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Visual Abstract

The multitude of neuronal subtypes and extensive interconnectivity of the mammalian brain presents a sub-
stantial challenge to those seeking to decipher its functions. While the molecular mechanisms of several neu-
ronal functions remain poorly characterized, advances in next-generation sequencing (NGS) and gene-editing
technology have begun to close this gap. The clustered regularly interspaced short palindromic repeats
(CRISPR)-associated protein (CRISPR-Cas) system has emerged as a powerful genetic tool capable of manip-
ulating the genome of essentially any organism and cell type. This technology has advanced our understand-
ing of complex neurologic diseases by enabling the rapid generation of novel, disease-relevant in vitro and
transgenic animal models. In this review, we discuss recent developments in the rapidly accelerating field of
CRISPR-mediated genome engineering. We begin with an overview of the canonical function of the CRISPR
platform, followed by a functional review of its many adaptations, with an emphasis on its applications for
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genetic interrogation of the normal and diseased nervous system. Additionally, we discuss limitations of the CRISPR
editing system and suggest how future modifications to existing platforms may advance our understanding of the
brain.
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Introduction
Complex behavior is driven by extensive structural and

genetic interactions in the mammalian CNS. Historically,
neuroscientists have examined these interactions using a
variety of histological, electrophysiological and pharmaco-
logical techniques. While indispensable, these techniques
lack the specificity of targeted genetic approaches to dis-
sect neuronal function. Recent advances have allowed the
coupling of high-throughput next-generation sequencing
(NGS) technologies with the cell-type specificity of modern
molecular genetics to interrogate complex network interac-
tions and behaviors at unprecedented scale and resolution.
The ability to read, write, and manipulate genomes with
cell-type specificity is critical, especially considering the
cellular heterogeneity of various CNS structures (Chung et
al., 2005).
Early attempts at targeted gene editing were performed

with zinc finger nucleases (ZFNs) and transcription activa-
tor-like effector nucleases (TALENs), both of which rely on
programmable DNA-binding proteins coupled to active
endonucleases to cleave specific DNA sequences (Kim et
al., 1996; Carroll, 2011; Joung and Sander, 2013). While
suitable for a variety of applications (Gaj et al., 2013),
these systems have fallen out of favor for new genome
editing systems due to relative disadvantages such as
their extensive protein engineering requirements. Recent
advances in gene editing technology have culminated in
the discovery of clustered regularly interspaced palin-
dromic repeats (CRISPR)-Cas9, a bacterial immune sys-
tem which has been repurposed for mammalian genome
editing applications (Jinek et al., 2012). Unlike its prede-
cessors, CRISPR nucleases target DNA in an RNA-di-
rected manner, using a programmable single guide RNA
(sgRNA) to target complementary DNA sequences for
cleavage.
Since the initial adaptation of CRISPR, novel variants

continue to be discovered in diverse microbial species,
differing in endonuclease size, substrate preference
and target recognition requirements (Ran et al., 2015;
Abudayyeh et al., 2017). Moreover, several nuclease

variants have been engineered for expanded targeting ca-
pacity and improved fidelity (Kleinstiver et al., 2015, 2016;
Slaymaker et al., 2016; Chen et al., 2017). Perhaps most
versatile are the catalytically inactive variants designed to
function as DNA-binding proteins, which can regulate
transcription, modify the epigenome, target RNA for de-
struction and facilitate base-editing through the action of
their coupled enzymatic domains (Dominguez et al., 2016;
Rees and Liu, 2018; Pickar-Oliver and Gersbach, 2019).
The highly flexible and multifunctional character of this
platform has established CRISPR-Cas as the predominant
genome editing system in use today. Here, we provide an
overview of CRISPR-Cas technology, followed by a review
of its many adaptations for genetic interrogation and modi-
fication. Throughout this article, we emphasize applications
of CRISPR systems in the field of neuroscience and dis-
cuss the potential of this technology to advance our under-
standing of the brain.

CRISPR-Cas
Isolated from Streptococcus pyogenes, the Type II

CRISPR-Cas9 system (spCas9) was the first enzyme re-
purposed from its native role as a bacterial adaptive im-
mune system for genome editing applications in eukaryotic
cells (Jinek et al., 2012). While spCas9 remains the most
popular CRISPR nuclease, various CRISPR-Cas systems
with divergent structures and properties have been discov-
ered. These systems are broadly categorized by their nu-
clease composition, with those containing multisubunit
nuclease structures pertaining to Class 1 and those com-
posed of a single protein pertaining to Class 2. Within
Class 2, systems are further subdivided into Types II, V,
and VI, which pertain to DNA-targeting Cas9 and Cas12a
and RNA-targeting Cas13, respectively (Shmakov et al.,
2017). As Class 2 systems have been used in the majority
of neuronal gene editing experiments, they will therefore be
the focus of this review. Class 1 systems and their uses are
described elsewhere (Cameron et al., 2019; Pickar-Oliver
et al., 2019).
The prototypical CRISPR nuclease, spCas9, is an RNA-

guided DNA endonuclease that relies on an RNA duplex
comprised of a CRISPR RNA (crRNA) and a transactivat-
ing crRNA (tracrRNA) for its activity (Fig. 1A). CRISPR
RNAs direct Cas9 enzymes to their intended genomic tar-
gets, whereas tracrRNAs are responsible for stimulating
Cas9’s endonuclease activity and mediating pre-crRNA
processing and maturation. Although discovered as two
distinct RNAs in nature, it was experimentally determined
that the essential elements of the tracrRNA-crRNA duplex
could be combined into a chimeric sgRNA. Therefore, ge-
nome editing using this system only requires the Cas9
protein and the sgRNA. Cas9-DNA targeting occurs when
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the Cas9-bound sgRNA hybridizes to its target-DNA proxi-
mal to a short sequence known as the protospacer adjacent
motif (PAM), which is used for target recognition. Once
Cas9 binds to the genomic target site, it creates a double
stranded break (DSB) approximately three bases upstream
of a PAM-containing locus with sufficient crRNA comple-
mentarity. DSB formation initiates the nonhomologous end
joining (NHEJ) DNA repair mechanism, which, due to the
error prone nature of this repair pathway, creates insertion
and deletion (indels) mutations at the DSB site (Fig. 1A). If
the DSB occurs within the protein coding region of a gene, a
loss of protein function can occur. The deletion of relevant
codons or a shift in the reading frame often creates a trun-
cated protein, collectively leading to a null allele/gene
knock-out (KO; Jinek et al., 2012; Cong et al., 2013; Mali et
al., 2013). Alternatively, if a donor DNA template is provided,
homology-directed repair (HDR) can occur instead of NHEJ.
This phenomenon can be harnessed to specifically modify
the genome at precise loci (Fig. 1B; Cong et al., 2013; Mali
et al., 2013; Wang et al., 2013). However, HDR-mediated
DNA repair via existing technology remains very inefficient,
and therefore, its use in non-dividing cells (i.e., neurons) in
vivo has limited utility (Chu et al., 2015; Maruyama et al.,
2015).
The Type V nuclease Cas12a (also known as Cpf1,

CRISPR from Prevotella and Franciscella 1), is a related
DNA targeting enzyme that departs mechanistically from
Cas9 in ways that may be advantageous. For example,
unlike Cas9, Cas12a processes its own CRISPR array
(crRNA precursors) into mature crRNAs, independent of
any ancillary enzymes and a tracrRNA. Cas12a also rec-
ognizes a different PAM sequence (Cas12a, TTTN; Cas9,
NGG), generates staggered cuts and requires a much
shorter guide RNA than Cas9 (;40nt, Cas12a; ;100nt,
Cas9). Cas12a’s compact guide RNA architecture and
self-crRNA processing ability make it well suited for multi-
plexed gene-targeting, particularly through the use of cus-
tom arrays encoding multiple crRNAs. Recently, these
properties were optimized and harnessed for large scale
gene-editing, with Campa and coworkers reporting the
ability to deliver and express 20 crRNAs and Cas12a from
a single vector, simultaneously (Campa et al., 2019). The
continued discovery and development of new CRISPR-
Cas systems with advantageous properties is highly en-
couraging for the future of biomedical research and thera-
peutic development.

Gene Disruption in the Mammalian Brain
via CRISPR-Cas and NHEJ
Targeted gene disruption is a popular approach for dis-

secting the functional role of many synaptic and neuronal
proteins in vivo (Gray et al., 2011; Uezu et al., 2016).
Historically, this has required conventional mutant germ-
line engineering, which is experimentally time-consuming,
can generate deleterious phenotypes, and is generally
prohibitive for multigene perturbation. Gene disruption
with CRISPR-Cas has been demonstrated as a promising
alternative to existing gene KO strategies. Several groups
have begun to apply CRISPR-Cas to disrupt genes in
mature neurons in vitro and in vivo, by targeting Cas9 to
specific loci and relying on NHEJ repair pathways to cre-
ate indels, leading to a high rate of gene disruption
(Incontro et al., 2014; Swiech et al., 2015).
The earliest studies that implemented CRISPR-Cas for

neuronal gene editing in vivo established the lack of toxic-
ity of prolonged Cas9 expression in neurons while also
creating the first transgenic and viral platforms for their
expression and delivery (Platt et al., 2014; Swiech et al.,
2015). Using these transgenic mice, Platt and coworkers
also demonstrated the high KO frequencies (84% biallelic,
9% monoallelic; NeuN) achievable in neurons transduced
with AAV-sgRNAs. Swiech and coworkers sought to ex-
pand the applicability of CRISPR for broad in vivo use by
adapting Cas9 for packaging into popular viral vectors for
gene delivery into the brain (Swiech et al., 2015). The
adeno-associated virus (AAV) DNA packaging limit
(;5 kb) is a major limitation for viral delivery in vivo, there-
fore packaging the Cas9 transgene (;4 kb), sgRNA cas-
sette and other necessary expression components into a
single vector is infeasible. To circumvent this, Swiech and
coworkers developed an AAV-CRISPR system that ex-
presses spCas9 and its respective sgRNA from separate
AAV vectors. Applying AAV-CRISPR to target various
genes in vitro and in vivo recapitulated the substantial ed-
iting efficiency observed in transgenic Cas9 mice. For ex-
ample, targeting methyl CpG binding protein 2 (MeCP2) in
cultured neurons produced morphologic defects concur-
rent with MeCP2 loss of function. Furthermore, multi-
plexed targeting of several DNA methyltransferase genes
within the dentate gyrus was capable of producing con-
text-specific freezing deficits in mice that received
contextual fear conditioning, while sparing behavioral per-
formance in other tasks (open field test, novel object rec-
ognition, elevated plus maze).

continued
Figure 1. CRISPR-Cas9 mediated genome editing. A, Cas9 target recognition occurs through sequence complementarity between
a Cas9-associated sgRNA and a genomic target sequence. Target recognition requires the presence of a proximal 39 PAM, which
facilitates Cas9 binding and endonucleolytic cleavage. Cas9’s dual catalytic domains, HNH and RuvC1, mediate complementary
and non-complementary strand cleavage, respectively. DSBs repaired by NHEJ can introduce short insertion/deletion (indel) muta-
tions that cause frameshifts capable of disrupting protein coding sequences, causing loss of gene function. Alternatively, HDR can
be used for site-specific, sequence alteration by supplying DNA templates encoding user-specified modifications. B, The vSLENDR
and HMEJ knock-in strategies exploit homology-dependent repair pathways to introduce foreign sequences. vSLENDR and HMEJ
both require long homology arms flanking the DSB site for efficient gene insertion. However, HMEJ utilizes a hybrid NHEJ/HDR
strategy which departs from the HDR-based vSLENDR strategy by also requiring DSBs to release the donor DNA template (2B –

Red arrows). C, Homology-independent (NHEJ) knock-in strategies mediate sequence insertion by forming DSBs at desired target
sites and donor templates simultaneously. HITI utilizes a donor template that is flanked by sgRNA recognition sites that match the
genomic target. Simultaneous donor/target cleavage and repair stimulate donor template insertion. HiUGE also requires simultane-
ous donor and target cleavage; however, HiUGE donor vectors encode both a donor template and a self-targeting sgRNA.
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Traditional gene editing strategies have relied heavily
on engineered viral vectors for in vivo construct delivery
(Yin et al., 2017). Although AAV and lentiviral (LV) vectors
are widely used for their ability to stably express trans-
genes for extended periods, the potential drawbacks of
viral delivery and prolonged Cas9 expression for thera-
peutic gene editing have received increased attention. For
example, higher cellular concentrations of Cas9 have
been shown to decrease specificity, presumably because
off-target cleavage is the only possibility after all target
sites have been destroyed (Davis et al., 2015). This obser-
vation has raised concerns for therapeutic developments
that rely on viral gene transfer, which in the case of AAV-
mediated gene expression, persists for several years after
delivery (Nathwani et al., 2011; Wojno et al., 2013; Colella
et al., 2018; Guilbaud et al., 2019). Engineered ribonucleo-
protein complexes (RNP; Cas9 protein bound to a guide
RNA) and Cas9-encapsulating nanoparticles have been
developed as non-viral alternatives for local, transient
CRISPR expression in the brain.
Staahl and coworkers introduced a cell permeable Cas9-

RNP capable of transient and titratable gene disruption
(Staahl et al., 2017). Cas9-RNPs were designed with repeat-
ing SV40 nuclear localization sequences (NLS), which have
been previously reported to enhance cell-penetrance (Liu et
al., 2015). Preassembled Cas9-RNPs were injected into the
S1 primary somatosensory cortex, the V1 primary visual
cortex, the dorsal striatum and the hippocampus of Ai9-
tdTomato mice. Reporter activation increased in a dose-
dependent manner with larger administered doses of
Cas9-RNP. Furthermore, RNP injection into the dorsal stria-
tum did not induce a significant immune response, which
has been a point of concern after reports of anti-Cas9 im-
mune responses (Chew et al., 2016).
Recently, the nanoparticle-based CRISPR-Gold system

was used to target mGluR5, a metabotropic NMDA recep-
tor involved in autism spectrum disorder (ASD)-related
hyperexcitation (Lee et al., 2018). CRISPR-Gold RNPs
containing mGluR5-targeting guides were infused into the
striatum of fragile X mental retardation 1 (FMR1) KO mice,
which significantly reduced exaggerated stereotypies
(excessive digging and jumping). Analysis revealed 14.6%
of striatal mGluR5 genes contained loss of function (LOF)
mutations, while mGluR5 mRNA and protein levels
decreased by roughly 50%. Despite modest editing
efficiency, these results highlight the potential of nanopar-
ticle-based systems to deliver CRISPR and therapeuti-
cally edit genes in the brain. While CRISPR-Gold
administration was sufficient to reverse the behavioral
phenotype, additional optimization of nanoparticle entry
into neurons will likely expand the use of non-viral,
nanoparticle-based methods for genome editing in
neuroscience.
Another group engineered membrane-permeable nano-

complexes to deliver Cas9 RNPs into the brain (Park et
al., 2019). CRISPR nanocomplexes were generated by
fusing an amphiphilic R7L10 peptide to Cas9 RNPs to
permit cellular entry. R7L10-Cas9-RNPs exhibited re-
markable in vivo stability and longevity, sustaining high
levels of expression for over a week, which declined

below detection thresholds after three weeks. Unlike vir-
ally delivered CRISPR transgenes that remain stably ex-
pressed for extended periods, nanocomplex-delivered
RNPs possess limited opportunity to perform their gene
targeting functions. Remarkably, in vivo targeting of b -sec-
retase 1 (Bace1) in the hippocampal CA3 region of 5XFAD
transgenic mice produced an editing efficiency of 45%
which significantly reduced Ab plaques and Ab 42 secre-
tion. Surprisingly, a single hippocampal injection of Bace1-
targeting nanocomplexes elicited persistent improvements
in contextual and associative memory threemonths after
treatment (Park et al., 2019). While the decay rates of in-
jected RNPs and their potential off-targeting effects remain
to be determined, additional research could accelerate the
development of injectable RNP therapies for focal neuro-
logic disease.

Germline Editing with CRISPR
Genetically modified animals have been instrumental in

understanding genetic contributions to neuronal develop-
ment, function and disease. Conventionally, establishing
transgenic animal strains has been a time- and labor-inten-
sive process that requires several months and specialized
facilities for completion (Capecchi, 2005). In recent years,
many of these constraints have been overcome by CRISPR-
Cas9 genome editing. The ability to rapidly produce trans-
genic animals harboring multiple germline mutations with
relative ease is a significant improvement over traditional
transgenic animal production approaches. For a more de-
tailed discussion on generating transgenic/knock-in mice
with CRISPR-Cas, we direct the reader to the following ar-
ticles (Yang et al., 2014; Henao-Mejia et al., 2016; Williams
et al., 2016).
While the broad availability of genetically modified mice

has contributed to their widespread use in biomedical sci-
ence, rats remain the preferred animal model in behavioral
neuroscience research. The paucity of available transgen-
ic rat models has left an unmet demand for additional
transgenic rat lines (Ellenbroek and Youn, 2016). Germline
genome editing with CRISPR-Cas9 has emerged as a
highly efficient method for producing transgenic strains.
As such, CRISPR-Cas9 was used to generate transgenic
Cre-dependent Cas9 and Cre-dependent Cas9-nickase
[Cas9(D10A)] rats and an improved Cre recombinase
(iCre) rat line regulated by the dopamine transporter pro-
moter (DAT-iCre) (Bäck et al., 2019). To show that gene
targeting was Cre dependent, Back and coworkers in-
fused AAVs encoding iCre and tyrosine hydroxylase (TH)-
targeting sgRNAs into the midbrain. Four weeks after infu-
sion, a 45% and 60% decrease in TH immunoreactivity
was observed in the substantia nigra and striatum, re-
spectively. To determine the targeting efficiency achieva-
ble with double-transgenic animals (DAT-iCre1/Cas91),
AAVs encoding Manf sgRNAs were infused into the mid-
brain. After fourweeks, only 3% of dopaminergic neurons
demonstrated Manf immunoreactivity; additionally, nearly
90% of non-dopaminergic neurons remained Manf1,
thereby illustrating the potential of these lines to facilitate
highly specific genome editing with extremely high editing
efficiencies. With the availability of neuron-specific Cre-
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driver lines (GABAergic, D1, D2, parvalbumin), these Cre-
dependent Cas9 rat lines present a significant advance-
ment for future gene studies in behavioral neuroscience.

Gene Modification in the Mammalian
Brain via CRISPR-Cas and HDR
Currently the factors governing DNA repair pathway

choice remain unclear. In general, NHEJ appears to be
far more efficient and active compared to HDR (Cox et
al., 2015). It is generally believed that HDR is mostly re-
stricted to the S/G2 phases of the cell cycle, which may
restrict harnessing HDR’s full potential in postmitotic
cells such as neurons (Saleh-Gohari and Helleday,
2004). This may be due to phase specific conditions
favorable to recombination such as the presence of
proximal sister chromatids or the increased expression
of requisite repair machinery. Both are conditions
which may preclude robust HDR activity in terminally
differentiated neurons. However, this remains to be
determined.
Although Cas9’s canonical function is to cleave DNA, it

can also be used to introduce foreign transgenes and new
sequences using HDR (Fig. 1B). Low neuronal HDR activ-
ity has largely discouraged gene-editing attempts in the
brain. However, recent evidence has surfaced demon-
strating the successful modification of neuronal genes in
vivo. Using their newly developed CRISPR-based HDR
system dubbed SLENDR (single-cell labeling of endoge-
nous proteins via HDR system), Mikuni and coworkers tar-
geted neural progenitors at embryonic days (E)12 and
E15, when HDR should be active. Embryonic brains were
subjected to in utero electroporation (IUE), to deliver
sgRNAs, Cas9 coding plasmids, and a hyperactive
Piggyback transposase system to allow the stable integra-
tion of these transgenes and donor templates consisting of
single stranded oligonucleotides (ssODNs). This approach
enabled the modification of targeted genes to possess N-
terminal or C-terminal epitope tags. Remarkably, SLENDR
was also capable of inserting large sequences into endog-
enous loci, such as the GFP-coding region, facilitating pro-
tein localization studies. The authors reported modification
frequencies as high as 7.5% of neurons when targeting
was performed at E12, and slightly lower levels when per-
formed at E15. It is important to note that indel formation
will occur at a much higher frequency compared to HDR-
mediated sequence insertion using this system. Addition-
ally, the authors specifically targeted the beginning and
end of the protein coding regions, to reduce the chance
that indel formation would have a consequence on protein
structure and function.
Nishiyama and coworkers adapted the SLENDR system

for viral delivery. This system, referred to as vSLENDR
(AAV/CRISPR-based viral-mediated single-cell labeling of
endogenous proteins via HDR system), was shown to
allow HDR-mediated gene modification of neurons in the
mouse adult brain (Fig. 1B). They observed gene modifi-
cation efficiencies in vivo (Nishiyama et al., 2017) as high
as ;30% of targeted neurons, which provides proof-of-
principle for HDR-mediated editing in mature neurons.
While encouraging, the mechanism of HDR-mediated

editing requires additional characterization and subse-
quent optimization before it can be broadly applied for in
vivo studies.

Additional Gene Modification Strategies
While broadly considered an inherently error-prone pro-

cess, various NHEJ-dependent DNA-editing tools have
been developed that demonstrate the remarkably high
editing frequency and precision of NHEJ repair (Fig. 1C).
These tools, designated homology-independent (HI) tar-
geted insertion (HITI), Homology-Mediated End Joining
(HMEJ) and Homology-independent Universal Genome
Engineering (HiUGE) have been shown to effectively inte-
grate exogenous DNA sequences at similar frequencies
(20% to over 50%). The first of these, HMEJ, exploits ho-
mology-dependent (HD) processes by coupling donor
templates harboring sgRNA recognition sites with tar-
geted, Cas9-mediated DNA cleavage. HMEJ-DNA donors
contain 59 and 39 distal sgRNA sites that, upon cleavage,
release a long donor cassette which encourages integra-
tion into the cleaved genomic site. When applied to adult
mouse neurons in vivo HMEJ produced knock-in frequen-
cies of ;50%. Although HD strategies ensure locus speci-
ficity through extensive donor template homology, unique
template production is generally restrictive for high-
throughput experimentation. Therefore, unrestricted by
locus homology, HI systems have gained more traction.
The HITI and more recently developed HiUGE systems
also exploit NHEJ repair to introduce DNA payloads. Both
HITI and HiUGE incorporate similar components and
mechanisms to achieve targeted transgene integration. For
example, the use of a non-homologous donor vector with
sgRNA recognition sequences is ubiquitous among NHEJ-
mediated systems. However, HITI and HiUGE depart as
HiUGE donors contain self-targeting sgRNAs, while HITI
donors require sgRNA recognition sequences to be man-
ually matched between the target and donor. The addition
of a self-targeting guide RNA to HiUGE vectors permits the
development of “all-in-one” donor libraries that may func-
tion complimentarily with large-scale CRISPR genetic
screens.

Regulable Gene Editing with Inducible
CRISPR-Cas Systems
Germline editing with CRISPR-Cas9 has proven re-

markably useful for genetically modifying animals (Li et
al., 2013; Chapman et al., 2015; Remy et al., 2017).
However, germline modifications can produce undesir-
able developmental phenotypes providing little benefit for
studies interrogating gene function in adult animals.
Furthermore, temporally precise manipulations may be re-
quired for studying gene function in dynamically regulated
processes. In such situations it may be beneficial to de-
ploy temporally regulable systems capable of gene edit-
ing within tightly restricted windows. Towards this aim,
CRISPR-Cas9 has been combined with several other
technologies to develop systems that can be regulated
genetically, optically, or with small molecules (Dow et al.,
2015; Zetsche et al., 2015).
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Some of the first inducible CRISPR systems were regu-
lated by components of the popular tetracycline-depend-
ent promoter (Tet) system (Dow et al., 2015; de Solis et
al., 2016), which can be regulated in Tet-on (rtTA) and
Tet-off (tTA) configurations (Fig. 2; Gossen and Bujard,
1992; Gossen et al., 1995). de Solis and coworkers devel-
oped the first doxycycline (Dox)-inducible Cas9-based
editing system that saw use in the brain. First, Cas9 was
placed under the control of the Dox-dependent TRE3G
promoter in an to attempt to temporally regulate Cas9 ex-
pression and subsequent genome editing (de Solis et al.,
2016). However, TRE3G-driven Cas9 exhibited leaky ex-
pression in vitro, prompting the development of regulable
sgRNA expression vectors, which successfully regulated
gene-editing events in a Dox-dependent manner. To de-
termine whether this Dox-regulable CRISPR-Cas9 system
was suitable for in vivo applications, AAV vectors encod-
ing Cas9 and Dox-inducible sgRNAs were infused into the
basolateral amygdala (BLA). In vivo genome-editing anal-
ysis revealed that only animals receiving Dox contained
indels at the target locus. Additionally, Dox-inducible and
constitutively expressed systems exhibited near identical
levels of gene editing, demonstrating that spatiotemporally
precise editing is achievable in the brain without significant
loss of efficiency. Additional Cre and Dox-inducible
CRISPR systems have been developed based on the
smaller SaCas9 endonuclease. For further discussion of

the SaCas9 orthologue and these inducible tools, we di-
rect the reader to (Kumar et al., 2018; Zhou et al.,
2018b).
While the conditional Tet- and Cre- based systems are

frequently used to restrict gene expression temporally
and spatially, their specificity and regulation is largely
transcriptionally mediated. In cases where swift gene-ed-
iting is desirable, it is beneficial to reduce the response
rate of the system. Post-translationally regulated proc-
esses circumvent the de novo transcription and transla-
tion involved in transcriptionally mediated responses,
permitting a more rapid response to dynamic cellular en-
vironments. Additionally, reducing the permissible win-
dow for gene-targeting events could significantly reduce
the off-target modifications reported with constitutively
active Cas9. Several inducible Cas9 enzymes have been
developed whose activities are post-translationally regu-
lated with small molecules (Fig. 2; Davis et al., 2015; Liu et
al., 2016a). These small molecule-responsive systems
use the human estrogen receptor ligand-binding domain
(ERT) fused to Cas9 to trigger gene editing events in the
presence of the ERT ligand 4-hydroxytamoxifen (4-HT).
Davis and coworkers introduced a 4-HT-inducible Cas9
nuclease whose enzymatic activity was inhibited by a stra-
tegically placed, self-splicing intein (Intein-Cas9; Davis et
al., 2015). Intein-Cas9 was engineered such that its en-
zyme activity would only be restored after administration of

Figure 2. Inducible CRISPR-Cas systems. CRISPR-Cas9 genome editing can be spatially and temporally regulated with a variety of
genetic, small molecule, and optical techniques. Intein-Cas9 and iCas can be regulated with the small molecule 4-hydroxytamoxin-
fen (4-HT). Whereas 4-HT-induced intein splicing renders Intein-Cas9 constitutively active, iCas is bidirectionally regulable. Gene
targeting sgRNAs can be transcriptionally regulated with the Dox response H1/TO promoter. Additionally, both sgRNA and Cas9 ex-
pression cassettes can be rendered Cre dependent with the insertion of flanking loxP sites. Split architecture Cas9 systems have
also been rendered photoinducible through fusions to light responsive, heterodimerizing molecules.
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4-HT, which activates intein-protein self-splicing and per-
mits Cas9’s adoption of a catalytically active form. A re-
lated 4-HT inducible Cas9 enzyme was introduced in 2016,
dubbed “iCas.” However, this system departs from its
predecessor by employing ERT2 as a subcellular carrier
versus a covalent inhibitor. As the ERT2 ligand binding do-
main permits translocation into the nucleus when bound by
4-HT, fusing multiple copies of the ERT2 domain to Cas9
enables bidirectionally regulable genome editing in human
cells. Both of these systems demonstrated improved edit-
ing specificities over wild-type Cas9, although iCas9 exhib-
ited lower background activity and higher on-target editing
when benchmarked against intein-Cas9. While intein-Cas9
and iCas9 show promise for studying dynamic processes
in the brain, to our knowledge, they have yet to see use in
such experiments.
Advances in photoinducible protein biology have culmi-

nated in the development of systems that can control
gene-editing and transcription with blue-light irradiation
(Fig. 2; Nihongaki et al., 2015; Polstein and Gersbach,
2015). Nihonkagi and coworkers achieved photoinducible
gene editing by conjugating fragments of a Cas9 nuclease
to protein elements of a dimerizing, light responsive sys-
tem dubbed “magnets” (Kawano et al., 2015). The fungal-
derived magnet system consists of two photoinducible
protein elements termed “positive magnet” (pMag) and
“negative magnet” (nMag), which are named on the basis
of their electrostatic properties (Kawano et al., 2015). This
system demonstrated that gene editing could be bidirec-
tionally regulated by light irradiation, albeit with modest
indel frequencies and a relatively slow response time
(maximal editing ;48 h). As these limitations may limit
paCas9’s usefulness in vivo, additional engineering and
optimization are likely required before this technology can
be robustly applied in animal studies. While light inducible
and optogenetic technologies are widely used in neuro-
science research, photoactivatable gene-editors have yet
to be applied to the nervous system.

Genomic Regulation with Nuclease-
Deficient Cas9
Cas9’s capabilities have expanded beyond convention-

al genome editing by adapting the system into a program-
mable DNA-binding module (Fig. 3). To achieve this,
Cas9’s catalytic activity was abolished by introducing
point mutations into the RuvC1 (D10A) and HNH (H840A)
domains to generate nuclease deficient or dCas9.
Catalytically-inactive Cas9 retains DNA-binding capability
with no apparent loss of targeting or binding specificity
(Qi et al., 2013). As discussed below, dCas9-effector fu-
sions provide seemingly endless applications for non-
mutagenic genome modification, including transcriptional
regulation, epigenome editing, cellular imaging, and RNA
interference (RNAi).

Transcriptional Regulation with dCas9
CRISPR-based transcriptional regulators provide research-

ers with the ability to assess the functional relevance of spe-
cific genes in a variety of neuronal contexts. By manipulating
endogenous loci, CRISPR-based overexpression and gene

silencing strategies circumvent the shortcomings of cDNA
overexpression and RNAi-mediated silencing such as po-
tential protein mislocalization or widespread off-targeting.
The first systems endowing activator and repressor capa-
bilities to the CRISPR platform used fusions of tetrameric
herpes simplex viral protein 16 (VP64), the NF-kB trans-ac-
tivating subunit p65 (p65), or the Krüppel-associated box
domain of Kox1 (KRAB) to dCas9 (Gilbert et al., 2013; Fig.
3E). When directed to promoter or enhancer sequences,
dCas9-VP64 and dCas9-KRAB were capable of inducing
or suppressing gene-specific transcription, respectively.
These capabilities encouraged their ready adoption for
mapping putative cis-regulatory elements in neurodevelop-
ment and neurodegeneration studies (Frank et al., 2015;
Heman-Ackah et al., 2016; Huang et al., 2017). Although
this first generation of transcriptional regulators could
modestly alter transcription, several reports demon-
strated that gene expression could be amplified with
the provision of multiple sgRNAs per targeted promoter
(Gilbert et al., 2013; Maeder et al., 2013; Konermann et
al., 2015; Savell et al., 2019). This observation suggested
that the overall copy number and enzyme cooperativity of
the recruited effectors was responsible for differences in
gene expression. Capitalizing on this observation, other
groups developed additional CRISPR activator (CRISPRa)
and CRISPR interference (CRISPRi) systems with en-
hanced transcriptional regulatory capabilities (Tanenbaum
et al., 2014; Chavez et al., 2015; Konermann et al., 2015).
These second-generation systems employ diverse scaffold
architectures to recruit transcriptional regulators and maxi-
mize effector potency and recruitment.
Early second-generation systems employed an epi-

tope-based scaffolding strategy to increase activator
recruitment known as SUperNova (SunTag; Fig. 3C;
Tanenbaum et al., 2014). The SunTag scaffold is a
peptide array composed of tandem repeating GCN4
epitopes. Transcriptional regulators conjugated to short-
chain variable fragments (scFv) with high affinity for the
GCN4 epitope can effectively bind the SunTag scaffold,
facilitating the formation of multimeric regulatory struc-
tures at targeted DNA sequences. Essentially the system
is designed to recruit many VP64 transcriptional activa-
tion domains to the promoter to enhance transcriptional
activation. Indeed, expressing dCas9-SunTag with scFv-
bound VP64 activators dramatically increased targeted
gene expression compared to that achieved by dCas9-
VP64.
Another study (Konermann et al., 2015) examined the

regulatory potential of sgRNAs designed to recruit tran-
scriptional activators using RNA aptamers (Fig. 3B).
Analysis of sgRNA secondary structures identified regions
that were non-interacting with the Cas9 endonuclease
and found that mutating distal base pairs in these regions
had no influence on DNA binding or cleavage. By substi-
tuting sgRNA stem loops with MS2 aptamers that could
recruit MS2 coat proteins (MCPs) fused to p65 and heat
shock factor 1 (HSF1), it was determined that dCas9-
VP64 could upregulate transcription at significantly higher
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Figure 3. Transcriptional and epigenetic regulation with CRISPR-Cas transcriptional control can be achieved by fusing various tran-
scription regulating enzymes to catalytically inactive Cas9 (dCas9). The CRISPR-based activators SunTag, VPR, SAM, and SPH em-
ploy various architectures to recruit transcription activating molecules. A, VPR deploys traditional peptide linkers to fuse the
tripartite VP64, p65, and Rta effector to dCas9. B, The synergistic activator mediator (SAM) uses the MS2 RNA aptamer to recruit
MCPs fused to a p65-HSF1 domain to induce transcription. C, The SunTag system utilizes the a GCN4-epitope array to localize
VP64 activators to transcription start sites (TSSs). D, Relatedly, the SPH system uses the SunTag scaffolding array to recruit p65-
HSF1 dimers in lieu of VP64. The dCas9-KRAB (E) and the improved dCas9-KRAB-MeCP2 (F) transcriptional repressors use similar
strategies inhibit transcription. G, dCas9 fused to the DNA methyltransferase 3A (DNMT3A) enzymatic domain can de-novo
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levels when co-expressed with RNA aptamer-containing
sgRNAs versus standard sgRNAs.
A separate group screened putative activator domains for

gene activation potency, identifying VP64, p65 and the
Epstein–Barr virus R transactivator (Rta) as the most potent
transcriptional activators. However, dCas9-p65 and dCas9-
Rta both exhibited lower transcription rates than the original
dCas9-VP64 chimera. To overcome this, combinations of
activators were fused with the aim of cooperatively inducing
higher gene expression (Chavez et al., 2015). Using dCas9-
VP64 as a starting framework, a tripartite fusion of VP64-
p65-Rta (VPR; Fig. 3A) was tethered to dCas9 and subse-
quently assayed for induction capacity, which revealed that
gene expression was upregulated between 22- and 320-
fold when compared with dCas9-VP64.
Second-generation activators were screened for maxi-

mal induction of Ascl1 and Neurod1 genes in HEK293T
cells, revealing SAM (Konermann et al., 2015), SunTag
(Tanenbaum et al., 2014), and VPR (Chavez et al., 2015) as
the most potent gene activators. Subsequent assays re-
vealed SAM as the most consistent in activating high levels
of gene expression. Notably, the increased transcription of
several tested genes reached orders of magnitude above
that induced by dCas9-VP64 (Chavez et al., 2016).
While newly developed CRISPRa systems undergo vali-

dation in several common cell types, few have seen any
use in neuronal contexts. Savell and coworkers have re-
cently introduced LV vectors capable of robust neuronal
VPR expression in vitro and in vivo (in vivo discussion con-
tinued below; Savell et al., 2019). Gene overexpression
assays in primary cultured neurons demonstrated VPR’s
ability to robustly overexpress single or multiple genes
with high specificity. Notably, multiplexed gene activation
with VPR recapitulated earlier reports of sgRNA-dose re-
sponsiveness. Effective activation was demonstrated
using an individual sgRNA and significantly increased
with the provision of multiple unique sgRNAs.
In contrast to transcriptional activators, few dCas9 re-

pressors capable of enhanced transcriptional downregu-
lation have been developed. Recognizing this deficit, Yeo
and coworkers proceeded to perform a similar screen to
identify dCas9-repressors capable of robustly inhibiting
gene expression (Yeo et al., 2018). Of the screened tran-
scriptional repressors, the bipartite dCas9-KRAB-MeCP2
fusion emerged as the most potent (Fig. 3F).

Regulating Transcription In Vivo with
dCas9
Ectopic gene overexpression mediated through viral

vector delivery is a popular strategy to investigate neuro-
nal gene regulation (Lentz et al., 2012; Haggerty et al.,
2020). As previously described, numerous CRISPRa

systems have been developed, enabling the potent acti-
vation of multiple genes in various tissues types.
However, until recently, these technologies have been
limited to in vitro applications because of the difficulty as-
sociated with the efficient delivery of multiple large trans-
genes in vivo. Recently, elements of the SAM and SunTag
system were combined to develop a new dCas9-based
transcriptional activator, dCas9-SunTag-p65-HSF1 (SPH;
Fig. 3D), for in vivo gene regulation (Zhou et al., 2018a). To
develop the SPH platform, the VP64 tetramers in the
SunTag system were replaced with the p65-HSF1 do-
mains from the SAM system. When combined, these
components potently induced gene expression, surpass-
ing the SunTag, VPR, and SAM activators.
In order to circumvent the difficulties associated with

viral delivery of large, multicomponent systems to the
nervous system, the authors generated a transgenic
mouse line harboring a Cre-dependent SPH system.
Considering that cell-type and circuit-specific multiplex
strategies will likely be required to successfully interrogate
gene networks in vivo, Zhou and coworkers performed
feasibility experiments on SPH’s multiplex gene activation
capabilities. Using a combination of AAV vectors encod-
ing Cre recombinase (hSyn-Cre and CamKIIa-Cre) and
sgRNA arrays targeting multiple genes (eight coding
genes and two long noncoding RNAs), Zhou and co-
workers successfully overexpressed several targeted
genes simultaneously. When coupled with existing ge-
nome wide CRISPRa sgRNA libraries, these SPH mice
provide a useful tool for endogenous gene overexpression
and genome wide screening in the brain.
Savell and colleagues sought to optimize the previously

developed dCas9-VPR activator for behavioral neuro-
science by developing neuron-optimized viral vectors ca-
pable of potent, multiplexed gene expression in vivo. By
examining VPR expression under the control of several
promoters, they were able to identify and produce a LV
system that permitted robust VPR expression in vitro and
in vivo under the control of the neuron-specific Synapsin
promoter. This neuron-optimized LV VPR system was ap-
plied in various neuronal contexts and was notably capa-
ble of potent, isoform-specific induction of various BDNF
transcripts in vivo (Savell et al., 2019).
Until recently, RNAi and conditional Cre-loxP systems

have been the predominate methods used for gene
knock-down and KO, respectively. However, evidence
documenting the significant off-target effects of short
hairpin RNA (shRNA) and small interfering RNA (siRNA)
has accumulated (Castanotto and Rossi, 2009; Jackson
and Linsley, 2010; de Solis et al., 2015). Alternative meth-
ods for gene knock-down such as CRISPR-based re-
pressors have been proposed, due to their ability to
potently silence gene expression within various contexts.

continued
methylate CpG dinucleotides in a programmable manner. H, dCas9 fused to ten-eleven translocation’s (TET1) catalytic domain facil-
itates successive cytosine oxidation and demethylation at methylated CpG sites. dCas9-DNMT3A/TET1 can effectively regulate
gene transcription by targeting CpG containing promoter regions for epigenetic modification. dCas9 C-terminally fused to the cata-
lytic core of the human p300 acetyltransferase (p300core) I or histone deacetylase 8 (HDAC8) J can regulate the acetylation status of
histone 3 lysine 27 (H3K27) residues to regulate transcription from promoters and both distal and proximal enhancers.
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However, the application of CRISPRi technology in neu-
rons has seen limited use in vivo.
Recently, a LV-based CRISPRi system was developed

for use in the mammalian brain (Fig. 3E). Using the dCas9-
KRAB repressor, synaptotagmin I (Syt1), vesicle associ-
ated membrane protein I (Vamp1), syntaxin 1A (Stx1a), and
synaptosome associated protein 25 (Snap25), genes re-
sponsible for vesicular neurotransmitter release, were tar-
geted in cultured hippocampal neurons. To compare the
efficiency of CRISPRi and RNAi-mediated knock-down,
sgRNAs and shRNAs were tested for each target gene.
CRISPRi produced ;90% reduction in mRNA and protein
levels of all genes targeted, compared to a modest reduc-
tion produced by RNAi. Additionally, whole-cell patch-
clamp recordings of CRISPRi-targeted hippocampal neu-
rons revealed significant reductions in EPSCs, as expected
from disruption of the neurotransmitter release pathway
(Zheng et al., 2018).
Numerous studies have reported the potential for Cas9

endonucleases to bind off-target sites (Kuscu et al., 2014;
Wu et al., 2014). This, coupled with the observed potency
of the dCas9-KRAB repressor, raises concerns for severe
off-target silencing. The authors used a “pseudo-target
fishing strategy” to determine the frequency of off-targets
by expressing dCas9-KRAB with sgRNAs containing
unique mismatches with the Syt1 locus. This strategy re-
vealed that Syt1 expression levels remain largely un-
changed, indicating that mismatched sgRNAs were
incapable of efficiently directing dCas9-KRAB to the Syt1
locus (Zheng et al., 2018).
As cell-type specificity is essential for the interrogation of

gene and cell function in the brain, the dCas9-KRAB re-
pression system was modified to restrict targeting to gluta-
matergic (CaMKIIa-dCas9-KRAB) or GABAergic (VGAT-
dCas9-KRAB) neurons. LV infusion into the dentate gyrus
revealed a roughly 20% transduction rate of neurons con-
fined to the granule layer. Analysis of dCas9-KRAB1 DG
neurons revealed that Syt1 expression was completely
abolished in a cell-type specific manner. Likewise, whole-
cell patch-clamp revealed that EPSCs within CaMKIIa-ex-
pressing neurons were almost completely abolished, with
a similar reduction in GABAergic neuron IPSCs (Zheng et
al., 2018).
Targeting Syt1 within glutamatergic and GABAergic

neurons enables altering of the inhibitory-excitatory (I-
E) ratio within the hippocampus. As the hippocampus is
implicated in various forms of learning and memory
(LaBar and Cabeza, 2006), the authors subjected mice
to multiple spatial and associative learning tasks after
CRISPRi mediated I-E shifting. Animals receiving
CaMKIIa-dCas9-KRAB (shift towards inhibition) exhib-
ited significant performance reductions in spatial mem-
ory related tasks (Morris water maze, Barnes Maze, T
maze) compared with animals receiving VGAT-dCas9-
KRAB (shift towards excitation). In tests of associative
memory (fear conditioning), CaMKIIa driving animals
demonstrated reduced freezing levels in response to a
cued stimulus (tone) in contrast to VGAT driving animals
which exhibited slightly enhanced freezing, illustrating
that alterations of the I-E ratio within the hippocampus

could bidirectionally regulate spatial and contextual
fear memory (Zheng et al., 2018).

CRISPR-Based Epigenome Editors
DNA methylation is vitally involved in neurodevelop-

ment and in dynamic gene regulation across various net-
works in the CNS (Smith and Meissner, 2013). Cytosine
methylation within promoter regions permits the con-
trolled regulation of various processes ranging from basic
gene transcription to higher-order functions such as
learning, memory and cognition. Historically, epigenetic
studies have been incapable of determining the functional
relevance of specific methylation events due to the limita-
tions of the methylation-inhibiting small molecules 5-aza-
cytidine and 5-aza-29-deoxycytidine (Heerboth et al.,
2014). Although these compounds could be locally in-
jected to induce regional CpG hypomethylation, these
shortcomings are largely prohibitive for the precise inves-
tigation of disorders such as Angelman’s, Fragile X, Rett
syndrome, and Prader–Willi syndrome, all which exhibit
significant neurologic phenotypes and aberrant CpG
methylation (Butler, 2009). Recent advances in epige-
nome engineering technology have produced CRISPR-
based epigenome editors that couple the programmable
targeting of CRISPR with enzymes involved in the DNA
methylation pathway (Fig. 3G–J; Liu et al., 2016b, 2018a;
Lei et al., 2017).
As dynamic DNA methylation has been proposed to

regulate activity-dependent gene expression, Liu and co-
workers sought to determine whether their LV dCas9-
TET1 system could induce brain-derived neurotrophic
factor (BDNF) expression by targeting the BDNF IV pro-
moter for demethylation in cultured primary neurons
(Fig. 3H; Liu et al., 2016b). Neuronal dCas9-TET1 expres-
sion successfully increased BDNF expression 6-fold.
However, “no sgRNA” controls also produced a nearly 2-
fold increase in BDNF expression, demonstrating this sys-
tem’s potential for non-specific gene induction. CRISPR-
epigenome editors have also been used preclinically for
therapeutic studies. For example, dCas9-TET1 was used
to demethylate the CGG trinucleotide expansion in the 59
UTR of the Fmr1 gene in models of fragile X syndrome
(FXS; Persico and Napolioni, 2013; Liu et al., 2018a).
dCas9-TET1 targeting to the Fmr1 59 UTR in in vitro-de-
rived FXS neurons significantly reduced CGG trinucleotide
hypermethylation and the associated hyperexcitable phe-
notype. Remarkably, dCas9-TET1-treated inducible pluri-
potent stem cell (iPSC)-induced FXS neurons retained high
levels of FMRP expression months after their engraftment
into live mouse brains.
Beyond the transcriptional regulation mediated by dy-

namic DNA methylation, histone modifications gatekeep
gene expression by altering chromatin conformation and
the accessibility of cis-regulatory elements to DNA bind-
ing proteins (Yarrington et al., 2018). CRISPR-based epi-
genome editors have been used to uncover the functional
importance of discrete regulatory elements (Hilton et al.,
2015; Chen et al., 2019). Using dCas9-p300 and dCas9-
HDAC8 (Fig. 3I,J), the histone modifications at the second
enhancer (Enh2) of the neuronal immediate early gene
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(IEG) Fos were shown to fine tune the degree of activity-
induced transcription. In other words, the type of histone
modification installed by p300/HDAC8 could slightly in-
crease or decrease activity-dependent Fos transcription.
However, inducing a heterochromatic state with HDAC8
could not completely silence Fos activity, and inducing a
euchromatic or “protranscriptional” state was insufficient
to induce Fos transcription without neuronal activity. This
observation contrasts the constitutive gene activation
mediated by other CRISPRa systems, which if targeted to
Enh2, would presumably induce Fos without neuronal ac-
tivity. The effectiveness of CRISPR-based epigenome ed-
itors highlights the potential for these new tools to
elucidate the functional relevance of non-coding and epi-
genetically regulated elements to animal behavior, neuro-
nal function and disease.

Engineering the Neuronal Transcriptome
with RNA-Targeting CRISPR Effectors
Programmable DNA-targeting Cas9 nucleases have

been used for in vivo gene studies. However, tools enabling
the study of RNA function are severely lacking. Recently,
the diverse group of Class 2 CRISPR-Cas systems has
been expanded to include the Type VI, RNA-targeting
Cas13 family of effectors (Abudayyeh et al., 2016, 2017).
Despite their recency, RNA-targeting CRISPR systems
have been engineered for targetable RNA visualization,
knock-down, base-editing, and in vitro isoform manipula-
tion (Figs. 4, 5; Abudayyeh et al., 2017; Cox et al.,
2017; Konermann et al., 2018). The Cas13 family of
endonucleases are characterized by a single-effector pro-
tein containing two higher eukaryotes and prokaryotes nu-
cleotide-binding (HEPN) ribonuclease (RNAse) domains
(Abudayyeh et al., 2016). Unlike their DNA-targeting coun-
terparts, Cas13 effectors do not require tracrRNAs for pre-
crRNA processing, nor do they require PAM sequences for
nucleic acid targeting and non-self-recognition. Instead,
sequences that are enriched proximally to protospacer tar-
geting sites are referred to as protospacer flanking sequen-
ces (PFSs). Notably, several Cas13 variants have been
shown to not require a PFS for RNA cleavage (Cox et al.,
2017). Multiple studies have reported a large amount of di-
vergence amongst the Type VI family, often reporting little
sequence conservation among Cas13 nucleases other
than the characteristic HEPN RNase domains; for a more
complete discussion of their individual properties we sug-
gest reviewing (Shmakov et al., 2017).
Numerous studies have compared the knock-down

ability of multiple Cas13 subtypes and orthologues to
RNAi, which have overwhelmingly demonstrated that
Cas13’s RNA knock-down capabilities are superior to
those of shRNAs (Abudayyeh et al., 2017; Cox et al.,
2017; Konermann et al., 2018). Additionally, the recently
discovered Cas13d effector, Ruminococcus flavefaciens-
Cas13d (CasRx; Fig. 4A), has been shown to more effec-
tively silence gene expression than other well-established
methods such as CRISPRi (Konermann et al., 2018).
When targeted to the endogenous B4GALNT1, ANXA4,
and HOTTIP genes in HEK293FT cells, CasRx demon-
strated a remarkable median knock-down efficiency of

96% compared with 53% knock-down produced with
sequence-matched shRNAs. Furthermore, CasRx did not
generate any detectable off-target transcriptional changes,
which starkly contrasts shRNA-induced silencing of an ex-
cess of 500–900 off-target genes (Konermann et al., 2018).
CasRx also outperformed CRISPRi (dCas9-KRAB) medi-
ated repression, which produced a median 53% knock-
down rate when targeted to the same genes. Other
recently described Cas13 subtypes have been shown to
robustly knock-down RNA in mammalian cells. Compared
to Cas13a (LwaCas13a-msfGFP-NLS; Abudayyeh et al.,
2017) and Cas13b (PspCas13b-NES; Cox et al., 2017),
CasRx demonstrated greater transcript knock-down ability
(median knock-down rates; Cas13a, 80%; Cas13b, 66%;
CasRx, 97%). Remarkably, of 14 sgRNAs targeted to both
coding and non-coding RNA, CasRx yielded at least
;80% transcript knock-down, suggesting that CasRx
could be used to regulate any RNA in the cell.
Several degenerative diseases have been linked tomuta-

tions within individual pre-mRNA elements. For instance,
mutations within exons 45–55 or exon 23 of the Dystrophin
gene produce the muscle degeneration associated with

Figure 4. RNA targeting with CasRx. (A) CasRx can efficiently
target and cleave RNA via its dual HEPN nuclease domains.
Unlike DNA targeting Cas9 endonucleases, several Cas13 or-
thologues do not exhibit PFS (PAM site analogue) requirements.
Mutating HEPN catalytic residues (R295A, H300A, R849A,
H854A) preserves CasRx’s RNA binding ability, allowing CasRx
to be adapted for fusion constructs. (B) Splice isoform engi-
neering|decatalyzed CasRx (dCasRx or dCas13d) fused to the
splicing factor hnRNP1 can be targeted to various splice ele-
ments (splice acceptors, splice donors, intronic branch points,
etc.) to induce exon skipping and isoform selection.
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Duchenne muscular dystrophy (DMD; Ousterout et al.,
2015; Long et al., 2016). Likewise, neurodegenerative tauo-
pathies such as Frontotemporal dementia with parkinson-
ism linked to chromosome 17 (FTDP-17) is associated with
point mutations in exon 10 of theMAPT gene, which deter-
mines which Tau protein isoform is expressed in neurons
(Boeve and Hutton, 2008). As previous studies have re-
ported success in models of DMD using exon-skipping
strategies (Nelson et al., 2019), Konermann and coworkers
tested whether dCasRx could efficiently drive isoform se-
lection by developing a dCasRx-RNA splice effector fusion
(Fig. 4B).
Pre-mRNA splicing is mediated by interactions between

cis-acting elements (splice acceptor/donor sites, intronic
branchpoint nucleotides, etc.) and the trans-acting spli-
ceosome (Matera and Wang, 2014). Within the cohort of
pre-mRNA interacting molecules are the heterogeneous
nuclear RNPs (hnRNPs), a ubiquitously expressed group of
splice factors that facilitate alternative splicing by inhibiting
exon exclusion (Wang et al., 2015). The hnRNPa1-CTD
was fused to dCasRx and targeted to several putative
splicing elements, which successfully induced exon-
skipping in a fluorescence splicing reporter. In order to
determine whether skipping exon 10 of the MAPT gene
could decrease the accumulation of pathogenic (isoform
4R) tau, cortical neurons differentiated from patient-
derived iPSCs were transduced with AAV encoding
dCasRx-hnRNPa1 and three exon 10 targeting sgRNAs.
dCasRx-hnRNPa1 mediated exon-skipping was shown
to reduce 4R/3R ratios by 50%, a level similar to unaf-
fected controls (Konermann et al., 2018).
These results demonstrate the ability of Type VI, RNA-

targeting Cas13 effectors for enhanced RNAi and manip-
ulation. In the past, applications of dCas13 effector
fusions have been limited by their large size. Therefore,
CasRx’s short coding sequence (;2.9 kb) makes it highly
suited for use in AAV vectors. As described above, the
CasRx fusion and three sgRNAs fell below AAV packaging

limitations, a characteristic that may inspire the future de-
velopment of CasRx-based effectors that are capable of
elucidating RNA function in the brain.

Base and Prime Editing
Existing CRISPR technologies equip researchers with a

powerful, multifunctional platform to investigate a stagger-
ing number of biological questions, however these tools
are not without drawbacks. DSBs created by Cas9 nucle-
ases often result in haphazard DNA repair and indel forma-
tion, which can frequently produce extensive sequence
heterogeneity and yield several unwanted or deleterious
DNA products. Technologies have been developed that
circumvent problematic DSBs and imprecise cellular DNA
repair processes through the use of enzymes (Fig. 5) that
can alter RNA and DNA nucleotides in situ, or more re-
cently, prime editors that can faithfully install edits through
reverse-transcription of an RNA template (Fig. 6). These
technologies, termed base editors, rely on dCas9 fusions
to nucleobase deaminases to directly install point muta-
tions without the need for DSBs. Existing base editors are
collectively able to catalyze all possible transition muta-
tions (C to T and A to G, point mutations) in DNA, with re-
cent developments in RNA base editing allowing the
conversion of A to I, and C to U bases as well. DNA and
RNA base editors are extensively discussed in Rees and
Liu (2018). As of yet, no studies have reported the use of
base editors in any neuronal context. However, the grow-
ing number of single nucleotide polymorphisms (SNPs) im-
plicated in psychiatric and neurologic diseases and the
finding that the mRNAs of various neuronal ion channels
and synaptic receptors undergo RNA editing may prompt
the future use of these tools in neuroscience laboratories
(Behm and Öhman, 2016).
Prime editors present the latest advance in precision

gene editing. Anzalone and coworkers introduced a Cas9-
nickase (Cas9n)-based system that couples the DSB-free

Figure 5. Base editors. A, Adenine base editor (ABE) and cytosine base editor (CBE) catalyze the deamination and alteration of DNA
nucleobases via chimeric Cas9n-DNA deaminase fusions. Nicking (single strand DNA cleavage) of the non-edited strand increases
base-editing efficiency by inducing cells to repair the cleaved strand using the edited strand as a template. B, The Cas13-based
RNA base editor RNA-editing for programmable A to I replacement (REPAIR) mediates the conversion of adenosine to inosine,
while RNA editing for specific C to U exchange (RESCUE) mediates the conversion of cytosine to uracil.
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editing strategy pioneered with base-editors to an sgRNA-
based RNA donor template (Fig. 6; Anzalone et al., 2019), a
strategy similar to one recently introduced in yeast (Sharon
et al., 2018). Prime editors are multicomponent systems
comprised of a chimeric Cas9n-reverse transcriptase and
a prime editing guide RNA (pegRNA). Both the target locus
and the desired DNA edit are encoded on the pegRNA,
which harbors the standard Cas9 sgRNA components and
a 39 extended RNA template. Cas9n cleavage of the PAM-
containing strand allows donor-template invasion and hy-
bridization, which permits RNA-template reverse transcrip-
tion and effective installation of the desired edit. This prime
editing strategy was shown to successfully introduce
broad classes of edits with lower indel frequencies than
Cas9-mediated HDR in multiple cell types in vitro, including
a modest editing frequency (6–8%) in primary neuronal cul-
tures. Although a promising development, the frequency of
genome-wide off targets and unintended reverse transcrip-
tion products remain unknown. This, in concert with the
modest editing frequency achieved with the latest prime
editor, may preclude its immediate use in vivo. Nonetheless,
this technology presents an exciting new development to-
wards achieving high-fidelity, corrective gene editing with
CRISPR.

CRISPR Screens
The recent exponential advances in NGS technologies

and the easy design and production of large numbers of
unique sgRNAs has facilitated the high-throughput

investigation of various psychiatric and neurodegenerative
disorders, cancer, and essential gene functions through
large-scale CRISPR screens (Fig. 7). CRISPR-mediated
screens combine high-throughput, single-cell sequencing
technologies with genome-wide sgRNA targeting libraries
optimized for gene KO (Sanjana et al., 2014; Doench et al.,
2016; Morgens et al., 2017; Wang et al., 2018; Liu et al.,
2019), activation (Horlbeck et al., 2016; Joung et al., 2017;
Chong et al., 2018; Liu et al., 2018b; Sanson et al., 2018),
and silencing (Horlbeck et al., 2016; Liu et al., 2017;
Sanson et al., 2018) applications. Recent applications of
CRISPR-screening have produced new experimental pipe-
lines that permit the unambiguous contribution of risk-as-
sociated genes to disease phenotypes (Thyme et al., 2019)
and the determination of cellular-lineage and heredity in
developmental studies (McKenna et al., 2016; Raj et al.,
2018). For example, CRISPR-Cas9 was recently used to
perform a mutant-phenotyping screen on schizophrenia-
associated genes identified in human genome-wide asso-
ciation studies (GWAS; Thyme et al., 2019). Cas9 was used
to mutagenize several risk-associated genes in developing
zebrafish. These mutants were then subjected to behav-
ioral and structural analysis which allowed Thyme and co-
workers to successfully uncover phenotypes for multiple
understudied genes. A separate zebrafish study deployed
a large-scale CRISPR-Cas9 technique (GESTALT; see
McKenna et al., 2016 for additional background) combined
with single-cell RNA-seq (scRNA-Seq) to determine cellular
fate and lineage characteristics in developing brains.
Paired with an inducible Cas9, DNA barcodes harboring

Figure 6. Prime editing. Prime editors (PEs) use a partially decatalyzed Cas9(H840A) nickase, a prime-editing RNA (pegRNA) and an
engineered reverse transcriptase (RT) to precisely introduce DNA edits; pegRNAs contain a primer binding site (PBS) which anneals
to the nicked target strand, allowing sequence extension through reverse transcription and production of the edited strand.
pegRNA-PBS reverse transcription produces an edit-containing 39 flap and an unedited 59 flap which undergoes preferential degra-
dation by endogenous 5’�39 exonucleases. The remaining edited 39 flap anneals and is ligated, resulting in a mismatched heterodu-
plex which can be resolved by cellular DNA repair pathways. Targeting the unedited strand with a separate sgRNA increases editing
efficiency and stimulates preferential DNA repair to permanently install edited DNA.
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specific target sequences were used to indicate whether
DNA editing occurred in a specific cell; because genomic
bar code expression results in cellular progeny with identi-
cal barcode sequences, this allowed Raj and coworkers to
determine the lineage histories for a plethora of cell types
in the developing zebrafish brain.
While most screens are performed in vitro or ex vivo,

two CRISPR-Cas9 mediated in vivo screens have recently
been reported in the brain (Chow et al., 2017; Jin et al.,
2019). A recent in vivo screen (Perturb-Seq, first de-
scribed by Dixit et al., 2016) aimed at systematically un-
covering the phenotypes of a large panel of ASD-related
genes was performed by coupling cell-type specific tran-
scriptomics and a lentivirus-mediated sgRNA library tar-
geting 35 putative ASD-risk genes. Ventricularly injecting
LV-sgRNA libraries into developing embryos in utero per-
mitted postnatal, single-cell transcriptional profiling and
identification of multiple gene clusters from cortical and
striatal tissue. CRISPR knock out coupled with a scRNA-
seq readout readily enabled differential gene identifica-
tion, subsequent perturbation and phenotyping for a num-
ber of ASD-risk genes involved in distinct molecular
pathways across variant cell types.
The earliest reported in vivo screen was directed at in-

vestigating the functional and tumorigenic consequences
of significantly mutated genes (SMGs) that were previ-
ously identified in tumor samples taken from human glio-
blastoma multiforme (GBM) patients (Chow et al., 2017).
A pooled AAV-sgRNA library [mouse homolog tumor sup-
pressor library (mSTG)] targeting various risk-genes was
hippocampally or ventricularly infused into mice, which
produced GBM-characteristic tumor growth at fourmonths
postinjection. Histologic, transcriptomic and genetic char-
acterization of AAV-CRISPR-mediated GBM tumors, in
vivo and ex vivo, permitted the successful identification
and correlation of single and co-occurring tumor drivers to
GBMmutations identified in human patients.
Although CRISPR-based screens are heavily used in

oncology research (Hart et al., 2015; Tzelepis et al., 2016;
Chow et al., 2017), these tools have garnered significantly
less attention for large-scale genetic studies in disease-
relevant cell types such as differentiated neurons. Tian
and coworkers recently performed several CRISPRi
screens to elucidate functional contributions of various
genes to cell survival, differentiation, transcriptional regu-
lation and morphology in human iPSC (hiPSC)-derived
neurons (Tian et al., 2019). In an initial survival screen,

dCas9-BFP-KRAB and the LV H1 sgRNA library were
used to target ;2300 genes comprising the “druggable
genome.” CRISPRi-mediated gene knock-down uncov-
ered a strong neuronal dependence on sterol/cholesterol
metabolism genes and enhanced neuron survival when
members of the integrated stress response (DLK, JNK,
PERK) were knocked down. Tian and coworkers also per-
formed screens that identified common regulators of vari-
ant transcriptional programs in iPSCs and neurons, as
well as several genes that contributed to neuronal longev-
ity and morphology.

Existing Challenges for CRISPR Gene
Editing
Despite the explosive progress of CRISPR-mediated

genome engineering in the last decade, significant chal-
lenges for clinical and preclinical applications remain. For
example, concerns regarding CRISPR’s immunogenicity,
targeting efficiency, fidelity and optimal delivery will need
to be addressed before CRISPR can fulfil its clinical and
research potential.
CRISPR delivery in vivo has been accomplished virally,

with RNPs and nanoparticles. For preclinical studies
using small animals, these delivery methods are sufficient,
since experiments can be conducted where useful data
can be generated by targeting relatively small body areas.
Viruses and RNPs can deliver their necessary cargo to re-
gions of this size reasonably well. However, improvements
can be made to increase the ease of delivery and the area
of tissue that could be effectively targeted with CRISPR
systems. For example, conventional AAVs and LVs need to
be stereotaxically injected intracranially to gain access to
the brain and usually will not transduce more than a few
cubic millimeters of tissue. More recently, AAVs with modi-
fied capsids have been developed that can cross the blood
brain barrier, so they can be administered systemically and
transduce brain cells (Chan et al., 2017). Although these
developments are encouraging, they still need more devel-
opment for clinical utility. Notably, non-human primate re-
search and clinical human studies will generally benefit
from less invasive routes of delivery that can target larger
regions of the brain. This will be an important hurdle to
overcome if CRISPR is to ever realize its full potential of
treating CNS diseases.
For any gene modification technique, its specificity

and accuracy are paramount, especially for clinical

Figure 7. High-throughput genetic screening with CRISPR. Large scale genetic screens can be performed in iPSCs expressing
CRISPR machinery. Transduction of iPSCs with pooled LV sgRNA libraries permits the selection and expansion of construct-posi-
tive cells before in vitro neuronal differentiation. CRISPR-KO, CRISPRi, and CRISPRa can be coupled with single cell and NGS tech-
nologies for genome-wide or targeted gain- and loss-of function screens.
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applications. While high-fidelity SpCas9 variants have
been developed (Kleinstiver et al., 2016; Slaymaker et al.,
2016; Chen et al., 2017; Casini et al., 2018; Chatterjee et
al., 2018; Hu et al., 2018), the off-targeting frequencies
and loci for therapeutic sgRNAs will need to be thoroughly
characterized in vitro before use in human therapies. For
gene KO in preclinical applications, SpCas9’s fidelity is
likely sufficient, especially since researchers can perform
independent experiments with differing sgRNAs designed
to KO out their intended gene. Given that differing sgRNAs
would likely not exhibit the same off targets, if the same
phenotype is obtained with both sgRNAs, then their result
would likely be due to the KO of the intended target.
Preclinical studies using CRISPR-Cas have generated

significant enthusiasm for the future of personalized gene
therapies. However, as CRISPR becomes implemented
clinically, aspects of its safety for use in human therapies
have received extensive scrutiny. Recently, various pre-
clinical studies have described the immunogenicity of
CRISPR nucleases following systemic (IV) administration
to laboratory mice (Chew et al., 2016; Nelson et al., 2019).
Host anti-vector and transgene responses are discussed
elsewhere (Sun et al., 2003; Rabinowitz et al., 2019; Wang
et al., 2019). Additionally, preexisting adaptive immunity
against S. pyogenes and Staphylococcus aureus Cas9
have also been reported in humans (Charlesworth et al.,
2019). However, these findings are unsurprising given the
high frequency at which these bacteria infect humans
(Lowy, 1998; Roberts et al., 2012). While SpCas9 and
SaCas9 remain two of the most broadly used CRISPR en-
zymes, new orthologues derived from non-pathogenic
bacterial species may be required for human therapies
where preexisting immunity is a concern. Alternatives
such as orthologue specific-epitope engineering or
short term suppression (Chew et al., 2016) may theoreti-
cally ameliorate immune responses in the short-term.
However, the long-term expression of AAV-mediated
therapies and their potential for genome insertion at DSB
sites (Miller et al., 2004; Hanlon et al., 2019), may limit the
feasibility of immunosuppressive approaches.
The low efficiency of precise editing (corrective editing

via HDR, prime editing, etc.), in neurons is another sig-
nificant hurdle for the use of CRISPR for neuroscience
research and human therapy. The available data indi-
cate that precise editing occurs at relatively low levels in
neurons, limiting the utility of these methods and cur-
rently making them unlikely to have any benefit clinically.
Although precise editing occurs relatively infrequently in
most cell types compared to NHEJ-mediated indel for-
mation, disorders that afflict mitotically active cell popu-
lations may be more amenable to HDR-based therapies.
For example, hemopoietic progenitor cells can be ge-
netically modified ex vivo, clonally selected efficiency,
expanded and then re-implanted, essentially bypassing
the issue of inefficient HDR mediated precision editing.
In another example it was recently demonstrated that
AAV-CRISPR could be delivered via tail injection in a
mouse model of hereditary tyrosinemia Type 1 (HTI) to
correct genetic mutations within the liver (Yin et al.,
2014). Although only a small percentage of hepatocytes

(,1%) harbored the therapeutic edit, the gene correc-
tion provided a fitness advantage to edited cells, which
allowed them to repopulate the liver. Unfortunately,
given that neurons are postmitotic, precise, CRISPR-
mediated editing has limited utility for the foreseeable
future until methods are developed to increase its
efficiency.

Conclusions and Future Directions
The CRISPR-Cas system has emerged as a highly

adaptable platform with extensive utility in multiple
areas of biomedical and basic science. Given its ability
to target nearly any gene or RNA transcript, alter gene
expression and modify epigenetic states with high spec-
ificity, CRISPR-Cas represents an invaluable tool help-
ing drive the rapid pace of discovery in biological
sciences. While early studies only demonstrated its use
in peripheral tissues, recent efforts have produced
CRISPR-Cas systems amenable for use in the CNS.
Additionally, the development of CRISPR-expressing
animals, as well as the discovery of AAV-compatible or-
thologues, have provided substantial tools for probing
neuronal function at multiple levels of analysis. While
newly developed CRISPR-transgenics may be crossed
with existing Cre-driving lines, novel CNS-optimized
tools will likely require viral vector encoding and deliv-
ery. Challenges associated with viral vectors such as
packaging constraints, low virus infectivity and low gene
editing efficiencies remain limiting factors for using
CRISPR in the brain. In order to maximize the therapeu-
tic and research potential of available systems, existing
delivery methods must be optimized and new, more
effective ways of introducing these systems must be de-
veloped. Undoubtedly, future improvements and appli-
cations of CRISPR-Cas technology will surface. Despite
these challenges, recent advances in CRISPR-Cas tech-
nology have provided researchers with powerful new
tools for engineering the neuronal genome.
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