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Abstract
In our previous study, we found that the edible alcohol extract of the root of the medicinal plant Rhodiola crenulata (RCE) improved spatial 
cognition in a rat model of Alzheimer’s disease. Another study from our laboratory showed that RCE enhanced neural cell proliferation in 
the dentate gyrus of the hippocampus and prevented damage to hippocampal neurons in a rat model of chronic stress-induced depression. 
However, the mechanisms underlying the neuroprotective effects of RCE are unclear. In the present study, we investigated the anti-apop-
totic effect of RCE and its neuroprotective mechanism of action in a rat model of Alzheimer’s disease established by intracerebroventricular 
injection of streptozotocin. The rats were pre-administered RCE at doses of 1.5, 3.0 or 6.0 g/kg for 21 days before model establishment. 
ATP and cytochrome c oxidase levels were significantly decreased in rats with Alzheimer’s disease. Furthermore, neuronal injury was ob-
vious in the hippocampus, with the presence of a large number of apoptotic neurons. In comparison, in rats given RCE pretreatment, ATP 
and cytochrome c oxidase levels were markedly increased, the number of apoptotic neurons was reduced, and mitochondrial injury was 
mitigated. The 3.0 g/kg dose of RCE had the optimal effect. These findings suggest that pretreatment with RCE prevents mitochondrial dys-
function and protects hippocampal neurons from apoptosis in rats with Alzheimer’s disease.

Key Words: nerve regeneration; Alzheimer’s disease; intracerebroventricular injection; streptozotocin; neuronal apoptosis; neuroprotection; 
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Graphical Abstract

Rhodiola Crenulata extract (RCE) rescues the dysfunction of mitochondria and reduces apoptosis in 
hippocampal neurons in Alzheimer’s disease rats
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Introduction
Alzheimer’s disease (AD) is a degenerative disease of the 
central nervous system characterized by progressive cogni-
tive dysfunction, including impairments in learning, mem-
ory and language. AD is strongly associated with perturbed 
energy metabolism, which is one of the leading causes of 
neural degeneration, the loss of cerebral neurons, and the 
formation of senile plaques and neurofibrillary tangles (Car-
doso et al., 2004). Reduced glucose utilization and abnormal 
oxidative metabolism are found in the brain of AD patients, 
and the decreased metabolism is positively correlated with 
the severity of dementia (Drzezga et al., 2005; Zhang et al., 
2016). Excessive formation and secretion of amyloid-beta, 
which is a key factor in AD pathogenesis, has a mutually 
reinforcing relationship with glucose metabolism disorders 
(Sadowski et al., 2004; Hoyer et al., 2005; Kalpouzos et al., 
2005). Insulin signal transduction impairment, glucose 
metabolism disorder and reduced energy generation also 
contribute to amyloid-beta deposition and tau hyperphos-
phorylation, leading to AD (Greenfield et al., 1999; Hoyer, 
2000). Before the presence of neuropathological damage and 
brain atrophy detected by radiological examination, AD pa-
tients exhibit abnormal glucose metabolism in the temporal 
cortex and hippocampus, suggesting that perturbed oxida-
tive phosphorylation (Drzezga et al., 2005), mitochondrial 
dysfunction and energy metabolism decay are early events 
in AD. Bucht et al. (1983) found that plasma insulin levels 
in AD patients were abnormal after oral glucose tolerance 
test. Subsequent studies demonstrated that, in the fasting 
state, AD patients have a higher insulin level in the cerebro-
spinal fluid than normal subjects. Furthermore, AD patients 
exhibit lower tyrosine kinase activity and impaired insulin 
signaling, similar to the pathophysiology of non-insulin-de-
pendent diabetes mellitus (De Keyser et al., 1994; Jafferali et 
al., 2000; Nicolls, 2004). These observations led to the novel 
proposition that insulin receptor desensitization might 
play an important role in the pathogenesis of sporadic AD 
(Gasparini et al., 2002; Watson and Craft, 2003; Carro and 
Torres-Aleman, 2004; Messier and Teutenberg, 2005; Revill 
et al., 2006).

Existing drugs for AD include cholinergic agents, nutri-
tional preparations, anti-inflammatory agents, neurotrophic 
factors, antioxidant drugs and herbal preparations. Rhodiola 
crenulata is a perennial herb in the family Crassulaceae. It 
is abundantly and widely distributed in China. According 
to traditional Chinese folk medicine, Rhodiola crenula-
ta can improve endurance, resist altitude sickness (Chiu 
et al., 2013), and treat fatigue, depression, insomnia and 
impotence (Pooja et al., 2009). A recent study found that 
Rhodiola crenulata supplement strikingly improves aerobic 
exercise performance after short-term high altitude train-
ing (Chen et al., 2014). Rhodiola crenulata exerts protective 
effects on chronic intermittent hypoxia-induced mitochon-
drial-dependent apoptosis in cardiac cells (Lai et al., 2015). 
Accumulating evidence indicates that Rhodiola crenulata 
protects against cerebral ischemia-reperfusion injury in the 

rat brain (Song et al., 2006a, b). Pharmacological studies 
suggest that Rhodiola crenulata promotes cognitive function 
and relieves brain fatigue (Darbinyan et al., 2000; Spasov et 
al., 2000), clears reactive oxygen species and reduces oxida-
tive stress (Abidov et al., 2003; Wing et al., 2003; De Sanctis 
et al., 2004; Battistelli et al., 2005; Kanupriya et al., 2005; Yu 
et al., 2007; Pooja et al., 2009), enhances physical endurance 
(Spasov et al., 2000; De Bock et al., 2004), ameliorates meta-
bolic dysfunction (Wang et al., 2012; Tian et al., 2013; Wang 
et al., 2013), bolsters immunity (Zhu et al., 2014) and exerts 
anti-tumor effects (Tu et al., 2008). In recent years, Rhodiola 
crenulata has attracted increasing attention because of its 
cognitive protective effects, antioxidant effects, and ability to 
scavenge reactive oxygen species (Chen et al., 2012; Zhou et 
al., 2015).

In our previous study, an edible alcohol extract of Rhodi-
ola crenulata root (RCE) protected against spatial cognitive 
deficits in a rat model of AD induced by intracerebroven-
tricular (ICV) injection of streptozotocin (STZ) (Qu et al., 
2009). However, the mechanisms underlying the protective 
effects of RCE on learning and memory remain unclear. ICV 
injection of STZ causes a persistent disruption in glucose 
metabolism and energy production in the brain, leading 
to learning and memory impairment in rats (Hoyer, 2004; 
Hoyer and Lannert, 2008). We hypothesized that RCE might 
protect against mitochondrial dysfunction and improve 
glucose metabolism and energy production in neurons. 
Our preliminary studies (Chen et al., 2008a, 2009a; Qin 
et al., 2008) demonstrated that RCE promotes neural cell 
proliferation in the dentate gyrus of the hippocampus, and 
prevents damage to hippocampal neural cells in a rat model 
of depression induced by chronic stress. In our previous 
study, RCE pre-administration significantly reduced oxida-
tive stress in the hippocampus of rats administered STZ, ac-
companied by an improvement in spatial cognitive function 
(Qu et al., 2009). Furthermore, salidroside (the main active 
ingredient in RCE) promoted the neuronal differentiation of 
neural stem cells in vitro (Qu et al., 2012). We hypothesized 
that RCE would exert neuroprotective effects in AD rats by 
improving mitochondrial function and/or by reducing neu-
ronal apoptosis. In the present study, we investigated the an-
ti-apoptotic effect of RCE and examined its neuroprotective 
mechanism of action in AD rats, with the aim of providing a 
rational basis for the use of RCE in the treatment of central 
neurodegenerative diseases.

Materials and Methods
Preparation of RCE
RCE was provided by Holistol International Co., Ltd., Hong 
Kong Special Administrative Region, China. The medicinal 
plant Rhodiola crenulata was identified by Professor Ye 
Huagu of the Herbarium, South China Botanical Garden, 
The Chinese Academy of Sciences, China. The RCE used 
in this study is the edible alcohol extract of Rhodiola cren-
ulata root, which is a red-brown fine powder, with a rose 
fragrance. The extraction process is as follows: (1) Rhodiola 
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crenulata roots were cleaned and dried; (2) the roots were 
ground, yielding the powder; (3) the powder was extracted 
twice using 70% ethanol, 2 hours each, to yield the prelimi-
nary extract solution; (4) the solution was concentrated un-
der vacuum; (5) the concentrated solution was precipitated 
twice using 90% ethanol, yielding a paste; (6) the paste was 
spray dried, yielding the final RCE powder. The yield was 
3–5% (w/w), and the proportion of salidroside in the RCE 
preparation was 4% (w/w), as determined by high-perfor-
mance liquid chromatography (HPLC). Certificate of anal-
ysis was provided by Sichuan Zhonghong Natural Medicine 
Co., Ltd., Chengdu, China.

Drug administration
Ninety adult, female, clean, Sprague-Dawley rats, 5 months 
old and weighing 220–250 g, were provided by the Exper-
imental Animal Center of Sun Yat-sen University, China 
(license No. SCXK (Yue) 2009-0011). The rats were allowed 
free access to standard chow and tap water and housed in 
cages at 24 ± 2°C in a room with 50–60% relative humidity, 
under a 12-hour light/dark cycle, for at least 1 week before 
the experiment. The rats were randomly divided into five 
groups as follows: normal control group (n = 20), AD group 
(n = 20), high-dose RCE group (H-RC group; n = 15), mod-
erate-dose RCE group (M-RC group; n = 20), and low-dose 
RCE group (L-RC group; n = 15 rats). Rats in the L-RC, 
M-RC and H-RC groups were respectively administered 
1.5, 3.0 and 6.0 g/kg RCE. The RCE was diluted with 0.5% 
sodium carboxymethycellulose (Guangzhou Pharmaceutical 
Company, Guangzhou, Guangdong Province, China) water 
solution to produce working stocks of 1.2, 0.6 and 0.3 g/mL 
for the H-RC, M-RC and L-RC groups, respectively, and 
given orally every day at a single dose of 0.5 mL/100 g (body 
weight) by gavage for 21 days before STZ injection (Figure 1). 
Rats in the AD and normal control groups received an equal 
amount of 0.5% sodium carboxymethycellulose solution for 
21 days.

AD induced by STZ
At days 1 and 3 after RCE or sodium carboxymethycellulose 
administration, a rat model of AD was established using 
ICV injection of STZ (Sigma, St. Louis, USA) (Figure 1). In 
brief, rats were anesthetized with 1% sodium pentobarbital 
(40 mg/kg; China Pharmaceutical Group Shanghai Chemi-
cal Reagent Company, Shanghai, China) by intraperitoneal 
injection, and shaved. Their heads were fixed with a stereo-
taxic apparatus (Jiangwan Instrument Factory, Shanghai, 
Jiangsu province, China). After the skin was disinfected with 
iodine and 75% alcohol, a 1.5-cm incision was made along 
the sagittal line, and the periosteum was cut to expose the 
cranial bone. Using the Stereotaxic Atlas of the Rat Brain for 
reference (Bao and Shu, 1991), the skull was drilled 0.8 mm 
posterior to the bregma and 2.2 mm lateral to the sagittal 
suture. Thereafter, a microsyringe was vertically inserted to 
a depth of 4.5 mm. STZ was dissolved in artificial cerebro-
spinal fluid (147 mM NaCl, 2.9 mM KCl, 1.6 mM MgCl2, 

1.7 mM CaCl2 and 2.2 mM dextrose) to prepare a 25 mg/mL 
working solution. Rats in the model and RCE groups were 
injected STZ at a dose of 1.5 mg/kg into the bilateral ventri-
cles (3 μL/100 g body weight for each lateral ventricle). The 
rats in the normal control group received the same amount 
of artificial cerebrospinal fluid. Each injection lasted 10 min-
utes, and the needle was maintained in place for 10 minutes. 
The suture was disinfected with 0.01% benzalkonium bro-
mide. To prevent infection, rats were given intramuscular 
penicillin (200,000 U, twice a day, for 3 days).

HPLC assay for ATP content in mitochondria
Sample preparation
At 21 days after model establishment, 10 rats were decapitated 
under anesthesia. The brain was rapidly removed on ice, and 
the hippocampus was quickly dissected and kept at −20°C. 
The hippocampi were transferred to a glass homogenizer 
with 0.5 M perchloric acid, 10 μL/mg, and homogenized 
on ice. The homogenate was kept on ice for 30 minutes and 
centrifuged at 16,000 × g at 4°C for 10 minutes. The pH 
was adjusted to 7.0 with 0.5 M KOH, placed on ice for 10 
minutes, centrifuged and precipitated. The supernatant was 
stored at −80°C for HPLC detection.

Chromatography
ATP content in the hippocampus was quantitatively detect-
ed using reverse HPLC (Waters, Milford, MA, USA). Briefly, 
a Hypersil BDS C-18 column (4.6 mm ID × 30 mm, 5 μm 
particle size) was washed with 150 mM NaH2PO4 buffer 
solution (pH 6.45, filtered). Then, 20 mL standard solution 
was added to the column, and the residence time (approx-
imately 13 minutes) was measured. At a wavelength of 254 
nm, 20 μL of the sample solution was added and compared 
with the standard solution for chromatographic analysis. 

Standard curve
Taking the peak (μV) as the vertical axis and ATP content as 
the abscissa, a standard curve was constructed according to 
the linear equation Y = 64,535.14X − 7,026.75, r = 0.9999.

Detection of mitochondrial cytochrome c oxidase (COX) 
activity
Ten rats in each group were selected for assessment of COX 
activity. After the hippocampus was isolated and stored at 
–20°C, the tissue was cut into pieces and homogenized with 
saline (5% w/v) in a glass homogenizer. The homogenates 
were centrifuged at 700 × g for 16 minutes, and the super-
natant was carefully removed. COX activity was determined 
with a microplate reader (BioRad Model 680, Shanghai, Ji-
angsu Province, China) using a COX quantitative detection 
kit (Shanghai Genius U.S. Genetic Medicine Technology 
Co., Ltd.).

Caspase-3/NeuN double immunofluorescence detection 
for hippocampal neuronal apoptosis
Five rats in each group were used to obtain hippocampal 



2028

Wang et al. / Neural Regeneration Research. 2017;12(12):2025-2034.

tissue samples 21 days after model establishment. In brief, 
rats were intraperitoneally anesthetized with 1% sodium 
pentobarbital (40 mg/kg), and the heart was fully exposed. 
A cannula was inserted into the ascending aorta through the 
left ventricle, and perfused with 120 mL saline, with the right 
atrium cut for drainage. Pre-cooled 4% paraformaldehyde, 
approximately 300 mL, was perfused into the heart over a 
period of 30 minutes. The brain tissue was quickly taken out 
and fixed with 4% paraformaldehyde at 4°C for 24 hours, 
and sequentially immersed in 10%, 20% and 30% sucrose at 
4°C. Subsequently, the specimens were embedded, and serial 
coronal slices of the hippocampus were obtained using a 
cryostat microtome (Thermo Shandon Limited, Altrincham 
Cheshire, UK). Slices were taken every 300 μm, with thick-
nesses of 40 and 15 μm. A total of 12 slices were taken from 
each sample, in two sets.

Five rats in each group were used for immunofluores-
cence staining, using four slices from each rat, for a total 
of 20 slices. In brief, the slices were rinsed with 0.01 M PBS 
and blocked with normal goat serum (1:10; Abcam, Cam-
bridge, UK) for 20 minutes. The slices were then incubated 
with rabbit anti-rat caspase-3 polyclonal antibody (1:100; 
Beijing Zhongshan Golden Bridge, Beijing, China). Neg-
ative controls were incubated with 0.01 M PBS at 4°C for 
two nights. The slices were then rinsed with 0.01 M PBS, 
incubated with goat anti-rabbit IgG-CY3 antibody (1:400; 
Jackson ImmunoResearch Laboratories, Inc., Pennsylva-
nia, USA) at 37°C for 1 hour, rinsed with 0.01 M PBS, and 
blocked with normal goat serum (1:10) for 20 minutes. 
The specimens were incubated with mouse anti-rat NeuN 
monoclonal antibody (1:100; Chemicon International Inc., 
Billerica, MA, USA). Negative controls were incubated with 
0.01 M PBS at 4°C for two nights. After rinsing with PBS, 
the specimens were incubated with goat anti-mouse IgG-
FITC antibody (1:100; Jackson Immunological Research) at 
37°C for 1 hour, rinsed with PBS, mounted, and observed 
under a fluorescence microscope (Leica Microsystems Inc., 
Wetzlar, Germany).

Five rats in each group were used for cell counting, using 
four slices from each rat, for a total of 20 slices. Caspase-3 
and NeuN-positive cells in the hippocampal CA3 region 
were counted under 200× magnification, and the percent-
age of caspase-3-positive cells to NeuN-positive cells was 
calculated.

Enzyme histochemistry and electron microscopic 
observation of mitochondrial COX
At 21 days after model induction, five rats each from the 
normal control, AD and M-RC groups were intraperitone-
ally anesthetized with 1% sodium pentobarbital (40 mg/kg). 
The rats were perfused as above, and the brains were fixed 
with 4% paraformaldehyde/0.5% glutaraldehyde/15% picric 
acid (0.1 M PB, pH 7.4). The brains were then immersed in 
0.1 M phosphate buffer, and cut into 50-μm-thick slices on a 
vibratome (Zhejiang Xiangshan Science Instrument Factory, 
Ningbo, China).

The slices were rinsed with 0.1 M phosphate buffer, in-
cubated with 4% sucrose solution (prepared with 0.1 M 
phosphate buffer) at 37°C for 30 minutes, and incubated 
with COX reaction mix [cytochrome c (Sigma) 1.5 mg, 
3,3′-diaminobenzidine 2.5 mg, sucrose 200 mg, dissolved in 
5 mL 0.1 M phosphate buffer] at 37°C for 5 hours. After in-
cubation, the specimens were rinsed with phosphate buffer, 
and the bilateral hippocampal CA3 regions were observed 
under a stereomicroscope (Leica) and then stored in 0.1 M 
phosphate buffer for further observation under an electron 
microscope.

Transmission electron microscopy
(1) Fixation: Hippocampal tissue was rinsed with 0.1 M phos-
phate buffer, fixed with 1% osmic acid for 1 hour, and rinsed 
again with phosphate buffer. (2) Dehydration: The tissue was 
dehydrated serially with 50% and 75% ethanol for 15 minutes, 
twice with 95% ethanol for 15 minutes each, three times with 
absolute alcohol for 10 minutes each, and three times with 
anhydrous acetone for 10 minutes each. (3) Permeabilization: 
The tissue was immersed in embedding liquid (1:1 ratio of 
Epon812 and acetone) at room temperature for 1 hour, and 
embedded in pure Epon 812 embedding solution overnight. 
(4) Embedding and polymerization: The slices were embed-
ded in Epon 812, heated in a 36°C oven, and polymerized for 
48 hours. (5) Finally, the slices were cut into ultra-thin slices 
using an AO ultramicrotome (Leica), stained with 2% uranyl 
acetate (10 minutes) and lead citrate (3 minutes), and pho-
tographed under the electron microscope (PHILIPS CM10, 
Royal Philips, Amsterdam, Holland).

Statistical analysis
Data are expressed as the mean ± SD, and analyzed using 
SPSS 11.5 software (SPSS, Chicago, IL, USA) by one-way 
analysis of variance. If homogeneity of variance was found, 
the mean value among groups was compared with the least 
significant difference test. If heterogeneity of variance was 
found, the comparison was done using Tamhane’s T2 test. A 
value of P < 0.05 was considered statistically significant.

Results
Effect of RCE on hippocampal ATP levels in AD rats
As shown in Figure 2, hippocampal ATP levels in the M-RC 
and normal control groups were higher than in the other 
three groups (P < 0.05). Hippocampal ATP levels were lower 
in the M-RC group than in the normal control group (P < 
0.05). There were no significant differences in hippocampal 
ATP levels among the AD, L-RC and H-RC groups (P > 0.05).

Effect of RCE on hippocampal COX levels in AD rats
As shown in Figure 2, there was no significant difference in 
hippocampal COX levels between the AD and H-RC groups 
(P > 0.05), which were significantly lower than in the other 
three groups (P < 0.05). Among the normal control, L-RC 
and H-RC groups, hippocampal COX levels were signifi-
cantly different for each pairwise comparison (P < 0.05).
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Effect of RCE on hippocampal neuronal apoptosis in AD rats
Hippocampal neuronal apoptosis was detected with 
caspase-3 and NeuN double immunofluorescence labeling 
(Figure 3A). Caspase-3 and NeuN-positive signals were 
mainly distributed in the nucleus, and only a small amount 
was found in the cell body. In the normal control group, 
NeuN-labeled neurons were morphologically normal and 
higher in number, and only a few caspase-3-positive cells 
were observed. In the AD group, a small number of neurons 
were NeuN-positive, and a large number of caspase-3-posi-
tive cells were observed. In the RCE groups, caspase-3-posi-
tive cells were reduced to a degree. The M-RC group had the 
lowest number of caspase-3-positive cells, while the H-RC 
group had the highest number among the three RCE-ad-
ministered groups.

The percentage of caspase-3/NeuN-double-labeled cells 
in the hippocampal CA3 region is shown in Figure 3B. This 
percentage reflects the degree of hippocampal neuronal 
apoptosis. As shown in Figure 3B, there was no significant 
difference in the percentage of double-labeled cells between 
the AD and H-RC groups (P > 0.05), and these two groups 
were significantly different from the other 3 groups (P < 
0.05). Among the normal control, L-RC and M-RC groups, 
there were significant differences in the percentage of dou-
ble-labeled cells between each pairwise comparison (P < 
0.05). The percentage of double-labeled cells was lowest in 
the normal control group, in-between in the M-RC group, 
and highest in the L-RC group.

Effect of RCE on mitochondrial COX levels in 
hippocampal neurons in AD rats
By electron microscopy, the COX-positive high-electron-
dense particles, which represent COX enzymatic activity, 
were accumulated in the neuronal mitochondrial inner 
membrane and cristae (Figure 4). In the normal control 
group, mitochondria were small, round or rectangular, with 
a clearly-defined and uniform matrix, regularly distrib-
uted cristae, and a compact structure. A large number of 
COX-positive particles were visible in the plasma and neu-
rites, as well as in the mitochondrial inner membrane and 
cristae. In the model group, mitochondrial swelling, a pale 
gray matrix, and ruptured or blurred cristae were found, 
and some mitochondrial outer membranes were incomplete 
or absent, with fewer COX-positive particles on the inner 
membrane and cristae. After treatment with 3.0 g/kg RCE, 
however, the decreased COX-positive particles on cristae 
and the pathological changes in mitochondrial morphology 
were all improved to a degree. The results are consistent 
with the ATP and COX levels measured in the homogenates.

Discussion
STZ is a nitrosourea derivative, and intraperitoneal injection 
can cause diabetes mellitus through the destruction of pan-
creatic β cells (Weiss, 1982; Bolzan and Bianchi, 2002; Ka-
mat, 2015). In the central nervous system, STZ reduces in-
sulin receptor phosphorylation and tyrosine kinase activity, 

increases tyrosine phosphatase activity and inhibits insulin 
signaling, thereby impairing glucose and energy metabolism 
(Hoyer, 1998; Lannert and Hoyer, 1998; Hoyer et al., 2000). 
The mechanism of STZ cytotoxicity remains unclear, but the 
alkylating effect of its metabolites can produce reactive ox-
ygen groups, leading to oxidative stress and mitochondrial 
and nuclear DNA damage (Szkudelski, 2001; Bolzan and Bi-
anchi, 2002; Gille et al., 2002). ICV injection of STZ results 
in persistent glucose metabolism and energy production dis-
order in rats, accompanied by reduced hippocampal choline 
acetyltransferase activity, oxidative stress, and learning and 
memory disorders (Hoyer and Lannert, 1999, 2008; Shoham 
et al., 2003; Hoyer, 2004; Sapcanin et al., 2008). Prior to the 
emergence of hyperglycemia, a series of AD-like pathologi-
cal changes appears in rodents given ICV injection of STZ, 
such as brain atrophy and neurodegeneration, loss of central 
neurons, abnormal activation of glial cells, p53 and GSK-
3β activation, hyperphosphorylation of tau protein, elevated 
amyloid-β levels, and abnormal mitochondrial morphology 
and function (Grünblatt et al., 2004, 2007; Chu and Qian, 
2005; Lester-Coll et al., 2006; Salkovic-Petrisic et al., 2006; 
Hoyer and Lannert, 2007; Du et al., 2015). Many research 
groups have used this as a model of sporadic AD (Shar-
ma and Gupta, 2002; Veerendra Kumar and Gupta, 2003; 
Sonkusare et al., 2005; Shoham et al., 2007; Tahirovic et al., 
2007).

Mitochondrial energy metabolism disorder plays a crucial 
role in neurodegenerative diseases (Blass, 1999; Bubber et 
al., 2005). Mitochondrial dysfunction promotes and par-
ticipates in AD occurrence and development, and it is an 
important factor in the pathogenesis of AD (Lustbader et al., 
2004; Hauptmann et al., 2006; Moreira et al., 2006). Mito-
chondria not only synthesize most of the cell’s ATP, but they 
also produce reactive oxygen species, such as superoxide 
anion, regulate cellular redox potential and signal transduc-
tion, and control apoptosis and gene expression (Newmeyer 
and Ferguson-Miller, 2003).

By electron microscopy, mitochondrial morphology is 
abnormal in the brain tissue of AD patients. In brain ho-
mogenates, the function and expression of several enzyme 
systems involved in mitochondrial energy generation are 
affected. Analysis of autopsy samples from AD patients 
shows that COX activity is decreased in the hippocampus, 
cerebellum, thalamus and other brain areas (Drzezga et al., 
2005). Furthermore, COX activity is decreased, and there 
are changes in the activities of respiratory chain complexes 
I and III. Changes in mitochondrial morphology are also 
found in neurons in the hippocampus, cortex and hypo-
thalamus (Baloyannis, 2006). Morphological abnormalities 
precede the formation of neurofibrillary tangles, and mito-
chondrial degeneration may be one of the earliest patholog-
ical changes in AD (Maurer et al., 2000; Hirai et al., 2001). 
Ultrastructural studies show that mitochondria are small in 
normal neurons, round or columnar in shape, with a dense 
and uniform matrix, and regular cristae distribution. In 
comparison, lesioned mitochondria exhibit matrix changes 
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and little or no residual cristae (Baloyannis, 2006).
In previous studies, ICV injection of STZ caused serious 

oxidative injury and significant spatial learning and memory 
disorders in the rat hippocampus, and pre-administration of 
RCE significantly reduced oxidative stress and improved the 
spatial cognitive defects (Qu et al., 2009). Oxidative stress in 

Figure 4 Ultrastructural changes in mitochondria and COX enzyme 
staining in hippocampal neurons in Alzheimer’s disease rats treated 
with RCE (transmission electron microscopy).
(a) Normal control group; (b) model group; (c) M-RC group. (N: 
nucleus; C: cytoplasm; M: mitochondria). At 21 days after model es-
tablishment, the mitochondria in neurons in the hippocampal CA3 
region were examined by COX enzyme histochemistry using electron 
microscopy. The high-electron-dense COX-positive precipitates accu-
mulated in the mitochondrial inner membrane and cristae represent 
mitochondrial COX enzymatic activity. Rats in the normal control 
group showed intact mitochondria with large amounts of discernible 
COX-positive precipitates. The model group showed strikingly swol-
len mitochondria, a pale gray matrix, and ruptured or blurred cristae 
with fewer COX-positive precipitates. The M-RC group showed more 
COX-positive precipitates and less pathological changes in mitochon-
dria compared to the model group. Inserts: Higher magnification of the 
boxed area in (a)–(c). Scale bar: 0.5 μm. COX: Cytochrome c oxidase; 
RCE: ethanol extract of Rhodiola crenulata root; M-RC: moderate-dose 
RCE.

Figure 2 Effect of RCE on the levels of ATP (µg/mL) and COX 
enzymatic activity (U/µg•min) in the hippocampal mitochondria of 
Alzheimer’s disease rats.
Data are expressed as the mean ± SD (n = 10), and analyzed by one-
way analysis of variance. *P < 0.05, vs. normal control group (NC); #P 
< 0.05, vs. AD group; †P < 0.05, vs. L-RC group; §P < 0.05, vs. M-RC 
group. ATP: Adenosine triphosphate; COX: cytochrome c oxidase; 
RCE: alcohol extract of Rhodiola crenulata root; L-RC: low-dose RCE; 
M-RC: moderate-dose RCE; H-RC: high-dose RCE; AD: Alzheimer’s 
disease.

Figure 1 Drug administration and procedure for model 
establishment.

3.0

2.5

2.0

1.5

1.0

0.5

0
     NC          AD          RC       M-RC     H-RC

ATP

COX  

*
*

*

*#

*#†

*#†

*§
*†§

Normal 
control

AD

L-RC

M-RC

H-RC

Figure 3 Caspase-3/NeuN immunofluorescence double labeling of 
cells in the hippocampal CA3 region of Alzheimer’s disease rats 
treated with RCE.
(A) Neuronal apoptosis in the hippocampal CA3 region detected by 
caspase-3/NeuN double-labeling. Rats in the normal control group 
(NC) had a small number of caspase-3-positive cells, indicating low 
neuronal apoptosis, while rats in the AD group had more neuronal 
apoptosis. Pretreatment with different doses of RCE rescued neurons 
from apoptosis to varying degrees; the dosage of 3.0 g/kg (in the M-RC 
group) was optimal. Scale bars: 20 μm. (B) Percentages of caspase-3/
NeuN-double-labeled cells in the hippocampal CA3 region of rats in 
the five different groups. Data are expressed as the mean ± SD (n = 5), 
and analyzed by one-way analysis of variance. *P < 0.05, vs. normal 
control group; #P < 0.05, vs. AD group; †P < 0.05, vs. L-RC group; §P < 
0.05, vs. M-RC group. RCE: Ethanol extract of Rhodiola crenulata root; 
L-RC: low-dose RCE; M-RC: moderate-dose RCE; H-RC: high-dose 
RCE; AD: Alzheimer’s disease.

      NC          AD         RC        M-RC     H-RC

100
90
80
70
60
50
40
30
20
10

0

P
er

ce
nt

ag
e 

of
 d

ou
bl

e 
la

be
le

d 
ce

lls
 (%

) *†§

*#†

*#

*

 A   

 B   



2031

Wang et al. / Neural Regeneration Research. 2017;12(12):2025-2034.

cells results in mitochondrial injury, leading to mitochon-
drial respiratory dysfunction. Mitochondria are the main 
site of oxidative phosphorylation, and are an important 
source and target of reactive oxygen species. Mitochondria 
are prone to free radical attack and oxidative damage to 
their mitochondrial DNA, particularly as they lack histones, 
have no proofreading function, and do not have an effective 
DNA repair mechanism. More than 95% of intracellular 
reactive oxygen species are generated from mitochondrial 
oxidative phosphorylation. Mitochondrial dysfunction fur-
ther increases reactive oxygen species levels, and this vicious 
cycle results in excessive oxidative stress, eventually leading 
to neuronal death.

In the present study, we demonstrated that ICV injection 
of STZ significantly decreases ATP content and COX en-
zyme activity in the rat hippocampus. Enzyme histochem-
istry and electron microscopy showed that COX-positive 
electron-dense particles in the model group were reduced 
compared with the normal control group, and mitochondri-
al swelling was found, with no or only residual cristae in the 
model group. Furthermore, caspase-3-positive signals were 
observed in the majority of hippocampal neurons in the 
model group.

Our current findings suggest that ICV injection of STZ 
in rats induces damage to neuronal mitochondria, thereby 
leading to neuronal apoptosis. Pre-treatment with RCE in-
creased COX enzyme content and activity, as well as ATP 
content in the hippocampus. Furthermore, RCE amelio-
rated neuronal mitochondrial morphology and function, 
and reduced the percentage of caspase-3-positive cells. This 
suggests that RCE pre-treatment protects against neuronal 
apoptosis by preserving neuronal mitochondrial structure 
and function.

The root and stem of Rhodiola have great therapeutic 
potential, containing 40 different chemical components. 
The main pharmacologically active ingredients are salidro-
side and p-tyrosol, rosavin, pyridine, rhodiosin and rhodi-
onin (Wang and Wang, 1992; Yu et al., 1993; Nakamura 
et al., 2008). Phytochemical investigations revealed that 
salidroside, rosavins and p-tyrosol are the most abundant 
compounds and are thought to account for the therapeutic 
activities of the plant (Cui et al., 2003). Most studies have 
focused on the most bioactive ingredient, salidroside (Cui 
et al., 2003; Nakamura et al., 2008), because of its strong 
antioxidant activity (Yu et al., 2007). In vitro studies have 
shown that salidroside stimulates erythropoiesis (Qian et 
al., 2011) promotes hippocampal cell proliferation (Chen et 
al., 2009b) and promotes the differentiation of bone marrow 
mesenchymal stem cells into hepatocytes (Ouyang et al., 
2010). Furthermore, salidroside prevents apoptosis induced 
by hydrogen peroxide in human neuroblastoma SH-SY5Y 
cells (Zhang et al., 2007), reduces reactive oxygen species 
levels in neural stem cells in the rat hippocampus, amelio-
rates apoptosis and necrosis, and promotes the proliferation 
and differentiation of neural stem cells (Qu et al., 2012). 
Tyrosol is also relatively well studied, as it is an important 

bioactive ingredient in a variety of foods, such as white wine 
and olive oil (Di Benedetto et al., 2007; St-Laurent-Thibault 
et al., 2011). Tyrosol has numerous actions, including anti-
oxidant activity (Di Benedetto et al., 2007; Loru et al., 2009), 
neural protective functions (Bu et al., 2007), anti-inflamma-
tory effects, anti-tumor effects (Giovannini et al., 2002), and 
cardio-protective effects (Samuel et al., 2008). However, the 
actions of rosavins, which include rosavin, rosarin and ros-
in, remain unclear.

The RCE used in this study is an edible alcohol extract, 
and the concentration of the most important component, 
salidroside, was approximately 4% (w/w), as assayed by 
HPLC. Hence, in the present study, we speculate that the 
neuroprotective effects of RCE in AD rats are attributable 
to salidroside. Salidroside possesses a potent reactive oxy-
gen species scavenging function and anti-apoptotic effects. 
The potential mechanisms underlying the protective effects 
of salidroside include: (1) modulation of apoptosis-related 
processes such as alteration of gene expression (e.g. down-
regulation of the pro-apoptotic gene Bax and/or up-regula-
tion of the anti-apoptotic genes Bcl-2 and Bcl-X(L)) (Yu et 
al., 2008; Yang et al., 2013), restoration of the mitochondrial 
membrane potential (Zhang et al., 2010) and suppression of 
cytochrome c release and caspase cascade activation (Cai et 
al., 2008); (2) suppression of the excessive entry of Ca2+ and 
the release of calcium stores and inhibition of the elevation 
in intracellular calcium levels (Cao et al., 2006; Chen et al., 
2008b); and (3) inhibition of nitric oxide (NO) synthase 
activity and reduction of NO production by inhibition of 
the NF-κB-iNOS-NO signaling pathway (Chen et al., 2009b; 
Zhang et al., 2011). More studies on the effects of salidroside 
on the mitochondrial apoptotic pathway are needed to clari-
fy the mechanisms underlying the neuroprotective functions 
of RCE.

We found that the protective effect of RCE exhibited a 
parabolic curve pattern, as previously described (Lazarova et 
al., 1986; Petkov et al., 1986). We found that 0.1 mL RCE sig-
nificantly improved learning and memory functions in rats, 
while the 0.02 and 1.0 mL doses had no significant effect. 
High doses of RCE failed to improve the functions, perhaps 
because of other components within the extract (Pooja et al., 
2009). As mentioned above, RCE contains more than 40 dif-
ferent compounds, and it is possible that other compounds 
have effects that antagonize those of salidroside. Because of 
the complexity of herbal extracts, we cannot overcome the 
potentially adverse effects of other components, which may 
affect the efficacy of high doses of the extract.

In summary, ICV injection of STZ leads to abnormal 
changes in mitochondrial structure and function in the rat 
hippocampus, ultimately resulting in elevated levels of hip-
pocampal neuronal apoptosis. Pretreatment with RCE pro-
tects against mitochondrial morphological and functional 
damage in hippocampal neurons, thereby reducing neuronal 
apoptosis in the STZ-induced rat model of AD. Our findings 
provide a basis for future studies on the use of RCE for the 
treatment of neurodegenerative diseases such as AD.
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