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Demographic effects 
on facial emotion expression: 
an interdisciplinary investigation 
of the facial action units 
of happiness
Yingruo Fan1,2, Jacqueline C. K. Lam1,2* & Victor O. K. Li1*

Understanding demographic difference in facial expression of happiness has crucial implications on 
social communication. However, prior research on facial emotion expression has mostly focused on 
the effect of a single demographic factor (typically gender, race, or age), and is limited by the small 
image dataset collected in laboratory settings. First, we used 30,000 (4800 after pre-processing) 
real-world facial images from Flickr, to analyze the facial expression of happiness as indicated by the 
intensity level of two distinctive facial action units, the Cheek Raiser (AU6) and the Lip Corner Puller 
(AU12), obtained automatically via a deep learning algorithm that we developed, after training on 
75,000 images. Second, we conducted a statistical analysis on the intensity level of happiness, with 
both the main effect and the interaction effect of three core demographic factors on AU12 and AU6. 
Our results show that females generally display a higher AU12 intensity than males. African Americans 
tend to exhibit a higher AU6 and AU12 intensity, when compared with Caucasians and Asians. The 
older age groups, especially the 40–69-year-old, generally display a stronger AU12 intensity than 
the 0–3-year-old group. Our interdisciplinary study provides a better generalization and a deeper 
understanding on how different gender, race and age groups express the emotion of happiness 
differently.

Human facial expressions are able to convey countless important non-verbal messages. There has been a long-
standing debate over the universality of human facial emotional  expression1 (FEE) in psychology and neu-
roscience. The prominent  studies2,3 conducted by Ekman and colleagues provided a strong piece of evidence 
in support of the universality of FEE. Nevertheless, for over two decades, researchers have been refuting the 
assumption of universality, and consistently agreed on the cultural shaping of human facial  expressions4–6. Several 
 works7,8 examined the role of culture on facial expressions, in which participants were required to select facial 
images based on their own culture-specific intuitions and observations. Along those lines, Jack and  colleagues4 
reconstructed the dynamic mental representation of facial expressions. Their results show that the representa-
tion of emotional intensity varies across cultures. While the East Asian models express the emotional intensity 
primarily with the eyes, the Western Caucasian models express emotional intensity with other parts of the face. 
As compared to the cultural effect, the gender effect on facial expressions is more consistently reported in the 
 literature9–11. A common belief is that female is more emotionally expressive than male and tends to display 
positive emotional states more  exaggeratedly12, as supported in many earlier related  studies9,13,14. Concerning the 
age effect on facial expressions, one early  study15 confirmed that the face of an older person displays more mixed 
expressions than that of a younger person, while some other  studies16,17 found no age effect on facial expres-
sions. The results showing that the effect of aging vary from culture to culture may potentially be attributable to 
methodological disparity and small sample size.

With the prior psychological evidence concerning the difference in facial expressions and muscle activities 
in relation to demographic influence, this study aims to investigate the demographic effects on the facial expres-
sion of happiness (FEH) via the facial action units (FAUs) that are associated with the expression of happiness. 
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Many  studies4–17 examined the effect of a single demographic factor, such as gender, race, or age, on the FEE, but 
few explored the interaction effects of the three demographic factors on the FEE. For instance, prior  study9–14 
exploring the effect of age neglected the possibility that age might interact with gender or race to affect FEH. 
However, our study provides a fuller understanding of the main effect, as well as the interaction effect of race, 
gender and age on FEH via the FAUs of happiness. Furthermore, unlike traditional FEE data collection, which 
were normally conducted in controlled laboratory settings, facial expression pictures were collected under natural 
settings, based on an existing big and real-life facial expression  database18,19.

As an alternative to FEE evaluation, the facial action coding system (FACS)20 is developed to provide a more 
comprehensive and objective measurement of facial expressions. FACS decomposes facial expressions into over 
40 individual facial muscle movements, namely, the Action Units (AUs). A certain combination of facial AUs 
(FAUs) is used to denote a specific facial expression. For real-life human interaction, smiling is the most com-
mon FEH. Several studies have confirmed that the smile intensity in pictures can be used to represent the extent 
of marriage  satisfaction21 and  longevity22. Specifically, the highly popular “Duchenne smile”23–25 has long been 
considered an indicator of genuine positive emotions in social  science26 and affective  computing27. According to 
FACS, “Duchenne smile” consists of the Cheek Raiser (AU6) and the Lip Corner Puller (AU12) muscle actions. 
AUs are normally coded on a six-point scale (with 0 to 5 to indicate the level of emotional intensity), allowing 
one to quantify the demographic difference in FEH.

For the purpose of this study, we develop a deep learning-based  algorithm28 to estimate the intensity level of 
two important AUs (AU6 and AU12), which are naturally associated with FEH. Our automated algorithm is based 
on the heatmap regression framework, which encodes the facial images to a set of heatmaps. Heatmaps can be 
used to represent the geometrical and spatial characteristics of specific FAUs. Besides, the heatmap pixel values 
can be used to reflect the FAU intensity. Recently, the popularity of online social platform, such as Flickr, offers 
a new source of easily and freely accessible, large-scale real-life facial image data. Analytic samples are collected 
from the Flickr facial image  database18, with all facial images labeled with ‘happy’ being collected. To ensure 
data quality, facial images with severely occluded faces, with poor lighting, and low resolution are excluded. As 
such, we combined the social “big data” with our automated facial coding  algorithm28 to examine the individual 
and the interactive effect of gender, age, and race on FEH. To summarize, our novelties include the following. 
(i) When compared with the self-reporting measures, we have created a balanced composition of facial image 
samples based on age, race and gender, extending beyond controlled laboratory settings to more natural set-
tings taking natural facial images as inputs. (ii) To the best of our knowledge, this is the first study that leverages 
artificial intelligence (AI) techniques for measuring the FAU intensity of happiness, and analyzing the effects 
of three key demographic factors on FEH simultaneously. (iii) Our study demonstrates that AI-driven social 
“big data” analysis can be used to measure FEH, via examining the FAU intensity of happiness, to validate the 
theory of human emotions in three closely related fields, such as psychology, anthropology and social studies. 
However, FEH is a complex notion that can be influenced by various external and internal factors. Therefore, 
these three demographic variables are unlikely to fully capture all the differences in FEH via corresponding FAUs. 
Our study therefore aims to first examine how these three demographic variables would affect the intensity of 
FAU-associated FEH, by identifying the specific differences in FAUs of happiness across different demographic 
groups in details.

Results
Figure 1 provides an overview of the three demographic variables and their effects on AU6 and AU12 intensity. 
The independent variables include gender (male and female), race (Caucasian, Asian and African American), and 
age (0–3, 4–19, 20–39, and 40–69-year-old), whereas the dependent variables are AU6 and AU12 intensity. Our 
results are based on a gender-, race- and age-balanced sample consisting of 4800 images, with each demographic 
subgroup (e.g., Caucasian, male, 0–3-year-old) consisting of 200 images. To gain a deeper understanding of the 
main and the interaction effect, a three-way (race × gender × age) analysis of variance (ANOVA) is conducted 
on AU6 and AU12 intensity separately (Table 1), followed by the posthoc comparison test that compares the 
means across all demographic groups. The F-value and the p value generated by the three-way ANOVA are used 
for evaluating the statistical significance; the mean difference (MD) and the corresponding standard error (SE) 
generated by the post-hoc comparison are used to determine if there exists any difference across groups.

The three-way ANOVA (Table 1a) reveals that race (F = 63.211, p < 0.001, partial η2=0.026), age (F = 12.172, 
p < 0.001, partial η2=0.008), race × gender interaction (F = 4.868, p = 0.008, partial η2=0.002), and race × age inter-
action (F = 4.071, p < 0.001, partial η2=0.005) have a small but significant effect on AU6 intensity. Likewise, the 
three-way ANOVA (Table 1b) confirms that race (F = 85.101, p < 0.001, partial η2=0.034), gender (F = 35.318, 
p < 0.001, partial η2=0.007), age (F = 68.766, p < 0.001, partial η2=0.041), plus the race × gender interaction 
(F = 3.646, p = 0.026, partial η2=0.002), race × age interaction (F = 2.736, p = 0.012, partial η2=0.003), and gen-
der × age (F = 8.776, p < 0.001, partial η2=0.005) interaction have a small but significant effect on AU12.

The main effect. Race main effect. The race effect on AU6 intensity and AU12 intensity is similar, as 
shown in Fig. 1b,e. Moreover, the race effect on AU12 intensity is stronger than that on AU6 intensity, implying 
that the change in the activity of muscles in the mouth area (AU12) is more pronounced than that around the 
cheek area (AU6). The posthoc comparison suggests that the African American group has a significantly higher 
AU12 intensity when compared with the Asian group (MD = 0.436, SE = 0.034, p < 0.001, Cohen’s d = 0.454) and 
the Caucasian group (MD = 0.182, SE = 0.034, p < 0.001, Cohen’s d = 0.183), and the Caucasian group has a sig-
nificantly higher AU12 intensity when compared with the Asian group (MD = 0.254, SE = 0.034, p < 0.001, Co-
hen’s d = 0.261). A similar trend is also found in AU6 intensity. Our test results imply that the African American 
group and the Caucasian group will in general display a higher intensity of AU6 and AU12 than the Asian group.
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Figure 1.  Mean AU6 intensity level and mean AU12 intensity level by gender, race and age. The error bar 
represents the standard error.

Table 1.  Three-way (Race × Gender × Age) ANOVA of the main effect and the interaction effect on (a) AU6 
intensity and (b) AU12 intensity. Significant variables and their corresponding p values are highlighted in grey. 
p value < 0.05 is considered as statistically significant. The effect size can be represented by the partial Eta-
squared ( η2 ), a higher value indicates a higher effect size.

Factor Sum of squares df Mean square F-value p value Partial η2

(a) Three-way ANOVA on AU6 intensity

Race 97.476 2 48.738 63.211 < 0.001 0.026

Gender 0.921 1 0.921 1.195 0.274 < 0.001

Age 28.156 3 9.385 12.172 < 0.001 0.008

Race × Gender 7.506 2 3.753 4.868 0.008 0.002

Race × Age 18.833 6 3.139 4.071 < 0.001 0.005

Gender × Age 2.763 3 0.921 1.194 0.310 0.001

Race × Gender × Age 8.395 6 1.399 1.815 0.092 0.002

(b) Three-way ANOVA on AU12 intensity

Race 153.417 2 76.709 85.101 < 0.001 0.034

Gender 31.835 1 31.835 35.318 < 0.001 0.007

Age 185.954 3 61.985 68.766 < 0.001 0.041

Race × Gender 6.573 2 3.287 3.646 0.026 0.002

Race × Age 14.796 6 2.466 2.736 0.012 0.003

Gender × Age 23.732 3 7.911 8.776 < 0.001 0.005

Race × Gender × Age 6.987 6 1.165 1.292 0.257 0.002
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A cross-cultural psychological  study29 revealed that cultural difference in the arousal emotional expression 
between the East and the West is prominent. People in the West tend to embrace a higher arousal emotional 
state, whilst people in the East tend to embrace a lower arousal emotional  state29,30. Besides, the cultural  theory31 
posited that the Chinese culture and the American culture conceptualize happiness differently. For Americans, 
happiness is conceived as being upbeat and unmistakably positive, whilst Chinese tend to conceive happiness as 
a more solemn and calm  entity31. Such difference in the conceptualization of happiness between the West and 
the East might explain why the Caucasian group and the Asian group display highly different AU6 and AU12 
intensity.

Gender main effect. Based on the three-way ANOVA, a significant gender effect on AU12 intensity (F = 35.318, 
p < 0.001, partial η2=0.007) has been identified, whilst no significant gender effect on AU6 intensity (F = 1.195, 
p = 0.274, partial η2<0.001) has been found. Accordingly, the posthoc test suggests that the female group shows 
a significantly higher AU12 intensity as compared to the male group (MD = 0.163, SE = 0.027, p < 0.001, Cohen’s 
d = 0.165). The significant difference in AU12 intensity can also be observed in Fig. 1d, indicating that the female 
group is generally more expressive in happiness, giving a higher AU12 intensity (or a bigger smile) than the male 
group.

From a psychological perspective. Dodd et al.32 concluded that gender difference can be detected in the 
way people smile and is linked to the cultural expectation that females should behave friendlier and are more 
emotionally expressive than males. Interestingly, Clancy and  Dollinger33 provided a compelling evidence that 
such gender difference in smiling can be attributable to females’ greater tendency to seek social connectedness 
than males. Besides, various  studies11,34–36 supported the view that females are more expressive than males. This 
experimental and statistical study will partially support these psychological views on emotional expressiveness 
variation by gender.

Age main effect. The three-way ANOVA result on AU6 and AU12 intensity (Table 1) indicates that age has 
a small but significant effect on both FAUs (AU6: F = 12.172, p < 0.001, partial η2=0.008; AU12: F = 68.766, 
p < 0.001, partial η2=0.041). In addition, the posthoc comparison finds that the mean AU6 intensity of the 
40–69-year-old group is significantly higher than that of the 20–39-year-old (MD = 0.197, SE = 0.036, p < 0.001, 
Cohen’s d = 0.191). Previous  finding37 suggested that wrinkles, folds and lower expressivities of older faces may 
affect how facial expressions are being decoded. Based on this observation, we hypothesize that these facial fea-
tures due to old age may also affect the facial expression of happiness, resulting in a lower AU6 intensity across 
the old age group. Concerning the age-related effect on facial expressions, several  studies16,17,38 found no differ-
ence in expressivity across the younger and the older age groups. These results contradict our newly generated 
results supporting that the older age group may express happiness more intensively than the younger age group. 
It would be worthwhile to conduct more studies to investigate the underlying mechanisms that govern the facial 
expressions of different age groups.

Our results show that the 4–19-year-old, the 20–39-year-old and the 40–69-year-old have a significantly 
higher AU12 intensity than the 0–3-year-old (4–19-year-old: MD = 0.432, SE = 0.039, p < 0.001, Cohen’s d = 0.467; 
20–39-year-old: MD = 0.414, SE = 0.039, p < 0.001, Cohen’s d = 0.451; 40–69-year-old: MD = 0.500, SE = 0.039, 
p < 0.001, Cohen’s d = 0.553). Figure 1f clearly shows there is an obvious big mean difference between the 
0–3-year-old and the other age groups, indicating that the infant group has a lower AU12 intensity than the rest 
of the age groups. With respect to the race × age interaction effect (Fig. 2d), across all race groups, there is a big 
mean difference between the 0–3-year-old and the other age groups. Hence, the big mean difference is not caused 
by a specific race group. Amongst all age groups, the 4–19-year-old smile much more intensively via AU12 when 
compared to the 0–3-year-old infant group.

The interaction effect. Race × Gender interaction effect on AU6 intensity. As displayed in Table 1a, the 
race × gender interaction effect on AU6 intensity is small but significant (F = 4.868, p = 0.008, partial η2=0.002), 
indicating that there is a statistically significant difference in the expression of AU6 intensity across the female 
group and the male group when race is being controlled for (see also Fig. 2a). To reveal whether certain race 
group shows a higher AU6 intensity on the female group than on the male group, we further analyzed the gender 
effect on each of the three race groups by the posthoc comparison. Our result shows that the Asian female group 
exhibits a marginally higher AU6 intensity than the Asian male group (MD = 0.089, SE = 0.044, p = 0.043, Cohen’s 
d = 0.100). On the contrary, the African American group and the Caucasian group do not show any significant 
difference between females and males.

We then analyzed the gender effect on race. The univariate test shows that different races have displayed a 
significant statistical difference on AU6 intensity across both the female group (F = 17.816, p < 0.001), and the 
male group (F = 38.754, p < 0.001). For the female group, the African-American group exhibits a significantly 
higher AU6 intensity when compared with the Asian group (MD = 0.262, SE = 0.044, p < 0.001, Cohen’s d = 0.451) 
and the Caucasian group (MD = 0.116, SE = 0.044, p = 0.024, Cohen’s d = 0.451), while the Caucasian group has 
displayed a significantly higher AU6 intensity when compared with the Asian group (MD = 0.145, SE = 0.044, 
p = 0.003, Cohen’s d = 0.451). A similar trend is found among the male group, as observed in (Fig. 2a).

Race × Age interaction effect on AU6 intensity. As shown in Fig. 2b, there is a small but statistically significant 
race × age interaction effect on AU6 intensity (F = 4.071, p < 0.001, partial η2=0.005), implying that different age 
groups have displayed a statistically significant difference in the expression of AU6 intensity, when race is being 
controlled for. To reveal whether certain race group displays a higher AU6 intensity on one age group than on the 
others, we further analyze the age effect on each of the three race groups by the posthoc comparison.
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For the African American cohort, the 40–69-year-old exhibits a significantly higher AU6 intensity than the 
20–39-year-old (MD = 0.320, SE = 0.062, p < 0.001, Cohen’s d = 0.350). For the Asian, the 4–19-year-old and the 
40–69-year-old display a statistically significantly higher AU6 intensity than the 0–3-year-old (4–19-year-old: 
MD = 0.206, SE = 0.062, p = 0.005, Cohen’s d = 0.240; 40–69-year-old: MD = 0.184, SE = 0.062, p < 0.05, Cohen’s 
d = 0.206). For the Caucasian cohort, the 4–19-year-old turns out to have the highest AU6 intensity across all age 
groups, especially showing a significantly higher AU6 intensity than the 20–39-year-old (MD = 0.276, SE = 0.062, 
p < 0.001, Cohen’s d = 0.314). However, for the Caucasian and the Asian cohort, the 40–69-year-old and the 
20–39-year-old do not show any significant difference in AU6 intensity (Caucasian: MD = 0.135, SE = 0.062, 
p > 0.1, Cohen’s d = 0.152; Asian: MD = 0.069, SE = 0.062, p > 0.001, Cohen’s d = 0.076).

Race × Gender interaction effect on AU12 intensity. To decompose the race × gender interaction on AU12 inten-
sity, we analyzed the race effect on AU12 intensity after controlling for gender, as well as the gender effect on 
AU12 intensity after controlling for race. For both the female group and the male group, the African American 
group displays a much higher AU12 intensity than that of the Caucasian group (Female: MD = 0.098, SE = 0.047, 
p = 0.118, Cohen’s d = 0.100; Male: MD = 0.266, SE = 0.047, p < 0.001, Cohen’s d = 0.265) and the Asian group 
(Female: MD = 0.365, SE = 0.047, p < 0.001, Cohen’s d = 0.372; Male: MD = 0.507, SE = 0.047, p < 0.001, Cohen’s 
d = 0.543). Further, the posthoc comparison reveals that the gender difference in AU12 intensity is more pro-
nounced for the Caucasian group. Specifically, the female group exhibits a significantly higher AU12 intensity as 
compared to the male group for both the Caucasian group (MD = 0.228, SE = 0.047, p < 0.001, Cohen’s d = 0.227) 
and the Asian group (MD = 0.202, SE = 0.047, p < 0.001, Cohen’s d = 0.217), but no significant gender difference 
in the display of AU12 intensity is identified for the African American group.

Race × Age interaction effect on AU12 intensity. To decompose the race × age interaction effect on AU12 inten-
sity, we first analyzed the race effect on AU12 intensity after controlling for age, then the age effect on AU12 
intensity after controlling for race. Table 2 summarizes the results. Across all age groups, the African American 
group’s mean AU12 intensity is significantly higher than that of the Asian group (see Fig. 2d and Table 2a). 
Across all race groups, the 4–19-year-old, the 20–39-year-old and the 40–69-year-old exhibit a significantly 
higher AU12 intensity than the 0–3-year-old, as shown in Fig. 2d and Table 2b. For the African American cohort, 
the 40–69-year-old smiles more intensively in AU12 than the rest of the age groups, but the difference is not 
statistically significant when compared with the 4–19-year-old. For the Asian cohort, the young adult group 
(20–39-year-old) displays a bigger smile intensity in AU12 than the rest of the age groups, but the difference is 
not statistically significant, except when compared with the 0–3-year-old. For the Caucasian cohort, the old age 
group (40–69-year-old) displays a bigger smile intensity in AU12 than the rest of the age groups, but the differ-
ence is not statistically significant when compared with the 4–19-year-old.

Figure 2.  Statistically significant two-way interactions on AU6 and AU12 intensity (p < 0.05): (a) race × gender 
interaction on AU6 intensity, (b) race × age interaction on AU6 intensity, (c) race × gender interaction on AU12 
intensity, (d) race × age interaction on AU12 intensity, and (e) gender × age interaction on AU12 intensity. The 
error bar represents the standard error.
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Gender × Age interaction effect on AU12 intensity. Lastly, we analyzed the gender × age interaction effect on 
AU12 intensity. We first analyzed the age effect on AU12 intensity after controlling for gender, then the gender 
effect on AU12 intensity after controlling for age. For the age effect on AU12 intensity, for the female group, the 
20–39-year-old, the 40–69-year-old, and the 4–19-year-old, have a significantly higher AU12 intensity as com-
pared to the 0–3-year-old (20–39-year-old: MD = 0.605, SE = 0.055, p < 0.001, Cohen’s d = 0.676; 40–69-year-old: 
MD = 0.579, SE = 0.055, p < 0.001, Cohen’s d = 0.631; 4–19-year-old: MD = 0.479, SE = 0.055, p < 0.001, Cohen’s 
d = 0.520); while the 20–39-year-old female group tends to have a slightly higher AU12 intensity as compared 
to the 40–69-year-old female group, even though the difference is not statistically significant (MD = 0.025, 
SE = 0.055, p > 0.001, Cohen’s d = 0.025). For the male group, the 40–69-year-old tends to display the highest 
AU12 intensity as compared to the other ages, and a much higher AU12 intensity is displayed by the 40–69-year-
old male group than the 20–39-year-old male group (MD = 0.197, SE = 0.055, p < 0.05, Cohen’s d = 0.197). We 
studied the gender effect on AU12 intensity after controlling for age; for the 20–39-year-old group, there is 
a statistically significant gender effect on AU12 intensity with the female group having a significantly higher 
AU12 intensity than the male group (MD = 0.386, SE = 0.055, p < 0.001, Cohen’s d = 0.381); the same pattern 
is also found across the 40–69-year-old group (MD = 0.164, SE = 0.055, p = 0.003, Cohen’s d = 0.163). However, 
there is no statistically significant gender difference in AU12 intensity between the 0–3-year-old group and the 
4–19-year-old group (see Fig. 2e).

Figure 2c–e summarize the Race × Gender interaction (F = 3.646, p = 0.026, partial η2=0.002), race × age inter-
action (F = 2.736, p = 0.012, partial η2=0.003), and Gender × Age interaction (F = 8.776, p < 0.001, partial η2=0.005) 
on AU12 intensity, respectively.

Table 2.  Pairwise comparison of the Race × Age interaction effect on AU12 intensity. (a) Race effect on AU12 
intensity after controlling for Age; (b) Age effect on AU12 intensity after controlling for Race. Statistically 
significant mean difference (MD) is highlighted in grey. p value < 0.05 is considered statistically significant. The 
effect size is determined by Cohen’s d. A higher value indicates a larger standardized mean difference between 
groups.

Age (I) Race (J) Race MD (I–J) SE p value Cohen’s d

(a) Race effect on AU12 intensity after controlling for Age

0–3

African-American Asian 0.592 0.067 < 0.001 0.868

African-American Caucasian 0.345 0.067 < 0.001 0.428

Caucasian Asian 0.247 0.067 0.001 0.325

African-American Asian 0.436 0.067 < 0.001 0.427

4–19

African-American Caucasian 0.140 0.067 0.111 0.134

Caucasian Asian 0.296 0.067 < 0.001 0.289

African-American Asian 0.256 0.067 < 0.001 0.246

20–39

African-American Caucasian 0.107 0.067 0.335 0.103

Caucasian Asian 0.149 0.067 0.079 0.148

African-American Asian 0.460 0.067 < 0.001 0.468

40–69
African-American Caucasian 0.136 0.067 0.127 0.135

Caucasian Asian 0.323 0.067 < 0.001 0.333

(b) Age effect on AU12 intensity after controlling for Race

African-American

0–3 4–19 − 0.312 0.067 < 0.001 0.346

0–3 20–39 − 0.222 0.067 0.006 0.243

0–3 40–69 − 0.386 0.067 < 0.001 0.434

4–19 20–39 0.090 0.067 0.182 0.085

4–19 40–69 − 0.074 0.067 0.270 0.072

20–39 40–69 − 0.164 0.067 0.015 0.157

Asian

0–3 4–19 − 0.468 0.067 < 0.001 0.561

0–3 20–39 − 0.558 0.067 < 0.001 0.663

0–3 40–69 − 0.518 0.067 < 0.001 0.649

4–19 20–39 − 0.091 0.067 0.176 0.090

4–19 40–69 − 0.051 0.067 0.450 0.052

20–39 40–69 0.040 0.067 0.551 0.041

Caucasian

0–3 4–19 − 0.517 0.067 < 0.001 0.536

0–3 20–39 − 0.461 0.067 < 0.001 0.491

0–3 40–69 − 0.595 0.067 < 0.001 0.634

4–19 20–39 0.056 0.067 0.402 0.055

4–19 40–69 − 0.078 0.067 0.247 0.076

20–39 40–69 − 0.134 0.067 0.046 0.134
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Discussion
The demographic effect on FEE has been studied across different disciplines, with most of the research focusing 
on a single demographic factor. In this study, we examined the main and the interaction effect of three demo-
graphic factors on FEH via studying the FAUs of happiness. Meanwhile, we acknowledge the ongoing debates 
about the relationship between human expressions and  emotions39.

Instead of basing on self-reporting information, we adopted a more objective and standardized approach for 
measuring AU intensities, which may suffer less human perception bias. The analysis of the main effect on both 
AU6 and AU12 intensity suggests that, first, in general, the female group shows a higher AU12 intensity than 
the male group in FEH. The result agrees with the traditional  view12 that the female group is more emotion-
ally expressive than the male group and is more likely to show their positive emotional state of happiness more 
expressively. Our result is consistent with the previous  findings11,34–36. Second, when comparing the three different 
races, including African American, Caucasian and Asian, the African American group tends to have a higher 
AU6 and AU12 intensity in FEH than the other two groups, while the Caucasian group has a higher AU6 and 
AU12 intensity than the Asian group. Although the race effect may vary somehow by gender or age, the overall 
trend of the average AU6 and AU12 intensity is consistent, as revealed in Fig. 1b,e.

Third, our results show that the race effect interacts with the age effect to affect AU6 and AU12 intensity, 
respectively, as shown in Fig. 2b,d. In terms of AU6 intensity, for the African American cohort, the 40–69-year-
old exhibits a significantly higher intensity than the 20–39-year-old. For the Asian cohort, the 4–19-year-old and 
the 40–69-year-old display a significantly higher AU6 intensity than the 0–3-year-old. For the Caucasian cohort, 
the 4–19-year-old has the highest AU6 intensity across all age groups, especially showing a significantly higher 
AU6 intensity than the 20–39-year-old. However, for the Caucasian and the Asian cohort, the 40–69-year-old 
and the 20–39-year-old do not show any significant difference in AU6 intensity and the difference is very small. 
In terms of AU12 intensity, for the African American cohort, the 40–69-year-old age smiles more intensively 
than the rest of the age groups, but the difference is very small and not statistically significant when compared 
with the 4–19-year-old. For the Asian cohort, the young adult group (20–39-year-old) displays a bigger AU12 
intensity than the rest of the age groups, but the difference is very small and not statistically significant, except 
when compared with the 0–3-year-old. For the Caucasian cohort, the old age group (40–69-year-old) displays 
a bigger AU12 intensity than the rest of the age groups, but the difference is very small and not statistically sig-
nificant when compared with the 4–19-year-old.

Fourth, significant age-related difference in AU6 and AU12 intensity can also be identified. To our surprise, 
the 4–19-year-old, the 20–39-year-old and the 40–69-year-old have an average AU12 intensity significantly 
higher than that of the 0–3-year-old (see Fig. 1f). Lastly, the gender difference has a more pronounced effect on 
the 20–39-year-old group’s AU12 intensity as compared to the 0–3-year-old group (Fig. 1e). In particular, the 
female exhibits a significantly higher AU12 intensity as compared to the male across the 20–39-year-old, whereas 
no significant gender difference in AU12 intensity is observed for the 0–3-year-old. What might be the reason 
that the gender difference in AU12 intensity is not obvious in the early (0–3) years? We speculate that this may 
be partially attributable to the lesser muscle activities in the mouth area during  infancy37.

In the big data era, social network platforms have been extensively utilized for  emotion40 or  personality41 
analysis. Our study has combined social “big data” in conjunction with FAU recognition technologies to address 
our social science/psychological research question. However, social big data have presented some limitations and 
call for further innovations. Despite Flickr’s popularity, our current Flickr sample may not be fully representa-
tive of the entire American population.  Studies42–45 show that data from the social media may not be necessar-
ily representative of the entire population. However, with the introduction of our data balance techniques, we 
have managed to improve the representativeness of our sample based on the facial images downloadable from 
Flickr. We acknowledge that human facial expressions are complex and can be influenced by various external 
and internal factors, types of expressions (posed vs. spontaneous), cultural backgrounds, where the expressions 
have been made and how the pictures of these expressions have been taken (selfies or pictures taken by others). 
Hence, demographic factors such as age, gender and race may not fully explain how facial expressions differ 
across different people. However, even if the three demographic factors may exhibit small differences in terms 
of the expression of happiness (with small effect sizes), they may still carry a significant statistical effect. Further, 
small effects can have large aggregated  consequences46. Currently, our collected Flickr images cover both posed 
and spontaneous facial expressions. Hence, no distinction regarding the naturalness of our facial expressions 
(whether they are posed or spontaneous) can be made in our study. Our conclusions on the effects of race, age, 
and gender on FAUs of happiness are drawn with this limitation in mind. In the future, we will take into account 
the naturalness of the facial image expressions in our model, in order to obtain a more rigorous understanding 
of the demographic effects on FAUs of happiness.

As compared to other existing social science or psychologically driven facial-recognition studies, our study 
is superior in three dimensions. First, we have created a balanced composition of facial image samples based on 
age, race and gender, extending beyond controlled laboratory settings to more natural settings taking the natural 
facial images as the inputs. Second, utilizing automated AI-driven techniques for measuring the FAU intensity 
of happiness, we analyzed the effects of three key demographic factors on FEH simultaneously (studying both 
their single and interactive effects on the FAU of happiness and FEH). Third, our results have demonstrated that 
AI-driven social “big data” analysis can be used to measure FEH, via examining the FAU intensity of happiness, 
to validate theories of human emotions in three closely related fields, including psychology, anthropology and 
social studies.
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Conclusion
In summary, the present study investigates the statistical effects of three demographic factors, namely, gender, 
race and age, on the FAUs of happiness using human facial images from Flickr and an automated AI-driven FAU 
recognition algorithm. Specifically, two important FAUs associated with happiness are used as the dependent 
variables in our statistical analysis. Our method uses the FAU recognition algorithm developed by us and the 
natural facial image data downloaded from Flickr to provide a full understanding of the main and the interac-
tion effects of gender, race, and age on the FAUs of happiness. Given the strong link between the FAUs of hap-
piness and FEH, our study provides new insights into how the FAU intensity of happiness and FEH can vary 
across different demographic groups. Moreover, our FAU recognition and social media-based image collection 
methodology can provide a completely new avenue for decoding human FEE and facilitating future FEE studies 
on happiness and well-being. To further improve our research design, more image data can be added to each 
demographic group, while additional demographic factors that potentially affect FEH or other emotions can be 
considered in future FAU-based FEE studies.

In our statistical analysis, both the main and the interaction effect of three core demographic factors on 
AU12 and AU6 have been thoroughly examined. Based on Flickr dataset, our results have suggested that females 
are generally having a higher AU12 intensity than males. African Americans are having a higher AU6 and 
AU12 intensity, when compared with Caucasians and Asians. In addition, the older age groups, especially the 
40–69-year-old, are generally displaying a stronger AU12 intensity than the 0–3-year-old. Hence, our interdis-
ciplinary study provides a more automatic and a better generalization, as well as a deeper understanding on how 
different gender, race and age groups of the Flickr population express their emotion of happiness differently, 
partially representing the FEH of the Americans.

Method
Figure 3 summarizes our overarching methodology. We started with data collection and pre-processing. Next, 
we obtained the intensity level of AU6 and AU12 for three demographic groups and their interacting sub-groups 
using our FAU deep learning algorithm. Finally, we performed statistical analysis to investigate the single and 
interaction demographic effects on AU6 and AU12 intensity.

Data collection. We collected facial images from the existing large-scale Real-world Affective Faces 
 Database18,19 (RAF-DB), which is publicly available and widely used by the research community. RAF-DB con-
tains about 30,000 real-world facial expression images downloadable from Flickr, partially representative of the 
facial images of the American population. As stated in the database  description18, the images with facial expres-
sions of happiness were retrieved from Flickr using keyword search, based on a set of emotion keywords, such as 
“happy” and “smile”, etc. Besides, 315 human annotators were asked to label the images with metadata including 
gender, race, age-range and emotion categories. Flickr is a well-established database that provides facial expres-
sions in the natural settings. The facial expressions of people across a wide age range create a new avenue for 
us to examine how race or gender effect on the FAUs of happiness and FEH vary across the age range. Previous 
research studies usually do not consider fully how the age factor will affect AU6 and AU12 intensity after con-
trolling for race or gender. In addition, our study refines the categorization of age groups, for instance, we have 
divided the 0–19-year-old age group into the 0–3-year-old and the 4–19-year-old one. This allows us to examine 
the difference in FAU intensity across different age groups in finer granularity. We selected any images labelled 
with “happy” and with a full facial profile in the original RAF-DB database to our own database. Any severely 
occluded faces having poor lighting and low resolution were removed. This resulted in 5585 images. Second, 
we separated the images into 24 subgroups based on the demographic categories, i.e., race (Caucasian, Asian, 
and African American), gender (male and female), and age (0–3, 4–19, 20–39, and 40–69-year-old). Third, we 
additionally augmented the subgroups “African-American, female, 0–3-year-old”, “Asian, female, 0–3-year-old”, 
and “Asian, female, 0–3-year-old” with pictures from Flickr, to ensure that the number of pictures is distributed 
relatively evenly across all subgroups. In addition, random down-sampling and augmentation have been utilized 
to ensure that our sample consists of evenly distributed demographic sub-groups. Finally, we obtained a database 
with 4800 images.

Data pre-processing. During the data pre-processing stage, first, we utilized an open-source C++ library 
 Dlib47 to detect and extract 68 facial landmarks, i.e., the (x, y)-coordinates of 68 facial key points in the image. 

Figure 3.  Overarching methodology.
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Second, based on the 68 facial landmarks, we applied affine transformations (scaling, rotating, translating, etc.) 
to project the image into a new output coordinate space, where the positions and sizes of all human faces were 
approximately uniform. Third, the detected face regions were cropped and resized to a resolution of 256 × 256 
pixels, which is the standard input size of our developed AU intensity  estimator28. Given the unequal distribu-
tion of the subgroups, we performed random down-sampling for the subgroups with a large number of images, 
with data augmentation performed for any subgroups that have very few images. Data augmentation was imple-
mented by randomly rotating images by − 10° to + 10° with Gaussian noises of different variances added (0.001–
0.02). This step ensured that an evenly distributed sample size can be achieved across all subgroups. Finally, 
we obtained 200 facial expression images for each demographic subgroup, leading to a gender-, race- and age-
balanced sample consisting of 4800 images for our experimental study and data analysis.

Measurement. In this study, the dependent variables are AU6 and AU12 intensity, the two core indicators 
for FEH. To estimate the corresponding AU intensity of a facial image, we have developed a heatmap regression 
 framework28 based on Convolutional Neural Networks (CNNs). Figure 4 illustrates the structure of our proposed 
heatmap regression framework. It is an Encoder-Decoder architecture, where the encoder is ResNet-5048 and the 
decoder consists of three deconvolutional layers and three semantic correspondence convolutional  layers28. The 
deep learning models are developed based on  Tensorflow49, and the training is conducted on a server configured 
with eight NVIDIA GeForce GTX 1080Ti 11G GPUs. The trained deep learning model is validated using a sam-
ple of approximately 70,000 facial images from a challenging benchmark  dataset50. Our automated algorithm 
has achieved a superior performance for the estimation of the intensity of spontaneous FAUs of happiness, as 
demonstrated in our previous  study28. During the inference stage, the output provides estimates for the intensity 
of five fundamental AUs of happiness, including AU6 and AU12 intensity. We applied this model to calculate the 
intensity level of AU6 and AU12 for each demographic subgroup. Details of the FAU estimation model can be 
found in the Supplementary Material.

Statistical analysis. All statistical analyses were performed using IBM SPSS version 26.0.0. Three-way 
analyses of variance (ANOVAs) were carried out to examine the effects of three independent demographic vari-
ables (gender, race, and age) on the dependent variables (AU6 and AU12 intensity). Follow-up simple effect 
analyses were conducted when the interaction effects are statistically significant. Besides, to compare the mean 
AU6 and AU12 intensity of different demographic subgroups, we used the posthoc pairwise multiple compari-
son test, with Bonferroni correction; the α level for all analyses was set at 0.05. The validity of the result can be 
tested by the mean difference (MD) and the corresponding standard error (SE). p value < 0.05 is considered as 
statistically significant.

Data availability
The database that supports the findings of our study is publicly available and can be requested from http://www.
whden g.cn/RAF/model 1.html. The previous  publications18,19 provide more details of the dataset.
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