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Abstract

Background: Hospitals are increasingly compared based on clinical outcomes adjusted for severity of illness. Multiple
methods exist to adjust for differences between patients. The challenge for consumers of this information, both the public
and healthcare providers, is interpreting differences in risk adjustment models particularly when models differ in their use of
administrative and physiologic data. We set to examine how administrative and physiologic models compare to each when
applied to critically ill patients.

Methods: We prospectively abstracted variables for a physiologic and administrative model of mortality from two intensive
care units in the United States. Predicted mortality was compared through the Pearsons Product coefficient and Bland-
Altman analysis. A subgroup of patients admitted directly from the emergency department was analyzed to remove
potential confounding changes in condition prior to ICU admission.

Results: We included 556 patients from two academic medical centers in this analysis. The administrative model and
physiologic models predicted mortalities for the combined cohort were 15.3% (95% CI 13.7%, 16.8%) and 24.6% (95% CI
22.7%, 26.5%) (t-test p-value,0.001). The r2 for these models was 0.297. The Bland-Atlman plot suggests that at low
predicted mortality there was good agreement; however, as mortality increased the models diverged. Similar results were
found when analyzing a subgroup of patients admitted directly from the emergency department. When comparing the two
hospitals, there was a statistical difference when using the administrative model but not the physiologic model.
Unexplained mortality, defined as those patients who died who had a predicted mortality less than 10%, was a rare event by
either model.

Conclusions: In conclusion, while it has been shown that administrative models provide estimates of mortality that are
similar to physiologic models in non-critically ill patients with pneumonia, our results suggest this finding can not be
applied globally to patients admitted to intensive care units. As patients and providers increasingly use publicly reported
information in making health care decisions and referrals, it is critical that the provided information be understood. Our
results suggest that severity of illness may influence the mortality index in administrative models. We suggest that when
interpreting ‘‘report cards’’ or metrics, health care providers determine how the risk adjustment was made and compares to
other risk adjustment models.
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Introduction

Risk adjusted mortality rate is one publicly reported metric used

to describe hospital quality. Public reporting of hospital mortality

began in 1986 with the release of inpatient mortality data for

Medicare patients by the Health Care Financing Agency.

Consumer groups applauded this effort, but the release of raw

mortality rates without risk adjustment was quickly shown to be

misleading [1]. In the years that followed, process and outcomes

measures have been increasingly used to describe the quality of

care received by patients in United States Hospitals [2].

Outcome measures focus on patient events, unlike process

measures which evaluate on task performance such as ‘‘door to

balloon time’’ in acute coronary syndrome or timing of antibiotic
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administration for sepsis. Outcome measures include catheter-

associated central line infections, hospital readmission, and

mortality, among others. Ultimately, these comparisons are

designed to result in systematic improvements in healthcare

outcomes and delivery, sometimes through financial penalties [3].

Providers are reasonably skeptical of these comparisons due to

inherent differences in populations, which may impact observed

healthcare outcomes [2].

Differences in unadjusted mortality at any given hospital are

dependent on multiple internal and external factors. Adjusting for

severity of illness attempts to compensate for these differences [1–

8]. Risk adjusted mortality is often reported as the mortality index

(number of observed deaths divided by expected deaths) for a

patient population [9,10]. The inherent problem with using

adjusted mortality is that it requires readily identifiable factors that

can be reproducibly and accurately measured [10]. Therefore,

while multiple well-designed mortality prediction models exist for

acute care and critical care patients, it is possible that two well

developed models will produce disparate results. The challenge for

consumers of this information, both the public and healthcare

providers, is interpreting differences in risk adjustment models [3].

Understanding how models might differ is important when

comparing published results. This has recently become evident in

the academic literature. Bratzler et al recently reported that

administrative claims-based data (an administrative model) for

patients admitted with community acquired pneumonia closely

estimates mortality risk as predicted using variables extracted from

the medical record (a physiologic model) [11]. Similarly, the

University Health Consortium recently hosted a webinar (Decem-

ber 5, 2011) on how an administrative based method for

identifying central line infections compared to that National

Health and Safety Network physiology based method for

identifying central line infections.

We sought to determine if, an administrative predictive model

would estimate mortality risk similarly to a physiologic predictive

model in the population confined to the critically ill. Unlike the

study by Bratzler et al [11], we would be assessing a group with

multiple diseases and with a high severity of illness. We

hypothesized that the administrative and physiologic models

would not produced similar risk-adjusted mortality risk estimates

in critically ill patients.

Methods

Ethics
The University of Virginia (Charlottesville, VA) and Mayo

Clinic (Rochester, MN) Institutional Review Boards (IRB)

approved the protocol prior to reviewing charts. The IRB at the

University of Virginia (UVA) gave permission for waiver of

consent given the minimal risk to patients. The IRB at the Mayo

Clinic required consent of the patient prior to including their

information in the research database. Only those patients who

gave permission to use their medical records for research were

included at Mayo Clinic database. This project was started at

UVA and expanded to the Mayo Clinc. Both medical intensive

care units (ICUs) are primarily receive patients from the

emergency department, the acute care floors, and by intra-hospital

transfer, giving them similar characteristics. In addition these two

hospitals have collaborated in the past and both provide data

directly to the UHC for quality improvement purposes.

Model Choice and Calibration
Administrative model. For this study the UHC model was

chosen as our administrative model. We chose the UHC model

because it is internally calibrated and internal validity testing

shows it predicts 84% of the odds of death in critical illness

(personal communication from Mark Keroak, UHC).

Approximately 90% of non-profit academic hospitals in the

United States participate in the UHC, which constructed its model

to calculate predicted mortality based on patient characteristics

collected from claims-based data(University HealthSystem

Consortium, Oak Brook, IL, 2009). This administrative model

primarily uses comorbidities to predict patient mortality as well as

determining severity of illness as assigned by the Diagnostic

Related Group (DRG) [5,12]. The model uses administrative

variables coded from clinical documentation entered upon

admission and throughout hospitalization [5,12,13].

Physiology Model. We chose the APACHE IV based on its

well known characteristics and availability of free online tools to

calculate. The APACHE-IV model uses extremes in physiologic

variables during the first 24 hours of admission to an ICU as well

as disease specific variables to predict mortality as well as length of

stay. The characteristics of the APACHE-IV model are published

in the peer-reviewed literature [4,5,12].

The models were not calibrated to our data but the intercepts

from the original models were used. Calibration of the variables to

local mortality at each site would improve the relationship

between those variables in our sample; however, by doing so we

would not be describing the models as they are applied in ‘‘real

life’’ and this would decrease the utility of this study. This

approach was chosen to represent as close as possible performance

in ‘‘real life’’.

Sample
The University of Virginia Hospital is a 534-bed academic

medical center in Charlottesville, Virginia. Annually, over 33,000

patients receive inpatient or observation care at the University of

Virginia Hospital. The medical intensive care unit (MICU) is a 16

bed closed ICU. The Mayo Clinic is a tertiary care, academic

medical center with 1900 beds and 135,000 hospital admissions

per year. The combined capacity of the ICUs is 204 beds and

14,800 admissions per year.

At the University of Virginia, we evaluated 200 consecutive

MICU patients who were enrolled prospectively over a three-

month period (May through July 2007). Two of the investigators

(KS, MZ) abstracted the variables from chart review and then

calculated APACHE IV scores. A random sample of 1/3rd of the

data entries was verified by a third investigator for quality

assurance (KE). These variables included the physiologic param-

eters necessary to calculate APACHE IV scores. UVA obtained

UHC mortality predictions directly from UHC using the patients’

account numbers, which are unique to each patient and visit.

Beginning on March 21, 2005, the medical records of all new

patients coming to the Mayo Clinic campus in Rochester, MN,

were stored in an electronic form [14]. The Mayo Clinic

performed UHC and APACHE IV score calculations on the

random sample of 400 patients admitted to the MICU in 2007.

This database includes the same variables that the University of

Virginia collected, providing the APACHE IV scores for these

patients as well as their UHC mortality predictions. The Mayo

Clinic transferred the data in de-identified format to the University

of Virginia where all statistical analyses were performed.

Definitions
Patients were classified as being admitted to the ICU from one

of three locales: acute care unit (ward), emergency room, or from

an outside hospital. Patients with multiple ICU admissions within

the same hospital stay were included, but we analyzed only the
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primary admission to the ICU. To minimize confounding that

might occur in patients transferred to the ICU from the acute care

ward or referring facility, we performed a subgroup analysis of

patients admitted directly from the emergency department. We

coded mortality based on hospital mortality, as it is the ultimate

outcome of interest for clinicians. For the purpose of this study we

described unexpected mortality within each model separately and

defined unexpected deaths as those patients with a predicted

mortality less than or equal to 10% who died.

For the purposes of our study, we defined the first twenty-four

hours as beginning when the patient physically entered the MICU.

This definition thereby occasionally excluded patient variables

accrued during the hospitalization, but outside of the physical

confines of the MICU. We chose this definition in order to best

assess the quality of care in this particular unit and by its staff. It

was also felt that the clinical variables, particularly vital signs, were

more reliable during this time period because of uniform data

collection once the patient was in the ICU. This design element

could underestimate the true APACHE IV value because the

model uses the worst value in the 24-hour period, and vital signs in

the hours preceding ICU admission could have been more

deranged.

Analysis
We performed all statistics with SAS v 9.2 for Windows and

SPSS v 20.0 for Macintosh (Chicago, IL). Each model’s receiver-

operator characteristic was determined and calibration described

with the Hosmer-Lemeshow test. The distribution of the predicted

mortality was analyzed for normality and non-normally distribut-

ed median predicted mortalities were compared by Wilcoxon-

rank-sum test. We compared the correlation of the predictive

mortality methodologies using Pearson’s product moment corre-

lation coefficient. We also generated Bland-Altman15 plots by

creating two variables in SPSS, BADIFF (UHC mortality-

APACHE mortality) and BAMEAN ((UHC mortality+APACHE

mortality)/2).

The Mortality index for each hospital was calculated for both

the clinical model (APACHE-MI) and administrative model

(UHC-MI). Differences between the two hospitals were described

by comparison of the mortality index means, as this is how

mortality index is typically published, and by comparisons of

medians as the data was not normally distributed. Post-hoc we

analyzed the difference in variance of predicted APACHE

mortality by quartile of UHC predicted mortality. We also

analyzed differences in Mortality Index by hospital to further

understand how differences in severity of illness may influence

these results.

Results

We included 556 patients from the two academic medical

centers in this analysis. The mean age (in years) of the admitted

patients was 62. Eighty-nine percent of the patients were white and

58% were male. The average APACHE IV score was 68.58. The

observed mortality for the cohort was 18.1%. Using the

administrative model there were 20 patients (3.6% of all patients,

19.8% of deaths) with unexpected deaths based on our definition.

Using the physiologic model, there were 7 patients (1.3% of all

patients and 6.9% of deaths) with unexpected deaths. Table 1

describes the patient population along with their APACHE IV

diagnoses.

The administrative model and physiology model, shown in

Figure 1, had an AUC in our cohort of 0.81 (95%CI 0.77, 0.86)

and 0.78 (95% CI 0.73, 0.82) respectively. The Hosmer-

Lemeshow test of calibration was statistically significant for both

the administrative model (p-vale 0.044) and physiologic model (p-

value 0.005).

The administrative and physiologic models’ predicted mortal-

ities were not normally distributed. The median predicted

mortality for administrative model and physiologic model for the

combined cohort were 7.9% (ICR 24.7%) and 17.0% (ICR

29.4%), which were statistically different (p-value,0.001)

(Figure 2). The mean ratios of observed to expected mortality

(mortality index) for the combined cohort by administrative model

and physiologic models were 1.73 and 0.71, respectively.

The two models showed weak correlation (Figure 3 panel A),

with a Pearson product-moment correlation coefficient of

r = 0.545 (p-value,0.0001). There is a linear relationship between

the two values, as shown in Figure 3 panel B, with an r2 of 0.297.

Although correlation coefficients demonstrate whether or not two

measures are related, they do not reflect the presence or absence of

agreement [15]. The Bland-Altman plot (figure 3) suggest that

these two models are not only poorly correlated (as shown by the

Pearson product-moment correlation coefficient) but they also

have poor agreement (Figure 3). As predicted mortality increases,

separation between physiologic and administrative models widens.

However, as the Bland-Altman plot shows, there is wide

disagreement between the methods with administrative model

being both higher and lower than the physiologic model

prediction, and showing greater variation at higher mean

predicted mortality. Approximately 6% of the values lie outside

of two standard deviations from the mean of the observations.

We also separately analyzed those patients admitted directly to

the ICU from the emergency department. In this smaller

combined cohort of 269 patients, the administrative model

predicted mortality was 12.7% (95% CI 10.5%, 15.0%) and the

physiologic model predicted mortality was 20.8% (95%CI 18.4%,

23.2%). The observed mortality in this subgroup was 11.5%

(administrative model mortality index .91, physiologic model

mortality index 0.61).

The correlation between the two samples was statistically

significant (p-value,0.0001) with a Pearson Correlation of

r = 0.626 and an r2 of 0.392, as shown in Figure 4 Panel A. This

result suggests better, but still weak, correlation between the two

models. Again, the prediction models for this smaller subset show

poor agreement as described by the Bland Altman plot displayed

in Figure 4 Panel B. In this subset around 8% of the values lie

outside of 2 standard deviations from the mean but as in the full

sample, there is a significant difference between the two models,

which increases as the mean predicted mortality increases.

To better understand the divergence in the Bland-Altman plots,

the variance of the physiologic model was plotted in quartiles of

administrative model predictive mortality. ANOVA was per-

formed to determine if the variance was the same at each quartile,

with the null hypothesis of equal variances. The variance in

physiologic model predicted mortality at each quartile of

administrative model predicted mortality was statistically signifi-

cantly, with increasing variance as predicted mortality rose in the

administrative model (Table 2).

Comparing hospital 1 (n = 164) and hospital 2 (n = 392), (table 3)

there was a statistically significant difference in unadjusted

mortality (27.2 and 14.2% respectively, p-value,0.001) with no

statistical difference in APACHE IV score (65.9 and 69.7

respectively, p-value 0.11). This difference remained statistically

significant (p-value 0.047) when mortality was adjusted using the

administrative model. The mortality index for hospital 1 was 2.39

(95% CI 1.11, 5.66) and for hospital 2 1.03 (95% CI 0.53, 1.54).

However, when the physiologic model was used there was no
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difference in the two hospitals mortality index, with hospital 1

having an adjust mortality of 1.03 (95% CI 0.57, 1.49) and

hospital 2 having an adjusted mortality index of 0.56 (95% CI

0.39, 0.75)(p-value 0.66). The median mortality index for both

models was zero for both hospitals as more than fifty percent of

patients survive, so the observed/expected value for most patients

is zero. However, the interquartile range, was different for the

hospitals and there was a statistical difference for both models

(administrative p-value 0.003, clinical p-value 0.0006).

Further dissection of the two models shows that as average

predicted mortality increases, as defined by our administrative

model, the hospitals outcomes become statistically the same, both

in comparison of means and medians (Table 3). As predicted

mortality increases (Figure 5), the distributions of mortality index

become similar between the two hospitals. We note that at the

lowest quartile of predicted mortality, no patients died. At the

next two quartiles, outliers in both hospitals have significant

impacts on the mean mortality index, and at the highest quartile

the mean administrative model mortality index is 0.92 at both

hospitals.

Discussion

In our analysis, we demonstrate in a population of medical ICU

patients across two academic health centers, that the reported

mortality index for this sample ranged from 0.71 (physiologic

Table 1. Patient Population Characteristics and Diagnosis Frequencies.

Hospital A Hospital B Pooled p-value

N = 164 392 556

Mean Age yrs (range) 57.3
(18–94)

63.8
(18–104)

61.77
(18–104)

0.798

Gender (%male) 60 52.3 57.8 ,0.001

Ethnicity (%white) 81.9 86.4 84.9 0.175

Mean APACHE IV Score (range) 66.2
(23–132)

69.7
(12–161)

68.58
(12–161)

0.153

Emergency Department Admissions 73
(46%)

196
(50%)

269
(48%)

0.238

UHC Predicted Mortality 0.194
(SD 0.208)

0.135
(SD 0.172)

0.153
(SD 0.185)

0.056

APACHE Predicted Mortality 0.298
(SD 0.251)

0.224
(SD 0.211)

0.246
(SD 0.225)

0.001

APACHE Diagnosis

N (%) N (%) N (%)

Respiratory

- ARDS 1 (0.6) 5 (1.2) 6 (1.1) 0.488

- Respiratory Arrest 3 (1.8) 3 (0.8) 6 (1.1) 0.268

- Respiratory- other 43 (26.2) 73 (18.6) 116 (20.9) 0.044

- Pneumonia 18 (11.0) 45 (11.5) 63 (11.3) 0.864

Cardiac

- Cardiac Arrest 6 (3.7) 4 (1.0) 10 (1.8) 0.033

- CARDIAC Other 4 (2.4) 18 (4.6) 22 (4.0) 0.235

GI

- GI Bleed 25 (15.2) 47 (12.0) 72 (12.9) 0.297

- GI Other 1 (.6) 19 (4.8) 20 (3.6) 0.014

Metabolic

- DKA 2 (1.2) 8 (2.0) 10 (1.8) 0.506

- ENDO Other 2 (1.2) 10 (2.5) 20 (3.6) 0.324

Renal

- Renal Failure - Acute 9 (5.5) 14 (3.5) 23 (4.1) 0.301

Neuro

- NEURO Other 3 (1.8) 23 (5.9) 26 (4.7) 0.397

- COMA 13 (8.9) 8 (2.0) 21 (3.8) 0.001

Systemic

- Overdose 5 (3.0) 33 (8.4) 38 (6.8) 0.022

- Sepsis 24 (14.6) 43 (11.0) 67 (12.1) 0.226

Other 5 (3.0) 32 (8.1) 37 (6.7) 0.028

doi:10.1371/journal.pone.0032286.t001
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model) to 1.73 (administrative model) depending on the model

chosen for reporting. Furthermore, when comparing the two

institutions the models differ in their conclusion. The administra-

tive model suggests there is a statistical difference in outcomes

between Hospital 1 and 2. The physiologic model suggests there is

no statistical difference between the two hospitals. This informa-

tion could lead providers to inaccurate conclusions with regard to

the quality of their practice or institution. Likewise, patients

presented with this information may be influenced in different

ways by these conclusions.

Figure 1. ROC Curve for UHC and APACHE-IV models to discriminate survivors from non-survivors.
doi:10.1371/journal.pone.0032286.g001

Figure 2. Predicted Mortality by prediction model. Panel A: Mean and 95% CI with T-Test result. Panel B: Box and Whisker Plot for each model.
doi:10.1371/journal.pone.0032286.g002
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Importantly our results also suggest that in critically ill patients,

the administrative model is influenced by the severity of illness in a

way that goes against the goal of risk adjustment. The risk-adjusted

mortality for both hospitals is well above one when the predicted

mortality for the patients is very low. Conversely, at higher levels

of predicted mortality, the mortality index at both hospitals

approached 1. So if a hospital’s patients are oversampled for high

predicted mortality the hospital mortality index may be very close

to one, however, if their population is oversampled for patients

deemed to have a low risk of death, hospital mortality index could

easily exceed one. This is counter to the goal of the mortality

index, which is to allow for hospital comparisons.

To our knowledge this is the first study to describe the practical

application of two widely used mortality prediction models in

critically ill patients that differ in methodology. Previous literature

in critically ill patients has focused on different physiologic models

Figure 3. Relationship between UHC and APACHE Models. Panel A. Linear relationship for UHC model (y-axis) and APACHE-IV (x-axis) for
subgroup admitted directly from emergency department. Panel B. Bland-Altman Plot of Predicted Mortality for those patients admitted directly to the
ICU from the Emergency Department: The x-axis represents the mean of the two values and the y-axis represents the difference.
doi:10.1371/journal.pone.0032286.g003

Figure 4. Relationship between UHC and APACHE Models for patients admitted through the emergency department. Panel A. Linear
relationship for UHC model (y-axis) and APACHE-IV (x-axis) for subgroup admitted directly from emergency department. Panel B. Bland-Altman Plot of
Predicted Mortality for those patients admitted directly to the ICU from the Emergency Department: The x-axis represents the mean of the two values
and the y-axis represents the difference.
doi:10.1371/journal.pone.0032286.g004
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[6,16]. Our study does not support the conclusion that one model

is superior or should be chosen over another. It builds on the work

of Kuzniewicz et al by demonstrating important facts about

standardized mortality rates [16]. First, the methodology used to

develop a mortality prediction model can influence how those

models compare. Second, two models can have similar AUC and

still perform remarkably differently. As described by Bland and

Altman, the correlation of two methods designed to measure the

same parameter or property does not automatically imply that

there is good agreement [15].

There are important differences in our study from what was

published by Bratzler et al [12]. First, their study did not focus on

critically ill patients. Second, they focused on patients admitted

with a diagnosis of community acquired pneumonia. These

population differences could explain the differences in our results.

Importantly, the patients in our study with a low probability of

death as predicted by our administrative model (UHC) had similar

predicted mortality by the physiologic model (APACHE). This

result is reflected in our finding that variance in physiologic model

predicted mortality increased as administrative model predicted

mortality increased.

The discrepancies between the two models may reflect

limitations associated with this study. First, while this study is

multicenter, our institutions share common features in that they

are both academic medical centers providing tertiary and

quaternary care to a wide referral base. Therefore, our results

may not be generalizable to all ICUs. Second, while relatively

large, our sample size is small compared to the validation cohorts

used by both UHC and APACHE. It is also important to note that

our study may still under represent the administrative model

because it relies on coded variables, which may reflect similar

limitations in documentation between institutions. Unlike hospital

Table 2. APACHE IV Predicted Mortality Mean, Standard
Deviation, and Variance by Qaurtile of UHC Predicted
Mortality ANOVA (chi-aquare 254.5 p,0.0001) rejected the
null hypothesis that the variances where equal.

UHC
Quartile

APACHE
IV Mean 95%Ci

Standard
Deviation Variance

0–.007 0.06 0.1568 0.08 0.006

.008–.07 0.17 0.3136 0.16 0.026

.08–.25 0.31 0.392 0.2 0.043

.26–.95 0.42 0.4508 0.23 0.055

doi:10.1371/journal.pone.0032286.t002

Table 3. Hospital Comparison for UCHMI and APACHEMI for full sample and at each quartile of UHC predicted mortality.

Hospital 1 Hospital 2 p-value

n 164 392

Raw Mortality 27.20% 14.20% ,0.0001

APACHE Score 65.9 69.7 0.1057

Mean (95% CI) Median (IQR) Mean (95% CI) Median (IQR) Parametric
Non-
parametric

Administrative Model Mortality Index 3.39 (1.11, 5.66) 0.00 (1.25) 1.03 (0.53, 1.54) 0.00 (1.18) 0.047 0.0003

Clinical Model
Mortality Index

1.03 (0.57, 1.49) 0.00 (1.18) 0.56 (0.39, 0.75) 0.00 (0.00) 0.066 0.0006

By UHC Predicted Mortality Quartile

Q1 n 21 111 132

Mean APACHE IV Score 49.14 48.37

Administrative Model Mortality Index 0 0.00 (0) 0 0.00 (0) NA NA

Clinical Model
Mortality Index

0 0.00 (0) 0 0.00 (0) NA NA

Q2 n 37 101 138

Mean APACHE IV Score 54.9 65.8

Administrative Model Mortality Index 10.66 (0.71, 20.59) 0.00 (0) 1.98 (0.11,3.77) 0.00 (0) 0.08 0.02

Clinical Model
Mortality Index

0.75 (0.01, 1.51) 0.00 (0) 0.35 (0, 0.72) 0.00 (0) 0.28 0.03

Q3 n 53 85 138

Mean APACHE IV Score 72.5 77.8

Administrative Model Mortality Index 2.13 (1.11, 3.15) 0.00 (4.29) 1.45 (0.73, 2.17) 0.00 (0) 0.26 0.15

Clinical Model
Mortality Index

0.93 (0.35, 1.51) 0.00 (1.18) 0.67 (0.29, 1.07) 0.00 (0) 0.44 0.16

Q4 n 53 95 148

Mean APACHE IV Score 73.6 91.5

Administrative Model Mortality Index 0.92 (0.59, 1.26) 0.00 (1.52) 0.92 (0.66, 1.18) 0.00 (2.09) 0.98 0.84

Clinical Model
Mortality Index

1.72 (0.52, 2.92) 0.00 (1.66) 1.37 (0.88, 1.86) 0.00 (1.82) 0.52 0.74

doi:10.1371/journal.pone.0032286.t003
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2, hospital 1 did not utilize and electronic database of critically ill

patients. The choice of 200 consecutive patients may reflect

another potential source of bias; however, we have previously

shown that there is little seasonal influence at our institution on

outcome [17].

It should be noted that the appeal of administrative modeling is

the relative ease of collecting and analyzing the variables in the

model. However, there are important biases introduced when

using physician-coded diagnosis for risk adjustment, specifically

the accuracy of those diagnoses. Additionally, the coding may not

adequately characterize critically ill patients. For example, two

patients admitted with pneumonia may be very different in their

degree of physiologic derangement and this discrepancy may not

be fully captured in administrative modeling. Our study may also

be impacted by discharging patients from a hospital who

ultimately die at a long term acute care hospital (LTACH) which

hospital 2 had at the time of the study and hospital 1 did not at the

time of the study. Alternatively, in the absence of a robust

electronic tool, physiologic based modeling is labor intensive and

may be difficult to apply across multiple hospitals without first

addressing differences in infrastructure.

In our studies, both models were outstanding at this

discrimination, as described by the ROC curve in Figure 1.

Interestingly, both models had significant Hosmer-Lemeshow

tests, suggesting that their goodness of fit diverged at extremes.

This discrepancy may explain why, as predicted mortality

increased, the divergence increased in the Bland-Altman plots.

Consequently, these findings may have important implications for

understanding variations between ICUs. The Bland-Altman plot

demonstrates a substantial degree of difference between the two

methods and that, despite their weak linear relationship; the two

models are not interchangeable. This result aligns with previous

studies that compared models of severity of illness, including

Sequential Organ Failure Assessment and Mortality Prediction

Model [6,16].

This disagreement has important implications at individual

patient, ICU, and institutional levels, as these models are used to

benchmark performance between units and against institutional

peers. Moreover, as patients have increasing access to this

information, consumers may be influenced by information that

is more rightfully placed in the realm of research (to describe

populations) and institutional quality (describing trends). Further-

more, given that critically ill patients are at the extremes of

predicted mortality, it is important to note that it was these

patients who had the most disparate results. Our results do not

imply that one model is superior to another, but suggest that, in

critically ill patients, administrative models may predict a lower

risk of mortality that does not always reflect the individual patient’s

condition. It is also important to note that how a model assigns

mortality may influence provider metrics. For example, in a closed

ICU system, critical care physicians may be penalized because the

majority of discharges, attributed to them, are deaths, so the best

Mortality Index they can legitimately achieve is 1.0. Therefore, as

a quality measure, mortality index should be interpreted in this

light. In addition, it should be noted that at least in this study of

critically ill patients, the mortality index was not normally

distributed. Therefore, while it is convenient to report the mean

without confidence interval, range, or other statistical description

like a box-and-whisker plot, this value provides only limited

information even within robust models.

The use of administrative variables for mortality and length of

stay prediction is inherently retrospective and reflects the care

from admission to discharge, as well as discharge options available.

As recently shown by Kozower et al, this approach can skew the

predictive model [18]. Iezzoni et al, demonstrated that this

methodology creates difficulty in distinguishing if patient outcomes

are related to care, severity of illness, or co-morbidities [19]. We

attempted to study this concept in our subgroup, which showed

improved linear relationship, but continued to show a higher

predicted mortality for the physiologic model compared to the

administrative model. In our study, the administrative model

significantly underestimated the physiologic model predicted

mortality for our patient population.

Mortality prediction models are designed to discriminate

between survivors and non-survivors at a population level.

Predictive modeling is a useful descriptive tool, thereby allowing

clinicians to apply the results of trials to their patients and to

compare populations between trials. Although these models were

developed as research tools, their application has been extended to

quality in the form of observed versus expected mortality indices.

Subsequently, adjusted mortality indices are intended to allow

hospitals to compare themselves to their peers as well as to study

temporal differences within the institution. Adjusted mortality has

important limitations as a measure of hospital quality, including

the ‘‘case-mix adjustment fallacy’’ [20]. ‘‘Case-mix adjustment

fallacy’’ is important because severity of illness adjustment is

thought to standardize comparisons. Given that only a small

proportion of hospital deaths are preventable, the sensitivity of this

measure may be decreased when used to estimate quality of an

institution or individual unit within an institution [20,21]. In our

sample, the number of ‘‘unexpected deaths’’ as we defined them

accounted for a significant portion of deaths (19.8%) in the

administrative model, but a smaller proportion (6.9%) using the

medical record model. These results suggest that, while using a

threshold of 10% predicted mortality, the vast majority of ICU

deaths in this sample were predictable. It also suggests that it may

be possible to identify these patients. As quality measures improve,

standardized mortality ratios may be replaced by more sensitive

measures of quality. One possibility would be to move from a

mortality index reporting system, to a system of reporting number

of unexpected deaths per 1000 patient admissions, which may be

more informative. However, at this time, understanding that

models differ in how they ‘‘standardize risk’’ is important for policy

makers and clinicians.

In this study, we found that well designed models to predict

hospital mortality have important limitations that do not diminish

their usefulness in describing populations and guiding institutions

towards improved quality. However, these models are like apples

and oranges - both are good, but unique, and understanding their

unique characteristics is critical in the interpretation of their

results. Administrative models may have important limitations for

critically ill patients, but physiologic models’ reliance on clinical

variables may mask quality metrics related to ‘‘never’’ events or

misadventures in care. Therefore, differences in model perfor-

mance have important implications as hospitals are increasingly

compared to each other, but less so when a hospital compares its

own performance over different time points to assess its

interventions on quality performance and improvement.

In conclusion, while it has been suggested that administrative

models provide estimates of mortality that are similar to

Figure 5. Distribution of the UHCMI and APACHEMI by hospital, compared for the total poulation and at each qaurtile of UHC
predicted mortality.
doi:10.1371/journal.pone.0032286.g005
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physiologic models in non-critically ill patients with pneumonia

[12], our results suggest this finding can not be applied to patients

admitted to intensive care units. As patients and providers

increasingly use publicly reported information in making health

care decisions and referrals, it is critical that the provided

information be understood. We suggest that when interpreting

‘‘report cards’’ or metrics, health care providers determine how

the risk adjustment was made and compares to other risk

adjustment models. Furthermore, knowledge of the peer group

they are being compared with as well as distribution of the risk

adjusted outcome is important in interpreting their own results.

We do not suggest that they dismiss the information out of hand as

not reflective, but rather use a deeper understanding of their own

outcomes to drive improvements in performance that reflect

practice improvement.
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