examined the contribution of
cGMP to SNAP-induced IK enhancement, using 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ,
a sGC blocker). When the cells were pretreated with ODQ (10 µM), IK did not increase in the presence
of 100 µM SNAP (–2.6 ± 9.3% of the control, n = 7, Figure 5A). To further confirm the contribution of
the cGMP signaling pathway, KT5823 (a PKG blocker, 1 µM) was added to the bath, and SNAP then
failed to increase IK (+2.3 ± 6.2% of the control, n = 7, Figure 5B).
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Figure 5. Effects of the PKG pathway on the stimulating effect of NO on IK. Representative currents
showing the effect of SNAP on IK after pretreatment with (A) 1H-(1,2,4)oxadiazolo[4,3-a]
quinoxalin-1-one (ODQ) or (B) KT5823. (C) Effect of 8-Br-cyclic GMP on IK. (D) Bar graph summarizing
current density changes for the effects of SNAP on IK after pre-incubation with ODQ or KT5823, and
the effect of 8-Br-cyclic GMP on IK current. * p < 0.05 versus the control.

We also assessed the effect of cGMP, which is generated from NO binding to sGC. 8-Bromo-cyclic
GMP (8-Br-cGMP, an activator of PKG, 300 µM) increased IK to +84.0 ± 14.5% of the control (n = 4,
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p < 0.05, Figure 5C). The current densities at +30 mV with the addition of SNAP were not altered after
ODQ pretreatment (2.58 ± 0.81 pA/pF at control, 2.49 ± 0.77 pA/pF at ODQ, 2.51 ± 0.75 pA/pF at
SNAP, Figure 5D) or after KT5823 pretreatment (2.39 ± 0.85 pA/pF at control, 2.47 ± 0.42 pA/pF
at KT5823, 2.44 ± 0.53 pA/pF at SNAP). On the other hand, the current density with 8-Br-cGMP
treatment increased significantly (from 2.40 ± 0.58 pA/pF to 4.42 ± 0.84 pA/pF).

2.5. Effect of NO on Delayed Rectifier K+ Current through PKA Signaling Pathway

We examined the contribution of cAMP to SNAP-induced IK enhancement, using KT5720 (a PKA
blocker). When the cells were pretreated with KT5720 (1 µM) in the bath solution for 20 min, 100 µM
SNAP did not increase the IK (−1.1 ± 9.8% of the control, n = 7, Figure 6A).
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To further confirm the contribution of the cAMP signaling pathway, the cells were pretreated
with SQ22536 (an AC blocker, 100 µM), 100 µM SNAP then failed to increase IK significantly
(+4.7 ± 11.3% of the control, n = 7, Figure 6B). On the other hand, forskolin (a stimulator of AC
and an activator of PKA, 10 µM) increased the amplitude of IK (+20.0 ± 11.0% of the control, n = 6,
p < 0.05, Figure 6C). 8-Bromo-cyclic AMP (8-Br-cAMP, a cell-permeable cAMP, and an activator of PKA,
300 µM) also increased the activity of IK (+40.4 ± 19.2% of the control, n = 5, p < 0.01, Figure 6D). The
current densities at +30 mV with SNAP were not altered after KT5720 pretreatment (2.35 ± 0.49 pA/pF
with control, 2.13 ± 0.42 pA/pF at KT5720, 2.33 ± 0.48 pA/pF with SNAP, Figure 6E) or after SQ22536
pretreatment (2.36 ± 0.88 pA/pF with control, 2.44 ± 0.97 pA/pF with SQ22536, 2.48 ± 0.99 pA/pF
with SNAP). On the other hand, the current densities with the forskolin or 8-Br-cAMP effects on
IK increased significantly (2.49 ± 0.28 pA/pF with control, 2.99 ± 0.31 pA/pF with forskolin; from
2.44 ± 0.51 pA/pF to 3.42 ± 0.97 pA/pF with 8-Br-cAMP, Figure 6E).

2.6. Effect of NO on Delayed Rectifier K+ Current through the S-Nitrosylation Pathway

NO affects ubiquitous signaling pathways via posttranslational modification of cysteine residues,
a reaction termed S-nitrosylation [28]. To examine the involvement of S-nitrosylation in SNAP-induced
IK enhancement, we pretreated the cells with N-ethylmaleimide (NEM, a thiol-alkylating reagent,
0.5 mM) and then applied SNAP (100 µM). In the presence of NEM, SNAP increased IK significantly
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(+42.3 ± 10.1% of the control, n = 5, p < 0.05, Figure 7A), which suggests that the thiol residue was not
the ultimate target of NO.
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Figure 7. Influence of S-nitrosylation on the stimulating effect of NO on IK. (A) Representative currents
showing the effect of SNAP on IK after pretreatment with N-ethylmaleimide (NEM). (B) Effect of
DL-dithiothreitol (DTT) on SNAP-stimulating IK. (C) Bar graph summarizing current density changes
for SNAP effects on IK after pretreatment with NEM and DTT. * p < 0.05 versus the control.

When DL-dithiothreitol (DTT, a reducing agent, 5 mM) was applied after IK had been enhanced
by SNAP (100 µM), it could not reverse the SNAP-induced enhancement of IK (+45.5 ± 12.2% of
the control with SNAP, n = 6, p < 0.05; +45.7 ± 6.9% of the control with DTT, n = 6, p < 0.05 for the
control, Figure 7B). These findings suggest that S-nitrosylation is not the main mechanism for the NO
stimulation of IK in HCFs. Figure 7C shows the current densities with the SNAP effects on IK after
NEM pretreatment (2.38 ± 0.1 pA/pF with control, 2.53 ± 0.11 pA/pF with NEM, 3.39 ± 0.09 pA/pF
with SNAP) and the current densities after DTT treatment following SNAP (2.38 ± 0.13 pA/pF with
control, 3.40 ± 0.16 pA/pF with SNAP, 3.47 ± 0.09 pA/pF with DTT).

3. Discussion

In this study, we characterized the voltage-gated K+ (KV) channels in human cardiac ventricular
fibroblasts and the effects of NO on the channels. We demonstrated the functional expression of two
types of KV channels: delayed rectifier K+ channel and transient outward K+ channel. We also observed
that NO stimulated delayed rectifier K+ current (IK), but not transient outward K+ current (Ito), through
the sGC/cGMP/PKG pathway and AC/cAMP/PKA pathway, but not through S-nitrosylation.

3.1. Identification of Two Types of Kv Channels in Human Cardiac Fibroblasts by Molecular Methods

The electrophysiological properties of cardiac cells are determined by the composition of ion
channels and by their absolute abundance and proportional ratio. In healthy human hearts, the
significant expression levels of KV1.2, KV1.5, KV1.7, KV2.1, and KV3.1 (for the IK) and KV1.4, KV3.3,
KV3.4, KV4.1, and KV4.3 (for the Ito) are found [31], which might indicate a functional role of these
ion channel subunits in the formation of action potential in the human atrium and ventricle. KV1.5 is
thought to be the major contributor to the IK in human heart [23,32] and KV4.3 is responsible for the
Ito [25,33,34]. However, very little is known about the expression of K+ channel subunits in human
cardiac fibroblasts.

In our RT-PCR analysis of mRNA expression of KV channel genes in HCFs, there was a strong
mRNA expression of KV1.1, KV1.2, KV1.5, and KV3.1 and a weak expression of KV1.6, KV1.7, and
KV2.1 (for the IK). We also found that a strong mRNA expression of KV3.3 and KV3.4, and a weak
expression of KV1.4, KV4.1, KV4.2, and KV4.4 (for the Ito).

These results differed from those of a previous report on KV channels in HCFs [3]. In that report,
the investigators found RT-PCR products corresponding to significant gene expression of KV1.5 and
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KV1.6 (for the IK) and KV4.2 and KV4.3 (for the Ito), but found none for KV2.1 and KV3.1 (for the IK) or
for KV1.4 (for the Ito). The reason for the discrepancy in our results is unclear.

The KV4.3 represents the predominant K+ channel subunit underlying Ito in human
cardiomyocytes, as the most abundant K+ channel mRNAs were KV4.3 (80.7%) [35], but in our HCFs
experiments, KV4.3 mRNA was not detected. To confirm our RT-PCR results for the KV channels in
HCFs, we repeated the RT-PCR several times to measure the gene expression of KV4.3 for the Ito, but
we found no gene expression.

Changes in the expression of K+ channels explain the regional variations in morphology and
duration of cardiac action potential among different cardiac regions and are influenced by heart rate,
intracellular signaling pathways, drug and cardiovascular disorders [36]. Further investigations using
molecular and electrophysiological approaches are needed to reveal the basis of ionic currents in
cardiac fibroblasts in different heart regions because the extensive networks exist between cardiac
fibroblasts and cardiomyocytes, that make the heterocellular electrical coupling [2,4,37–39].

3.2. Identification of Voltage-Gated K+ Channels in Human Cardiac Fibroblasts via
Electrophysiological Methods

In our results, among the two types of KV currents that could be distinguished by their activation
and inactivation kinetics, IK was the main subtype of KV currents in HCFs, as IK was recorded in
82.5% of HCFs with the whole-cell patch-clamp technique. This result was consistent with previous
reports [11,40,41], but was somewhat discrepant with the results found by Li et al. [3].

According to their report on K+ currents in HCFs, IBKCa was present in most HCFs (88%), and IK

and Ito were equally present but in smaller populations (15% and 14%, respectively).
The two types of KV currents were 4-AP sensitive in HCFs and these results are consistent with

others [15,42–44]. Ito was more sensitive than IK to 4-AP, and similar results were found with human
atrial Ito [35]. However, for TEA, another K+ channel blocker, the KV currents showed different
responses: a high concentration of TEA (10 mM) inhibited IK (−42%) but not Ito. In a study of human
ventricular myocytes, IK was not very sensitive to TEA: that is, the reduction was <20% with 10 mM
external TEA [44]. On the other hand, 1 mM TEA could not inhibit either KV current, consistent with
previous reports: that is, low concentrations of TEA (≤1 mM) predominantly blocked Ca2+-activated
K+ (KCa) currents [45–47].

3.3. Effect of NO on Two Types of Voltage-Gated K+ Currents

We demonstrated that NO produced a concentration-dependent stimulation of IK in HCFs, and
these results were consistent with other reports in guinea-pig cardiomyocytes [24,48]. While a low
concentration of NO (0.1–1 µM SNAP) did not affect the IK of HCFs, a high concentration of NO
(100 µM SNAP) increased the amplitude of IK with an EC50 of approximately 26.4 µM in our experiment.
In previous study, NO inhibited the hKv1.5 channel current, which generates IK in transfected Chinese
hamster ovary (CHO) cells and mouse ventricular myocytes [23].

This discrepancy could be explained by the concentration difference, because the effect of NO
on cell function is determined by its concentration. Lower levels of NO (0.1–1 µM SNAP), which are
observed under physiologic conditions, led to concentration-dependent inhibition of hKv1.5 current in
cardiac myocytes [27], with the IC50 being approximately 340 nM [23]. Higher levels of NO (100 µM
SNAP), which are observed in pathologic states, increased IK [49,50].

We also demonstrated that NO could not affect Ito in HCFs; however, in previous study, NO
inhibited KV4.3 in transfected CHO cells and Ito in human atrial and mouse ventricular myocytes in a
concentration and voltage-dependent manner with an IC50 of 375 nM [25]. These differences could be
explained by differences in the cell type and expressed K+ channel mRNA [36].
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3.4. Effect of NO on Delayed Rectifier K+ Current through Protein Kinases Signaling Pathways and
S-Nitrosylation

In our results, the stimulating effect of NO on IK was suppressed in the presence of sGC inhibitor
(ODQ) or PKG inhibitor (KT5823), and IK was increased by 8-Br-cGMP, a cell-permeable analogue of
cGMP. These results suggest that the stimulatory effects of NO are dependent on the sGC/cGMP/PKG
pathway in HCFs. In previous reports, the cGMP-dependent pathway was suggested to play a
principal role in NO action on hKv1.5-induced IK in guinea-pig cardiomyocytes [24] and sinoatrial
nodal cells [48].

We also investigated the effects of the AC/cAMP/PKA pathway on KV currents in HCFs,
because the PKA pathway is also responsible for NO-mediated cardioprotection [51], NO can directly
activate AC and thereby increase cAMP levels [27], and AC activators or membrane-permeable cAMP
analogs can increase NO production [52]. We found that specific PKA blockers (KT5720 or SQ22536)
inhibited the stimulating effect of NO for IK, and forskolin (an AC activator), and 8-Br-cAMP (a
membrane-permeable cAMP) increased the currents in HCFs.

These results indicate that NO (100 µM SNAP) increased IK of HCFs through AC/cAMP/PKA
signaling mechanisms. It has been reported that NO also modulates cardiac IBKCa channels, which
are also important K+ channels in HCFs [13], and Na+ channels in guinea pig and mouse ventricular
myocytes through the cAMP and cGMP pathways [53].

We also examined whether NO increased IK through a cGMP-independent pathway, a direct
S-nitrosylation of the thiol residue of target proteins, which is a well-known alternative pathway for the
biological effects of NO [23–25,29]. S-nitrosylation regulates many cardiac ion channels and modulates
the major currents involved in the generation of the action potential in cardiomyocytes [28]. Inwardly
rectifying K+ current that determine resting membrane potential is also expressed in rat ventricular
fibroblasts [3] and human ventricular fibroblasts [3]. NO increases the current by nitrosylation
in cardiomyocytes and transfected CHO cells with Kir2.1 channel (the major isoform of inwardly
rectifying K+ channel) [54].

It has been reported that S-nitrosylation increases IK in guinea pig cardiomyocytes [55], but
inhibits these currents in human atria [23]. However, in our results, the stimulating effect of NO on IK

was not blocked by NEM pretreatment in HCFs. In addition, the reducing reagent DTT did not reverse
NO-induced IK enhancement. These results suggest that S-nitrosylation is not involved in NO effects
on IK in HCFs.

In summary, we provide evidence to demonstrate that NO modulates cardiac IK but not Ito

via a second messenger pathway through activation of PKG and PKA. This modulation occurs at
a relatively high concentration of NO that was observed in pathological states. Therefore, it is
reasonable to speculate that the modulation of IK by NO may play a significant functional role in the
pathological states.

4. Materials and Methods

4.1. Cell Preparation and Culture

Commercially available primary adult human ventricular cardiac fibroblasts (HCF-av, Catalogue
#6310 from ScienCell, Carisbad, CA, USA) were used. These cells were used for many bimolecular and
electrophysiological experiments [3,13,40,56–58] and confirmed as fibroblasts by discoidin domain
receptor 2 staining [58]. The cells were cultured in Dulbecco’s modified eagle’s medium (DMEM;
Welgene, Gyeongsan, Gyeongsangbuk-do, Korea) that was supplemented with fetal bovine serum
(10%, Welgene) and a penicillin-streptomycin solution (100×; GenDEPOT, Barker, TX, USA) in a
humidified atmosphere of 5% CO2 and 95% air at 37 ◦C. Confluent fibroblasts were detached by
incubation with trypsin (0.25%, Welgene) and ethylene diamine tetraacetic acid (0.02%) in DMEM for
several minutes. The detached cells were pelleted by centrifugation, the supernatant was removed,
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and the pellet was suspended in 1 mL of bath solution. The cells used in this study were from early
passages (3 to 7) to limit possible variation due to culture.

4.2. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

mRNA was generated using the RT-PCR technique with the primers indicated in the Tables 1
and 2. Total RNA was extracted from HCFs using the Total RNA Isolation PureLink RNA Mini Kit
(Ambion, Carlsbad, CA, USA). First-strand cDNA was prepared with the SuperScript III Cells Direct
cDNA Synthesis Kit (Invitrogen, Tokyo, Japan). Reverse transcription was performed in a S1000
Thermal Cycler (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions. RT-PCR
reaction products (cDNA) were resolved by 1.2% agarose gel electrophoresis and stained with ethidium
bromide for visualization under ultraviolet light.

Table 1. Primers of delayed rectifier potassium channels used for RT-PCR.

Gene Forward Primer Reverse Primer Size

GAPDH 5′-AGCCACATCGCTCAGACACC-3′ 5′-GTACTCAGCGGCCAGCATCG-3 302
KV1.1 5′-CCATCATTCCTTATTTCATCAC-3 5′-CTCTTCCCCCTCAGTTTCTC-3′ 488
KV1.2 5′-TCCGGGATGAGAATGAAGAC-3′ 5′-TTGGACAGCTTGTCACTTGC-3′ 747
KV1.3 5′-TCTGCCTATGCCCTTGTTTT-3′ 5′-TTCCTCCCAGGATGTACTGC-3′ 259
KV1.5 5′-TGCGTCATCTGGTTCACCTTCG-3′ 5′-TGTTCAGCAAGCCTCCCATTCC-3′ 906
KV1.6 5′-TCAACAGGATGGAAACCAGCCC-3′ 5′-CTGCCATCTGCAACACGATTCC-3′ 608
KV1.7 5′-CTTCCAGGGGCATGTTATTT-3′ 5′-CTCAATGGAACTCAATTCAG-3′ 300
KV2.1 5′-ACAGAGCAAACCAAAGGAAGAAC-3′ 5′-CACCCTCCATGAAGTTGACTTTA-3′ 383
KV2.2 5′-AACGAACTGAGGCGAGAG -3′ 5′-ACTCCGCCTAAGGGTGAAAC-3′ 546
KV3.1 5′-AACCCCATCGTGAACAAGACGG-3′ 5′-TCATGGTGACCACGGCCCA-3′ 550

Table 2. Primers of transient outward potassium channels used for RT-PCR.

Gene Forward Primer Reverse Primer Size

GAPDH 5′-AGCCACATCGCTCAGACACC-3′ 5′-ATCATTCAACAACCCACCAT-3′ 302
KV1.4 5′-TGGCGGCTACAGTTCAGTCC-3′ 5′-TGTTGACAATGACGGGCACAGG-3′ 571
KV3.3 5′-TTCTGCCTGGAAACCCATGAGG-3′ 5′-TGCCAAATCCCAAGGTCTGAGG-3′ 694
KV3.4 5′-TTCAAGCTCACACGCCACTTCG-3′ 5′-TTCTTTCGGTCCCGATAC-3′ 656
KV4.1 5′-ATCTCGAGGAGATGAGGTTC-3′ 5′-GATCCGCACGGCACTGTTTC-3′ 318
KV4.2 5′-ATCTTCCGCCACATCCTGAA-3′ 5′-GATCCGCACGGCACTGTTTC-3′ 362
KV4.3 5′-GATGAGCAGATGTTTGAGCAG-3′ 5′-AGCAGGTGGTAGTGAGGCC-3′ 106
KV4.4 5′-AGCCAAGAAGAACAAGCTG-3′ 5′-AGGAAGTTTAGGACATGCC-3′ 315

4.3. Electrophysiological Recordings

Recordings were obtained, using a whole-cell patch clamp with an Axopatch 200B Patch Clamp
Amplifier (Axon Instruments, Union City, CA, USA) at room temperature. The pCLAMP 9.0 software
(Axon Instruments) was used for data acquisition and analysis of whole-cell currents. Activated
currents were filtered at 2 kHz and digitized at 10 kHz. Recording patch pipettes were prepared
from filament-containing borosilicate tubes (TW150F-4; World Precision Instruments, Sarasota, FL,
USA), using a two-stage microelectrode puller (PC-10; Narishige, Tokyo, Japan), and were then fire
polished on a microforge (MF-830; Narishige). When filled with pipette solution, the pipettes exhibited
a resistance of 2–3 MΩ.

The bath solution to record KV currents contained (in mM): 150 NaCl, 5.4 KCl, 1 CaCl2, 1 MgCl2,
10 glucose, and 5 HEPES (pH adjusted to 7.35 with NaOH). The pipette solution contained (in mM):
130 KCl, 1 CaCl2, 2 MgCl2, 10 HEPES, 10 EGTA, and 2 Mg-ATP (pH adjusted to 7.3 with KOH). TEA,
4-AP, SNAP, KT5823, ODQ, 8-Br-cGMP, KT5720, SQ22536, 8-Br-cAMP, and all other chemicals were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
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4.4. Statistical Analysis

Statistical analysis was performed using SPSS version 22.0 (SPSS Inc., Chicago, IL, USA). Results
were presented as mean ± standard error of the mean (SEM). The paired Student’s t-test was used
when appropriate to evaluate the statistical significance of differences between two group means,
while one-way analysis of variance (ANOVA) was used for multiple groups. p values < 0.05 were
considered statistically significant.
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