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Odontoblasts play a crucial role in dentin formation and sensory transduction following
the application of stimuli to the dentin surface. Various exogenous and endogenous
stimuli elicit an increase in the intracellular free calcium concentration ([Ca2+]i) in
odontoblasts, which is mediated by Ca2+ release from intracellular Ca2+ stores and/or
Ca2+ influx from the extracellular medium. In a previous study, we demonstrated that the
depletion of Ca2+ stores in odontoblasts activated store-operated Ca2+ entry (SOCE), a
Ca2+ influx pathway. However, the precise biophysical and pharmacological properties
of SOCE in odontoblasts have remained unclear. In the present study, we examined
the functional expression and pharmacological properties of Ca2+ release-activated
Ca2+ (CRAC) channels that mediate SOCE and evaluated the alkali sensitivity of SOCE
in rat odontoblasts. In the absence of extracellular Ca2+, treatment with thapsigargin
(TG), a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, induced an increase in
[Ca2+]i. After [Ca2+]i returned to near-resting levels, the subsequent application of
2.5 mM extracellular Ca2+ resulted in an increase in [Ca2+]i which is a typical
of SOCE activation. Additionally, application of 2-methylthioadenosine diphosphate
trisodium salt (2-MeSADP), a P2Y1,12,13 receptor agonist, or carbachol (CCh), a
muscarinic cholinergic receptor agonist, in the absence of extracellular Ca2+, induced a
transient increase in [Ca2+]i. The subsequent addition of extracellular Ca2+ resulted in
significantly higher [Ca2+]i in 2-MeSADP- or CCh-treated odontoblasts than in untreated
cells. SOCE, that is activated by addition of extracellular Ca2+ in the TG pretreated
odontoblasts was then suppressed by Synta66, BTP2, or lanthanum, which are CRAC
channel inhibitors. Treatment with an alkaline solution enhanced SOCE, while treatment
with HC030031, a TRPA1 channel antagonist, inhibited it. The amplitude of SOCE at
pH 9 in the presence of HC030031 was higher than that at pH 7.4 in the absence
of HC030031. These findings indicate that CRAC channel-mediated alkali-sensitive
SOCE occurs in odontoblasts. SOCE is mediated by P2Y and muscarinic-cholinergic
receptors, which are activated by endogenous ligands in odontoblasts.

Keywords: odontoblast, store-operated Ca2+ entry, Ca2+ release-activated Ca2+ channel, alkaline stimulation,
dentinogenesis
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INTRODUCTION

Along with their role in physiological dentin formation and
mineralization (dentinogenesis), odontoblasts are important
players in sensory transduction following various stimuli to the
dentin surface (Linde, 1995; Linde and Lundgren, 1995; Tsumura
et al., 2012, 2013; Sato et al., 2013, 2015; Shibukawa et al., 2015;
Kimura et al., 2016; Nishiyama et al., 2016). The stimuli to
the dentin surface induce Ca2+ signaling, resulting in increased
intracellular free Ca2+ concentration ([Ca2+]i) in odontoblasts,
which triggers the release of ATP from pannexin channels,
and glutamate from the volume-sensitive outwardly rectifying
anion channels as neuro-/intercellular-transmitters (Sato et al.,
2015; Shibukawa et al., 2015; Nishiyama et al., 2016). The
released ATP and glutamate play a role in the sensory signal
transduction sequence for dentinal pain by transmitting sensory
signals to neurons, and may promote dentinogenesis by a cluster
of odontoblasts via odontoblast-odontoblast and odontoblast-
trigeminal ganglion (TG) neuron signal communication (Sato
et al., 2015; Shibukawa et al., 2015; Nishiyama et al., 2016).
In addition, we also reported that high pH-sensitive transient
receptor potential (TRP) ankyrin subfamily member 1 (TRPA1)
channel activation facilitates dentinogenesis in odontoblasts in an
external high pH environment (Kimura et al., 2016).

In odontoblasts, Ca2+ signaling is mediated by two closely
related components: external stimuli-evoked Ca2+ influx from
the extracellular medium and Ca2+ release from intracellular
Ca2+ stores. Ca2+ influx is caused by the activation of TRP
channels following the generation of external stimuli-induced
hydrodynamic forces inside the dentinal tubes (Tsumura et al.,
2012, 2013; Sato et al., 2013, 2015; Shibukawa et al., 2015). Ca2+

release from intracellular Ca2+ stores is mediated by inositol-
1, 4, 5-triphosphate (IP3) receptors or ryanodine receptors in
response to G-protein coupled receptor (GPCR) activation or
depolarization (Shibukawa and Suzuki, 1997, 2003). It has been
shown that GPCRs expressed in odontoblasts are activated by
endogenous ligands, such as ATP and glutamate released from
odontoblasts as well as acetylcholine, and bradykinin (Shibukawa
and Suzuki, 2003; Ichikawa et al., 2012; Sato et al., 2015;
Shibukawa et al., 2015; Nishiyama et al., 2016). Activation
of GPCRs by binding of these ligands relays the signal to
the Gαq family, and stimulates phospholipase C to degrade
phosphatidylinositol 4, 5-bisphosphate into IP3, and membrane-
bound diacylglycerol. IP3 then activates the Ca2+ permeable
IP3 receptor channels on the Ca2+ stores (Rhee and Bae,
1997; Syrovatkina et al., 2016). Thus, both Ca2+ influx from
extracellular medium and Ca2+ release from Ca2+ stores increase
[Ca2+]i, and the increased intracellular Ca2+ is extruded to the
extracellular medium via Na+-Ca2+ exchanger (NCX) subtypes
1, and 3 (Lundgren and Linde, 1988; Lundquist et al., 2000;
Tsumura et al., 2010), and/or Ca2+–ATPase (PMCA) (Linde
and Lundgren, 1995) in the distal end of plasma membrane in
odontoblasts. This Ca2+ extrusion to the dentin-mineralizing
front is involved in dentinogenesis. The increased intracellular
Ca2+ is also taken up into the Ca2+ stores via sarco-endoplasmic
reticulum Ca2+–ATPase (SERCA) (refilling) (Lundgren and
Linde, 1997).

Store-operated Ca2+ entry (SOCE) has been well described
as a Ca2+ entry pathway in the plasma membrane that is
activated by the depletion of IP3- and/or ryanodine-sensitive
Ca2+ stores (Putney, 1986, 2010; Parekh and Putney, 2005).
SOCE is a ubiquitous and important Ca2+ influx mechanism
in excitable and non-excitable cells. SOCE participates not
only in the replenishment of Ca2+ stores but also in the
modulation of many physiological functions such as secretion,
cell proliferation, endothelial cell migration, T cell activation,
mast cell degranulation, thrombus formation, and tumor cell
metastasis (Cheng et al., 2011). SOCE is mediated via store-
operated Ca2+ (SOC) channels. The best-characterized SOC
channels are Ca2+ release-activated Ca2+ (CRAC) channels
composed of the pore-forming subunit Orai1, Orai2, or Orai3
(Desai et al., 2015). The depletion of Ca2+ stores is sensed by
Ca2+ store-localized stromal interaction molecule 1 (STIM1), a
Ca2+ store calcium-sensor, and causes translocation of STIM1 to
the plasma membrane. In the plasma membrane, STIM1 interacts
directly with Orai1, resulting in the activation of CRAC channels
(Frischauf et al., 2008, 2016; Desai et al., 2015; Desvignes et al.,
2015). Recent studies have shown the importance of Orai1 in
bone formation by osteoblasts. Both odontoblasts and osteoblasts
evoke the secretion of the extracellular matrix and formation of
mineralized hydroxyapatite (Hwang et al., 2012). In addition,
in ameloblasts, SOCE contributes to enamel formation and
regulation of the expression of enamel matrix proteins. CRAC

FIGURE 1 | Addition of extracellular Ca2+ increases [Ca2+]i following
TG-induced [Ca2+]i increase. (A) Representative trace of [Ca2+]i increase in
response to application of 10 µM TG and subsequent application of 2.5 mM
extracellular Ca2+ (white box at bottom) after 10 µM TG application. Black
box at the top indicates the application of 10 µM TG. (B) Summary bar graph
shows [Ca2+]i increases by application of 10 µM TG (gray column) and
2.5 mM extracellular Ca2+ (open column). Each column indicates the
mean ± SE of 7–9 independent experiments.

Frontiers in Physiology | www.frontiersin.org 2 May 2018 | Volume 9 | Article 443

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00443 April 27, 2018 Time: 16:15 # 3

Kimura et al. High pH-Sensitive SOCE in Odontoblasts

FIGURE 2 | Effects of PLC-coupled receptor agonists on the Ca2+ influx. (A,C,E) Representative traces of [Ca2+]i increase in response to application of
PLC-coupled receptor agonists, 50 nM 2-MeSADP (A), 100 µM CCh (C), or 100 µM DHPG (E), and subsequent application of 2.5 mM extracellular Ca2+ (white
box at bottom) with (red line), or without (black line) agonists (A,C,E). Black boxes at the top indicate the application time period of 50 nM 2-MeSADP (A), 100 µM
CCh (C), or 100 µM DHPG (E). (B,D,F) Summary bar graphs show [Ca2+]i increase by application of 50 nM 2-MeSADP (B), 100 µM CCh (D), or 100 µM DHPG
(F) (upper column) and subsequent application of 2.5 mM extracellular Ca2+ in the presence (gray column) or absence (middle column) of these agonists. Each
column indicates the mean ± SE of 5–11 independent experiments. Statistically significant differences between columns (shown by solid lines) are denoted by
asterisks, ∗P < 0.05.

channels are also involved in enamel development (Nurbaeva
et al., 2015b).

It has been reported that Orai1 is expressed in mouse
odontoblasts (Zheng et al., 2015). In a previous study, we had
also demonstrated that SOCE and CRAC currents were activated
in response to depletion of Ca2+ stores in acutely dissociated
odontoblasts (Shibukawa and Suzuki, 2003). However, the
detailed biophysical as well as pharmacological properties of
SOCE in odontoblasts remain unclear. In the present study, to
elucidate pharmacological properties of SOCE, we investigated
the expression, and pharmacological properties of CRAC

channels in odontoblasts. In addition, we examined extracellular
pH-sensitivity of the SOCE in odontoblasts.

MATERIALS AND METHODS

Ethical Approval
All animals were treated in accordance with the Guiding
Principles for the Care and Use of Animals in the field
of physiological sciences approved by the Council of the
Physiological Society of Japan and the American Physiological
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FIGURE 3 | Synta66 inhibits SOCE. (A) Representative traces of SOCE in
response to subsequent application of 2.5 mM extracellular Ca2+ (white box
at bottom) after pre-incubation with 10 µM TG (black box at the top) with (red
line), or without (black line) 10 µM synta66. (B) Summary bar graph shows
[Ca2+]i increases by addition of extracellular Ca2+ without (open column) or
with 10 µM synta66 (gray column). Each column indicates the mean ± SE of
6–9 independent experiments. Statistically significant differences between
columns (shown by solid lines) are denoted by asterisks, ∗P < 0.05.

Society. All animal experiments in this study followed the
guidelines established by the National Institutes of Health,
United States regarding the care and use of animals for
experimental procedures, as well as the United Kingdom Animals
(Scientific Procedures) Act, 1986. This study was approved by
the Ethics Committee of our institute (Nos. 270302, 280302, and
290301).

Dental Pulp Slice Preparation
Dental pulp slice preparations were obtained from newborn
Wistar rats (6- to 8-day-old) using a previously described
method (Son et al., 2009; Shibukawa et al., 2015; Tokuda
et al., 2015). Briefly, under isoflurane (3%) and pentobarbital
sodium anesthesia (25 mg/kg), the mandible was dissected. The
hemimandible embedded in alginate impression material was
sliced transversely through the incisor at 500-µm thickness with
a standard vibrating tissue slicer (Dosaka EM, Kyoto, Japan).
A section of mandible was sliced to the required level, so
that the dentin and enamel were directly visible between the
bone tissue and the dental pulp. The surrounding impression
material, bone tissue, enamel, and dentin were removed from
the mandible section under a stereoscopic microscope, and the
remaining dental pulp slice was used in further experiments.
We selected mandible sections in which the dentin layer was

FIGURE 4 | BTP2 inhibits SOCE. (A) Representative traces of SOCE in
response to subsequent application of 2.5 mM extracellular Ca2+ (white box
at bottom) after pre-incubation with 10 µM TG (black box at the top) with (red
line), or without (black line) 1 µM BTP2. (B) Summary bar graph shows
[Ca2+]i increase by addition of extracellular Ca2+ without (open column) or
with 1 µM BTP2 (gray column). Each column indicates the mean ± SE of
9–10 independent experiments. Statistically significant differences between
columns (shown by solid lines) are denoted by asterisks, ∗P < 0.05.

thin and the enamel, and dentin were clearly distinguishable
under the microscope, to avoid cellular damage to odontoblasts.
Pulp slices were treated with a standard Krebs solution
containing 0.03% trypsin and 0.17% collagenase (30 min at 37◦C).
For [Ca2+]i measurement, enzymatically treated and isolated
odontoblasts from the dental pulp slice were plated onto a
culture dish, immersed in alpha-minimum essential medium
(Life Technologies, Carlsbad, CA, United States) including 10%
fetal bovine serum and 5% horse serum, and maintained at
37◦C in a 5% CO2 incubator. The primary cultured odontoblasts
from the dental pulp slice were used for [Ca2+]i measurements;
we stably measured [Ca2+]i increases within 24 h of isolation.
Cells were confirmed to be odontoblasts in a previous study
with the odontoblast markers dentin matrix protein-1, dentin
sialoprotein, and nestin within 24 h of isolation (Tsumura et al.,
2012).

Measurement of Ca2+-Sensitive Dye
Fluorescence
Cells in dental pulp slices were loaded with 10 µM fura-2-
acetoxymethyl ester (Dojindo Laboratories, Kumamoto, Japan)
(Tsien et al., 1985) and 0.1% (w/v) pluronic acid F-127 (Life
Technologies) in standard Krebs solution for 30 min at 37◦C.
They were then washed with fresh Krebs solution. A dish
including fura-2-loaded odontoblasts was mounted on the stage
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FIGURE 5 | La3+ inhibits SOCE. (A) Representative trace of the effect of La3+ on SOCE induced by subsequent application of 2.5 mM extracellular Ca2+ (white box
at bottom) after pre-incubation of 10 µM TG (white box at the top). Black box shows the time period of 100 µM La3+ addition to the extracellular solution.
(B) Summary bar graph shows the effect of La3+ on SOCE (gray column) or the peak F/F0 values in SOCE activation (open column). Each column indicates the
mean ± SE of seven independent experiments. Statistically significant differences between columns (shown by solid lines) are denoted by asterisks, ∗P < 0.05.

of a microscope (IX73, Olympus, Tokyo, Japan) with HCImage
software, an excitation wavelength selector, and an intensified
charge-coupled device camera system (Hamamatsu Photonics,
Shizuoka, Japan). Fura-2 fluorescence emission was recorded
at 510 nm in response to alternating excitation wavelengths of
380 nm (F380) and 340 nm (F340). The [Ca2+]i was defined using
the fluorescence ratio (RF340/F380) of F340 to F380 (F340/F380),
and is described as F/F0 units; the RF340/F380 value (F) was
normalized to the resting value (F0). The F/F0 baseline was
configured at 1.0. All experiments were performed at room
temperature (30± 1.0◦C).

Solutions and Reagents
Krebs solution containing (in mM) 136 NaCl, 5 KCl, 0 or 2.5
CaCl2, 0.5 MgCl2, 10 HEPES, 10 glucose, and 12 NaHCO3
(pH 7.4 Tris) was used as the standard extracellular solution.
To prepare high pH (pH 9) extracellular solutions, 12 mM
NaHCO3 in Krebs solution was replaced by 10 mM (for pH
9) NaOH. This replacement did not affect extracellular free
Ca2+ concentrations in the test solution. Synta66 was obtained
from AOBIOUS INC. (Gloucester, MA, United States). BTP2
was obtained from Santa Cruz Biotechnology (Santa Cruz, CA,
United States). HC030031, 2-Methylthioadenosine diphosphate,
and DHPG were obtained from Tocris Bioscience (Bristol,
United Kingdom). All other reagents were obtained from Sigma
Chemical Co. (St. Louis, MO, United States). Stock solutions
of lanthanum chloride, carbachol, and DHPG were prepared in
ultra-pure water (Millipore, MA, United States). All other stock
solutions were prepared in dimethyl sulfoxide. Stock solutions
were diluted to the appropriate concentration with Krebs solution
(pH 7.4 or 9) before use.

Statistics and Offline Analysis
Data are represented as the mean ± standard error (SE) of
the mean of N observations, where N shows the number of
independent experiments. The Wilcoxon test or Mann–Whitney

test were used to evaluate the non-parametric statistical
significance. A P-value < 0.05 was considered significant.
Statistical analysis was performed using GraphPad Prism 7.0
(GraphPad Software, La Jolla, CA, United States).

RESULTS

Addition of Extracellular Ca2+ Following
Ca2+ Store Depletion Increased [Ca2+]i
In the absence of extracellular Ca2+, application of 10 µM
thapsigargin (TG), an inhibitor of sarco/endoplasmic reticulum
Ca2+-ATPase (Thastrup et al., 1990; Shibukawa and Suzuki,
2003), induced transient [Ca2+]i increases to a peak value of
1.04 ± 0.006 F/F0 units (N = 7) (Figures 1A,B). The transient
increases in [Ca2+]i are caused by the release of Ca2+ from
intracellular Ca2+ stores. After [Ca2+]i returned to the near-
resting levels, subsequent application of 2.5 mM extracellular
Ca2+ increased [Ca2+]i (Figure 1A) to a peak value of 1.32± 0.04
F/F0 units (N = 9) (Figures 1A,B).

Effects of 2-MeSADP, Carbachol and
DHPG Pre-application on the Ca2+ Influx
PLC-coupled receptors, P2Y (Sato et al., 2015; Shibukawa et al.,
2015; Wang et al., 2016), muscarinic-cholinergic (Shibukawa and
Suzuki, 2003), and group I metabotropic glutamate receptors
(Kim et al., 2009; Nishiyama et al., 2016), are expressed in
odontoblasts. We, thus, examined the participation of these PLC-
coupled receptors in the activation of Ca2+ influx by store
depletion. In the absence of extracellular Ca2+, application
of 50 nM 2-methylthioadenosine diphosphate (2-MeSADP), a
P2Y1,12,13 receptor agonist (Abbracchio et al., 2006; Kawaguchi
et al., 2015), increased [Ca2+]i transiently to a peak value of
1.08 ± 0.02 F/F0 units (N = 6) (Figures 2A,B). Carbachol (CCh)
(100 µM), a muscarinic-cholinergic receptor agonist (He et al.,
2005; Piergentili et al., 2007), evoked transient [Ca2+]i increases
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FIGURE 6 | Alkaline stimuli enhance Ca2+ entry during TG treatment.
(A) Representative traces of subsequent application of 2.5 mM extracellular
Ca2+ (white box at bottom) after pre-incubation of 10 µM TG at pH 7.4 (black
line) or at pH 9 without (blue line) or with (red line) 100 µM HC030031. Black
box at the top indicates application of 10 µM TG. (B) Summary bar graph
shows [Ca2+]i increases in response to addition of extracellular Ca2+ at pH
7.4 (open column) or at pH 9 without (blue column) or with (red column)
100 µM HC030031. Note that the application time period of TG (A) was
longer than that in Figures 1, 3–5, and thus a peak value of [Ca2+]i for the
SOCE at pH 7.4 (black line in A and open column in B) was larger than that in
Figures 1, 3–5. Each column indicates the mean ± SE of 5–15 independent
experiments. Statistically significant differences between columns (shown by
solid lines) are denoted by asterisks, ∗P < 0.05.

to the value of 1.04 ± 0.01 F/F0 units (N = 6) (Figures 2C,D),
while application of 100 µM DHPG, an agonist of group I
metabotropic glutamate receptors (Ito et al., 1992; Lin et al.,
1997; Schoepp et al., 1999), induced transient [Ca2+]i increases
to the value of 1.02 ± 0.002 F/F0 units (N = 11) (Figures 2E,F).
These transient [Ca2+]i increases are elicited by the Ca2+ release
from intracellular Ca2+ stores. After [Ca2+]i returned to near-
resting levels following each application of 50 nM 2-MeSADP,
100 µM CCh, and 100 µM DHPG, subsequent addition of
2.5 mM extracellular Ca2+ increased [Ca2+]i (Figures 2A,C,E).
The peak values following application of 2.5 mM extracellular
Ca2+ with 50 nM 2-MeSADP were 1.72 ± 0.04 F/F0 units
(N = 6) (Figure 2B), while those with 100 µM CCh were
1.38 ± 0.05 F/F0 units (N = 5) (Figure 2D). After pretreatment
of 2-MeSADP, and CCh, the Ca2+ influx induced by subsequent
application of 2.5 mM extracellular Ca2+ was significantly larger

than that without pretreatment; the values of Ca2+ influx
without any pretreatment were 1.23 ± 0.01 F/F0 units (N = 5)
(Figures 2B,D). However, there were no significant differences in
the Ca2+ increases (that was elicited by subsequent application
of 2.5 mM extracellular Ca2+) between with DHPG pretreatment
(1.24 ± 0.007 F/F0 units; N = 8) and without any pretreatment
(Figure 2F).

Synta66 and BTP2 Inhibited
Store-Operated Ca2+ Entry (SOCE)
To identify the pathway of Ca2+ influx activated by subsequent
application of 2.5 mM extracellular Ca2+ after store depletion,
we investigated the effects of CRAC channel inhibitors, synta66
(Beech, 2012; Kruchten et al., 2012; Derler et al., 2013; Molnár
et al., 2016) and BTP2 (Ishikawa et al., 2003; Zitt et al., 2004;
Zeng et al., 2017), on the Ca2+ influx. After store depletion by
pretreatment of 10 µM TG in the absence of extracellular Ca2+,
application of 2.5 mM extracellular Ca2+ increased [Ca2+]i to a
peak value of 1.32 ± 0.04 F/F0 units (N = 9). The increases in
[Ca2+]i were significantly suppressed in the presence of 10 µM
synta66 to 1.20 ± 0.03 F/F0 units (N = 6) (Figures 3A,B). In
addition, when the cells were subjected to preincubation with
1 µM BTP2 for 60 min at 37◦C, the [Ca2+]i increases following
Ca2+ store depletion by TG pretreatment were inhibited to
1.08 ± 0.01 F/F0 units (N = 10) (Figures 4A,B) compared to
those without BTP2 (1.32± 0.04 F/F0 units (N = 9).

Lanthanum Inhibited SOCE
After store depletion by pretreatment with 10 µM TG in the
absence of extracellular Ca2+, application of 2.5 mM extracellular
Ca2+ increased [Ca2+]i to a peak value of 1.32 ± 0.02 F/F0 units
(N = 7), and an application of 100 µM lanthanum (La3+), a
non-specific CRAC channel inhibitor (Ross and Cahalan, 1995;
Derler et al., 2013; Guido et al., 2015; Prakriya and Lewis, 2015),
caused a decrease in [Ca2+]i to a peak value of 1.16 ± 0.01 F/F0
units (N = 7) (Figures 5A,B). After La3+-induced suppression of
SOCE, removal of La3+ resulted in a slow return of SOCE activity
over several minutes (Figure 5A).

Alkaline Stimuli Enhanced SOCE
We examined the effects of extracellular alkalization on SOCE
in odontoblasts. After store depletion by continuous treatment
with 10 µM TG in the absence of extracellular Ca2+, subsequent
application of alkaline solution (pH 9) with 2.5 mM extracellular
Ca2+ enhanced SOCE to a peak value of 2.17 ± 0.1 F/F0 units
(N = 5) (blue; Figures 6A,B), while the peak value of [Ca2+]i
increase by application of standard (pH 7.4) extracellular solution
with extracellular 2.5 mM Ca2+ was 1.49 ± 0.03 F/F0 units
(N = 14) (black in Figure 6A). Odontoblasts express alkali-
sensitive TRPA1 channels (Tsumura et al., 2013; Kimura et al.,
2016). To remove the Ca2+ influx component via TRPA1 channel
activation from SOCE by the subsequent application of alkaline
solution with extracellular Ca2+, we applied HC030031, a TRPA1
channel antagonist (McNamara et al., 2007; Tsumura et al.,
2013). HC030031 (100 µM) suppressed SOCE by the subsequent
application of alkaline solution with 2.5 mM extracellular Ca2+ to
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FIGURE 7 | Schematic of Ca2+ signaling pathway activated by alkaline stimuli to dentin surface and PLC-coupled receptor activation in odontoblasts. Odontoblasts
express PLC-coupled P2Y and muscarinic-cholinergic receptors. P2Y receptors are activated by endogenous ATP/ADP released from odontoblasts in the dental
pulp in response to cellular deformation or cellular damage following dentin stimuli. Muscarinic-cholinergic receptors are activated by agonist released from
intradental parasympathetic neurons. Activation of these receptors induces depletion of Ca2+ stores by intracellular Ca2+ release from intracellular Ca2+ stores via
ryanodine and/or IP3 receptors, resulting in increased [Ca2+]i. Ca2+ store depletion then activates store-operated Ca2+ entry (SOCE) via CRAC channels in
odontoblasts. Direct alkaline stimuli via dentinal tubules to odontoblasts modulate CRAC channel activation and enhance Ca2+ influx via CRAC channels. The
alkaline stimuli also activate TRPA1 channels in odontoblasts and evoke Ca2+ influx via TRPA1 channels. Additionally, alkaline stimuli activate alkali
sensitive-metabotropic receptors, inducing Ca2+ release from intracellular Ca2+ stores via ryanodine and/or IP3 receptors. This Ca2+ release may, in turn, induce
store depletion and SOCE via CRAC channels in odontoblasts. These high-pH-sensitive Ca2+ signaling pathways may play important roles in tertiary dentin
formation by odontoblasts, following application of alkali stimuli, such as high-pH dental materials, on the dentin surface.

1.78 ± 0.04 F/F0 units (N = 15) (red; Figures 6A,B). The SOCE
evoked by subsequent application of 2.5 mM extracellular Ca2+

with 100 µM HC030031 at pH 9 were larger than those without
HC030031 at pH 7.4 (N = 14) (Figures 6A,B).

DISCUSSION

We elucidated the expression and pharmacological properties
of CRAC channels in odontoblasts. After store depletion,
application of extracellular Ca2+ induced Ca2+ influx (SOCE).
The Ca2+ influx was suppressed by CRAC channel inhibitors,
synta66, BTP2 and lanthanum. The activation of P2Y and
muscarinic-cholinergic receptors triggered SOCE. However, the
activation of group I metabotropic glutamate receptors did not
elicit SOCE. After store depletion, alkaline solution containing
Ca2+ enhanced SOCE under TRPA1 channel inhibition,
compared to that using the extracellular solution with Ca2+ (pH
7.4) without TRPA1 inhibition. These results indicate that, in
odontoblasts, store depletion activates CRAC channel-mediated
SOCE, which is promoted in an alkaline environment. The results
are in line with previous results showing the expression of Orai1,
subunits of CRAC channels, by immunohistochemical analysis
in odontoblasts (Zheng et al., 2015). CRAC channels, which
mediate SOCE, are involved in various functions in diverse cells.
In ameloblasts, CRAC channel-mediated SOCE contributes to
the mechanism for Ca2+ uptake in enamel formation (Nurbaeva
et al., 2015a,b). It has been also reported that dental pulp

stem cells (DPSCs) express Orai1, and Orai1-knocked down
shRNA suppress mineralization by DPSCs (Sohn et al., 2015).
These results suggest that CRAC channel-mediated SOCE in
odontoblasts has a potential role in dentinogenesis.

TRP canonical subfamily (TRPC) channels have been also
proposed as possible candidates for the channel proteins
mediating SOCE (Cheng et al., 2011). Among the TRPC channels,
TRPC1 channels have been well-characterized and reported to
participate in endogenous SOCE in several cell types (Cheng
et al., 2011). Following store depletion, STIM1 translocates to the
endoplasmic reticulum-plasma membrane junction and interacts
with Orai1, resulting in CRAC channel activation. Ca2+ entry
via Orai1 initiates the recruitment of TRPC1 channels into the
plasma membrane, where the channels interact with STIM1 and
are activated. According to this mechanism (Hogan and Rao,
2015; Ong et al., 2016; Ambudkar et al., 2017), TRPC1 channel
function crucially depends on Orai1-mediated Ca2+ entry, and
SOCE is generated by both Orai1 and STIM1, and TRPC1
channels. Odontoblasts in rats and humans have been shown to
express TRPC1 channels (Kwon et al., 2014; Song et al., 2017).
It has been reported that BTP2 (CRAC channel inhibitor) also
inhibit SOCE via TRPC3 and TRPC5 channels (He et al., 2005).
If odontoblasts express TRPC3 or/and TRPC5 channels, these
channels may also contribute to SOCE in odontoblasts. Thus,
TG-induced SOCE arises not only via CRAC channels but also
via TRPC channel family in odontoblasts.

In the absence of extracellular Ca2+, P2Y, muscarinic-
cholinergic, and group I metabotropic glutamate receptor
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agonists increased [Ca2+]i in odontoblasts. The results
demonstrate the expression of these receptors in odontoblasts,
and are in line with previous reports (Shibukawa and Suzuki,
2003; Kim et al., 2009; Sato et al., 2015; Shibukawa et al., 2015;
Nishiyama et al., 2016). These PLC-coupled receptors facilitate
the activation of SOCE by store depletion. In odontoblasts,
P2Y and muscarinic-cholinergic receptor activation elicited
store depletion, resulting in the activation of SOCE. Non-
excitable cells, such as microglia, cells in the adrenal cortex,
and salivary gland cells, also express SOCE activated by P2Y
and/or muscarinic-cholinergic receptor activations to mediate
cellular functions (Nishi et al., 2013; Ambudkar, 2014; Michaelis
et al., 2015). On the other hand, we could find a few reports
describing SOCE activated by group I metabotropic glutamate
receptor activation in hippocampal neuron and astrocytes (Ng
et al., 2011; Ronco et al., 2014). The present study could not find
group I metabotropic glutamate receptor-induced SOCE. Further
study will be needed to clarify SOCE induced by the activation of
glutamate receptors.

In the present study, alkaline stimuli enhanced SOCE
via CRAC channels in odontoblasts. In our previous study,
we predicted that alkaline stimuli might also activate Ca2+-
permeable channels in addition to TRPA1 channels in
odontoblasts (Kimura et al., 2016). It has been proposed that
external pH modulates CRAC channel activation through its
channel pore (Beck et al., 2014). In addition, external alkaline
conditions augment the amplitudes of both CRAC current and
[Ca2+]i increases by SOCE (Iwasawa et al., 1997; Laskay et al.,
2005; Beck et al., 2014). These evidences suggested directly
regulated mechanisms for the activation of CRAC channels
by alkaline stimuli. In our previous study, alkaline stimuli
also elicited Ca2+ release from Ca2+ stores via metabotropic
receptors in odontoblasts (Kimura et al., 2016). Although we
speculated that the activation of alkali sensitive-metabotropic
receptors may induce store depletion resulting in SOCE, further
study will be needed to identify the molecular entity of these
alkali sensitive-metabotropic receptors (Kimura et al., 2016).
Odontoblasts also detect high pH produced by dental materials
such as calcium hydroxide or mineral trioxide aggregate (MTA),
and the alkaline stimuli increase the mineralization level in
odontoblasts via TRPA1 channel activation (Kimura et al., 2016).
Thus, we suggest that CRAC channel-mediated SOCE may also
participate in dentinogenesis under high pH as well as physiologic
conditions.

The stimuli to the dentin surface induce [Ca2+]i increases
via mechanosensitive TRP channels (Sato et al., 2015; Shibukawa
et al., 2015), and Piezo channels (Sato et al., 2018) in odontoblasts.
The [Ca2+]i increases elicit the release of ATP from pannexin-
1 channels (Sato et al., 2015; Shibukawa et al., 2015) in
odontoblasts. The released ATP is also hydrolyzed by nucleoside
triphosphate diphosphohydrolase-2 to produce ADP (Sato et al.,

2015; Shibukawa et al., 2015). Therefore, ADP/ATP released from
odontoblasts, as intercellular-/neuro-transmitters, also promotes
Ca2+ signaling by the activation of ADP-induced SOCE, which
involves P2Y receptor activation, in odontoblasts located in the
periphery. The presence of cholinergic nerves, post-ganglionic
parasympathetic fibers, in the dental pulp is controversial. If post-
ganglionic parasympathetic nerves innervate the dental pulp,
acetylcholine released by excitation of the neurons could activate
SOCE in odontoblasts.

In conclusion (see Figure 7), we demonstrated SOCE
mediated by CRAC channels in odontoblasts. SOCE is activated
by PLC-coupled receptors in odontoblasts. Endogenous ADP,
released from odontoblasts in the dental pulp in response to
cellular deformation or cellular damage, as well as muscarinic-
cholinergic agonist from intradental parasympathetic neurons,
evoked SOCE in odontoblasts. SOCE was enhanced by an alkaline
environment and may play important roles in accelerating
cellular functions, such as high-pH sensitive tertiary/reactionary
dentin formation, following alkaline stimuli applied to dentin.
In addition, alkaline stimuli activate TRPA1 channels in
odontoblasts and evoke Ca2+ influx via TRPA1 channels. [Ca2+]i
increases due to TRPA1 channel-mediated Ca2+ influx, which
is closely involved in dentin formation under both physiological
and high pH conditions (Kimura et al., 2016). Alkaline stimuli
also activate alkali sensitive-metabotropic receptors (Kimura
et al., 2016), and their activation induces Ca2+ release from
intracellular Ca2+ stores via ryanodine and/or IP3 receptors.
During dental treatments, the use of dental materials, such
as calcium hydroxide or MTA, results in a high pH/Ca2+

extracellular environment. This external environment activates
Ca2+ signaling mediated by SOCE, TRPA1 channels and alkali
sensitive-metabotropic receptors, which can sense the increased
pH in odontoblasts, resulting in the induction of dentinogenesis.
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