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Background: To investigate pro- and anticoagulant alterations in uremic

critically ill patients prior to and during continuous renal replacement therapy. In

addition to the conventional thrombin generation assay (TGA), we performed a

thrombomodulin-modified variant to better elucidate procoagulant imbalances. Platelet

function was determined via multiple electrode aggregometry (MEA) to round off

hemostatic analysis.

Methods: We prospectively enrolled patients at surgical intensive care units (ICU) with

acute kidney injury undergoing continuous veno-venous hemodialysis using regional

citrate anticoagulation. TGA and platelet function testing were performed at baseline

(≤12 h prior to continuous renal replacement therapy) and on 3 consecutive days (day

A–C) of extracorporeal therapy.

Results: We did not observe significant changes in thrombin generation after start

or during renal replacement therapy. Ratios of endogenous thrombin potential in

patients were significantly increased (p < 0.001) compared to standardized plasma

of healthy donors confirming the assumed procoagulant alterations in ICU patients.

Test results of the conventional TGA differed significantly (p < 0.05) from those of

the thrombomodulin-modified assay. The area under the curve remained below MEA

reference values during the entire observation period, indicating a persistent reduction in

platelet function.

Conclusion: In summary, in-depth analysis using standard and modified TGA, as

well as calculation of endogenous thrombin potential (ETP) ratios, revealed no further

aggravation of the procoagulatory shift in the critically ill patient during CVVHD using

regional citrate anticoagulation. MEA ruled out the potential impact of platelets.

Clinical Trial Registration: German Clinical Trials Register (DRKS00004336), 29

August 2012; www.drks.de.
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INTRODUCTION

Critically ill patients are at high risk of venous thromboembolism
(VTE) (1–3). At the same time, comorbidities and therapeutic
interventions often contribute to an increased risk of
bleeding (4–8).

Conventional coagulation assays do not sufficiently depict
hemostatic imbalances, whether hypo- or hypercoagulable (6,
9). Hence, over the past decade huge efforts have been made
to find alternative tests which offer more detailed insight
into the hemostasis of patients admitted to the intensive care
unit (ICU).

Viscoelastic tests such as rotational thrombelastometry
or thrombelastography, were the first tests better able to
elucidate hypo- and hypercoagulability in critically ill patients
(10). Recently, there has been more interest in thrombin
generation assays (TGA) for this special cohort. TGA evaluate
the individual’s potential to generate thrombin, which triggers
further procoagulant processes (11). When recombinant
thrombomodulin (TM) is added during the procedure,
TGA can also be used to investigate the contribution of
endogenous anticoagulants to hemostasis (12). This has
not yet been described in critically ill patients. Multiple
electrode aggregometry (MEA) to investigate platelet function
rounds off the options for detailed hemostatic analysis
(13, 14).

Multifaceted hemostatic imbalances are an issue especially
in critically ill patients requiring renal replacement therapy
(CRRT): the contact of blood with foreign surfaces activates
procoagulant processes (9) further aggravating the per se
prothrombotic risk related to critical illness (1–3), whereas
uremic platelet dysfunction is accompanied by a bleeding
tendency (9, 15, 16). Caught between an increased risk of
bleeding complications on the one hand and thrombosis
on the other hand, anticoagulation of the extracorporeal
circulation is a particular challenge. Citrate allows regional
anticoagulation of the extracorporeal circuit without increasing
the bleeding risk (9).

The chronological interplay of pro- and anticoagulant forces
during treatment of uremia is not yet fully understood. Thus, the
aim of the study was to investigate hemostatic alterations beyond
conventional coagulation tests. In addition to conventional
TGA, we performed a TM-modified TGA to better elucidate
anticoagulant forces. Results of MEA completed the overall
hemostatic picture.

MATERIALS AND METHODS

This prospective observational trial was performed in accordance
with the principles of the 1964 Declaration of Helsinki and
its later amendments. Approval was granted by the Ethics
Committee of the Medical University of Vienna (4 July 2012, No.
1416/2012). Informed consent was obtained from all participants
included in the study. All patients consented to the publication of
anonymized data. This trial was registered at the German Clinical
Trials Register (no. DRKS00004336) prior to the start of patient
recruitment (August, 29 2012).

Patients and Sample Collection
We screened adult patients (>18 years) with acute kidney
injury indicating CRRT for eligibility at three surgical ICUs at
the Medical University of Vienna, Austria, between February
7, 2013 and November 21, 2018. Patients with impaired
hemostasis (due to e.g., known coagulation disorders, therapeutic
anticoagulation, major bleeding, severe liver dysfunction) prior
to or at the start of CRRT were excluded. Continuous
veno-venous hemodialysis (CVVHD) with regional citrate
anticoagulation was performed via multiFiltrate R© (Fresenius
Medical Care AG) using commercially available equipment
and solutions (Ultraflux AV 1000s, Ci-Ca dialysat K2, sodium
citrate 4%, 0.5M CaCl2) (17). Therapy was started with
default settings defined for adults (blood flow-effluent flow
ratio: 1:20; calcium: 1.7 mmol L−1; citrate: 4 mmol L−1)
(17). We adjusted flow rates when indicated by metabolic
disturbances following a standardized, previously published
protocol (17). Furthermore, we determined total calcium
levels once daily, to screen for citrate accumulation. All
patients received VTE prophylaxis (enoxaparin 40mg once
daily) in line with current guidelines recommending LMWH
chemoprophylaxis (3). Coagulation assays were performed at
baseline (≤12 h prior to CVVHD) and on 3 consecutive
days (day A–C; accounting for the average life-span of the
hemofilter) at trough levels of LMWH treatment. Demografic
data including the Caprini Score (18) for VTE risk assessment,
medical history, and parameters collected during daily clinical
routine (e.g., standard laboratory parameters depicting renal
function and infection parameters, transfusion requirements,
and substitution of coagulation factor concentrates) were
extracted from automated patient data management systems
(CareVue [Agilent technologies] and the IntelliSpace Critical
Care and Anesthesia patient data management system [ICCA;
Philips GmbH, Healthcare, Vienna, Austria; system started on
April 23, 2013]).

Laboratory Assessment
Blood samples were drawn from indwelling arterial or central
venous catheters. Except for TGA, all coagulation assays were
performed immediately.

Conventional Coagulation Assays (CCA) and Platelet

Count
CCA were performed on citrated plasma (Vacuette R© Greiner,
Kremsmünster, Austria; trisodium citrate 3.8% 9:1 v/v). We
assessed prothrombin time (PT; Owren, reference range: 70–
125%), activated partial thromboplastin time (aPTT; reference
range: 27–41 s), antithrombin (AT; reference range: 80–120%),
fibrinogen (Clauss method; reference range: 200–400mg dl−1),
and antiXa levels (STA R©-Liquid Anti-Xa, REF 00311 and
REF 00322, reference range: <0.1 IU ml−1) via the STA
R Max 2 R© coagulometer (Diagnostica Stago SAS, Asnières-
sur-Seine, France). Platelet count (reference range: 150–350G
l−1) was determined from an EDTA tube (Vacuette R© Greiner,
Kremsmünster, Austria) via the Sysmex XE- 2100 cell counter
(Sysmex, Kobe, Japan).
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FIGURE 1 | Parameters of the thrombin generation assay (TGA) (19).

TABLE 1 | Demographic data.

Male Female p-value

Sex (m/f) 13 13 na

Age (y) 66 (63;72) 65 (56;73) 0.94

BMI 25.0 (24.5;27.8) 28.4 (25.0;31.1) 0.24

SAPS III 60 (56;69) 71 (62;80) 0.13

Caprini Score 9 (7;10) 8 (6;9) 0.24

Presented as median (1st quartile; 3rd quartile); p-values from hypothesis tests for gender

differences; BMI, body mass index; SAPS III, Simplified acute physiology score 3; m, male;

f, female; y, years; na, not applicable.

Thrombin Generation Assay
Blood samples were drawn into citrate-theophylline-
adenine-dipyridamol (CTAD) test tubes (Vacuette R© Greiner,
Kremsmünster, Austria; 9:1 v/v) to minimize the effect of
circulating microparticles, and immediately centrifuged at 4,500
g for 15min. Platelet-poor-plasma (PPP) was then stored at
−80◦C for subsequent testing.

We performed TGA using the fully automated Ceveron R©

alpha TGA analyzer (Technoclone, Vienna, Austria; Software

Release V 2.1.2.2). For the conventional test, 15 µl reagent RC
high (Ceveron R© TGA RC high; Technoclone, Vienna, Austria),
35 µl CaCl2, and 20 µl reaction buffer are added to 40 µl PPP
(thawed to 37◦C) to initiate the coagulation process. Thrombin
generated during the clotting process cleaves 40 µl of Z-Gly-Gly-
Arg-AMC, a fluorogenic substrate (Ceveron R© TGA substrate,
Technoclone, Vienna, Austria). The concentration of thrombin
is detected and plotted against time, resulting in a thrombin
generation curve characterized by the following parameters: lag
time (tLag, min), time to peak thrombin level (tPeak, min), and
peak thrombin level (Peak, nM), after which the concentration
of thrombin decreases (Figure 1). The velocity index (VI, nM
min−1) is defined as Peak/(tPeak–tLag), the area under the
curve depicts the endogenous thrombin potential (ETP, nM)
(11). As PPP lacks endothelial cells containing thrombomodulin
(TM), we performed a modified test in which recombinant
human TM (Sekisui Diagnostics, LLC, Stamford, USA) is added
at a concentration of 2 nmol L−1 to activate the protein C
pathway and detect both pro- and anticoagulant determinants
of hemostasis. In each blood sample ETP was determined using
the conventional test assay (without thrombomodulin) and the
TM-modified test assay in duplicate.
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TABLE 2 | ICU data at baseline and during the first 72 h of CVVHD.

Baseline Day A Day B Day C p-value*

Standard laboratory parameters referring to renal function and infection

BUN (mg dl−1) 65.5

(35.2;99.5)

43.7

(28.8;60.3)

26.3

(22.8;38.0)

23.3

(19.7;30.7)

<0.001

Creatinine (mg dl−1) 3.07

(2.35;4.42)

2.03

(1.77;2.69)

1.45

(1.22;2.00)

1.32

(1.04;2.15)

<0.001

CRP (mg dl−1) 18.9

(8.0;25.3)

19.8

(11.6;30.2)

19.0

(11.1;26.8)

16.0

(10.2;24.6)

0.73

WBC (G l−1) 12.3

(9.4; 18.9)

11.8

(8.0;17.7)

11.7

(7.3;17.2)

12.4

(6.4;16.9)

0.44

Coagulation assays and platelet count

PT (%) 60

(48;85)

70

(51;86)

73

(56;91)

77

(64;90)

0.12

aPTT (s) 39.3

(37;47.7)

42.0

(38.6;46.3)

40.2

(38.4;45.6)

38.6

(35.4;42.8)

0.94

Fibrinogen (mg dl−1) 516

(395;651)

562

(391;687)

585

(450;687)

584

(490;653)

0.79

AT III (%) 63

(46;95)

68

(51;90)

71

(58;92)

83

(64;95)

0.05

AntiXa (IU ml−1) <0.1

(<0.1;0.1)

<0.1

(<0.1;0.16)

<0.1

(<0.1;0.16)

<0.1

(<0.1;0.14)

0.82

Platetet count (G l−1) 167

(105;221)

168

(97;201)

140

(98;184)

141

(114;188)

0.1

Procoagulant drugs and transfusion requirements (n, number of patients receiving at least 1 application/unit)

TXA 0 0 0 0 na

Fibrinogen concentrate 1 1 0 0 na

PCC 1 0 0 0 na

Others 0 3 0 0 na

PRBC 6 6 2 1 na

Platelet concentrates 1 2 0 2 na

FFP 1 0 1 0 na

Clinical outcomes

DVT and/or PE 0 na

Data are presented as median (1st IQR;3rd IQR) or number of patients (n); BUN, blood urea nitrogen (reference range 6–23mg dl−1); CRP, C-reactive protein (reference range <0.5mg

dl−1); WBC, white blood cells (reference range 4–10G l−1); creatinine (reference range: 0.50–0.90 mg dl−1 for women and 0.70–1.20 mg dl-1 for men); TXA, tranexamic acid; PCC,

prothrombin complex concentrate; PRBC, packed red blood cells; FFP, fresh frozen plasma; PE, pulmonary embolism; DVT, deep vein thrombosis; g, gram; d, day; ml, milliliter; s,

seconds; mg, milligram; dl, deciliter; G, giga; l, liter; *p-values from hypothesis tests for differences between results at baseline and day C.

To better understand the pro- and anticoagulant forces
in our patient cohort, we related ETP levels determined in
the conventional assay (ETP−TM) to those obtained from
the TM-modified assay (ETP+TM). ETP was then expressed
as “ETP ratio” and calculated both for patients (ETP ratio
patient) and standardized plasma of healthy donors (ETP ratio
standardized plasma) (Technofrozen Control N, REF 5021100,
Technoclone, Vienna, Austria). Standardized plasma of healthy
donors was obtained from pooled plasma after plasmapheresis
and fulfilled the following criteria: PT 75–150%, FVIII 75–150%,
fibrinogen 200–450mg dl−1. Higher ratios of ETP+TM /ETP−TM

– mirroring a certain resistance to the anticoagulant activity of
TM – were interpreted as increased procoagulant imbalance (12).

To enhance the sensitivity and reproducibility of TM-
modified measurements, we followed the recommendation of
Tripodi (12) and used the following formula to calculate a
“normalized ETP ratio,” comparing ETP ratios of patients to

those of standardized plasma:

ETP − TM ratio Normalisation

=
ETP − PTTM

ETP − PT−TM

/ ETP − NMTM

ETP − NM−TM

ETP-PTTM, endogenous thrombin potential determined in

the individual patient in the presence of thrombomodulin;

ETP-PT−TM, endogenous thrombin potential determined in

the individual patient in the absence of thrombomodulin

(= conventional TGA); ETP-NMTM, endogenous thrombin

potential determined from pooled normalized plasma samples

in the presence of thrombomodulin; ETP-NM−TM, endogenous

thrombin potential determined from pooled normalized

plasma samples in the absence of thrombomodulin (=

conventional TGA).
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TABLE 3 | Parameters of thrombin generation (TGA) in patients at baseline and

during CVVHD.

tLag (min) tPeak (min) Peak (nM) ETP (nM) VI (nM

min−1)

TGA

Baseline 3.6

(3;4.9)

8.8

(6.6;11.6)

184

(111;336)

2,105

(1,155;2,757)

40

(19;94)

Day A 3.4

(2.8;4.3)

8.2

(7.2;10.8)

178

(86;323)

1,825

(1,187;2,762)

38

(13;67)

Day B 3.5

(2.6;4.2)

7.8

(6.7;10.7)

238

(116;434)

2,146

(1,313;3,528)

54

(20;101)

Day C 3.6

(2.7;4.2)

8.2

(6.7;10.8)

254

(170;382)

2,427

(1,665;3,173)

55

(26;101)

p-value* 0.04 0.13 0.31 0.42 0.42

TM-modified TGA

Baseline 3.3

(2.6;3.7)

6.8

(5.8;8)

123

(55;221)

972

(533;1,689)

35

(14;68)

Day A 3.1

(2.6;3.6)

7.1

(6.3;8.9)

117

(42;197)

1,177

(466;1,895)

31

(8;59)

Day B 3.1

(2.6;3.5)

6.8

(5.8;7.9)

152

(47;278)

1,250

(446;2,308)

37

(11;82)

Day C 3.1

(2.7;3.5)

7.1

(6.1;8.5)

160

(56;287)

1,455

(536;2,173)

45

(13;81)

p-value* 0.4 0.5 0.33 0.65 0.3

Data are presented as median (1st quartile, 3rd quartile); tLag, lag time; tPeak, time to

peak; Peak, peak thrombin; ETP, endogenous thrombin potential; VI, velocity index; min,

minutes; nM, nanomolar; *p-values from hypothesis tests for differences between results

at baseline and day C.

Multiple Electrode Aggregometry (Multiplate®)
Platelet function testing was conducted using tubes containing 25
µl ml−1 hirudin (VacuetteTM Greiner, Kremsmünster, Austria).
MEA was started after blood samples had rested for 30min,
using the Multiplate R© analyzer (Roche Diagnostics GmbH,
Vienna, Austria). Details of the test procedure have previously
been described (20). Commercially available test reagents
(Roche Diagnostics GmbH) containing either arachidonic acid
(ASPItest, reference range: 71–115U), adenosine diphosphate
(ADPtest, reference range: 57–113U), collagen (COLtest,
reference range: 72–125U), or thrombin receptor activating
peptide-6 (TRAPtest; reference range: 84–128U) were added
to saline-diluted whole blood to activate particular platelet
receptors and initiate platelet aggregation.

Diagnosis of VTE
Compression ultrasound of the lower extremities was performed
for research purposes only, prior to inclusion in the study, on
day C, and at discharge from the ICU. A lack of compressibility
on B-mode ultrasound of either the common femoral vein or
the venous system down to the popliteal vein was considered
as proximal DVT. Pulmonary embolism (PE) was included
if computed tomography pulmonary angiogram confirmed
central/lobar PE. Owing to the lack of clinical relevance
(21, 22), we did not account for distal/superficial DVT or
subsegmental PE.

Statistical Analysis
The central tendency and dispersion of continuous variables
are described by median, and first and third quartiles,
respectively. Gender differences in continuous demographic
variables are assessed by Mann-Whitney-U-tests. Differences
between measurements of continuous variables at baseline
and day C were tested using Wilcoxon signed rank tests for
paired samples. The same testing procedure applies to the
comparison of TGA measurements in the presence and absence
of thrombomodulin. All tests were two-sided, and p-values
< 0.05 were considered statistically significant. All statistical
analyses were performed with the statistical software R version
4.02 (R Core Team 2020) (23).

RESULTS

Patient Characteristics
We prospectively enrolled 36 patients. Since therapeutic
anticoagulation/platelet inhibition was started during CRRT in
seven patients and TGA was not performed from CTAD tubes
in all patients, 26 patients remained for analysis of data. Table 1
presents the demographic data, severity of critical illness, and risk
of thrombosis which did not differ significantly between males
and females. ICU data including CCA and standard laboratory
parameters of renal function are presented at baseline and
throughout day A–C in Table 2. We did not observe clinically
relevant venous thromboembolism.

Thrombin Generation Before and During
CVVHD With Regional Citrate
Anticoagulation
Table 3 presents the results of TGA as determined by the
conventional and the TM-modified test assay.

As expected, TGA parameters differed significantly
when thrombomodulin was added to the test procedure
(Figures 2A–E).

There was no statistically significant change in any of the TGA
parameters during the course of CVVHD (baseline to day C)
(Table 3). However, peak thrombin and ETP levels increased over
time in the conventional as well as the TM-modified assay.

Calculated median ETP ratios for patients remained stable
over the study period, with 0.55 [0.38; 0.76] at baseline, 0.52 [0.37;
0.68] at day A, 0.53 [0.38; 0.71] at day B, and 0.57 [0.34; 0.66] at
day C. Results at baseline did not differ significantly from those
obtained at day C (p= 0.59).

ETP ratios were significantly higher (p < 0.001) in patients
when compared to standardized plasma of healthy donors
(baseline: 0.25 [0.21; 0.29]; day A 0.24 [0.21; 0.29]; day B 0.24
[0.21; 0.28]; day C 0.23 [0.21; 0.27]). Figure 2F illustrates the
course of ETP ratios in patients and standardized plasma.

With respect to ETP ratios of patients compared to those
generated from standardized plasma (“normalized ETP ratio”),
the following results can be reported: 2.17 [1.42; 3.02] at baseline,
2.04 [1.65; 2.86] at day A, 2.24 [1.76; 2.89] at day B, and 2.66 [1.58;
3.08] at day C. There was no significant change from baseline to
day C (p= 0.27).
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FIGURE 2 | Course of TGA parameters in the conventional TGA and the TM-modified assay (A–E), (F) depicts ETP ratios (ETP+TM : ETP−TM) in patients and in

standardized plasma of healthy donors. *p < 0.05; **p < 0.01; ***p < 0.001; tLag, lag time; tPeak, time to peak; Peak, peak thrombin; ETP, endogenous thrombin

potential; VI, velocity index; min, minutes; nM, nanomolar.
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FIGURE 3 | Platelet function at baseline and during CVVHD with regional citrate anticoagulation (gray bars highlight reference ranges provided by the manufacturer at

time of measurements).

Platelet Function Determined via MEA
Before and During CVVHD With Regional
Citrate Anticoagulation
Results of the AUC revealed decreased platelet function, with

values below defined reference ranges at baseline and the

following 3 days during CVVHD (Figure 3). Although we
observed a significant decline in creatinine and blood urea
nitrogen (p < 0.001) during CVVHD, proving efficacy of
the extracorporeal therapy, platelet function did not change
significantly. Table 4 presents detailed test results during the
observational period.
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DISCUSSION

In this study we did not observe significant changes in thrombin
generation after the start or during the course of CVVHD using
regional citrate anticoagulation. Test results for the conventional
TGA differed significantly from those for the TM-modified assay.
ETP ratios in patients were significantly higher compared to the
standardized plasma of healthy donors confirming the assumed
procoagulant alterations in ICU patients. Taken together, this
could be interpreted as the CVVHD anticoagulated with citrate
does not further aggravate the per se procoagulatory shift in
the ICU patient. Moreover, throughout the whole study period,
platelet dysfunction did not improve despite the successful
treatment of uremia.

TGA has recently attracted attention in hemostatic research
as it allows hypo- and hypercoagulable alterations to be detected
(11, 24) – both of which are present in critically ill patients. To
date, data on TGA in critically ill patients have been reported
in the context of liver failure, trauma, sepsis, severe burn
injury, and extracorporeal membrane oxygenation (4, 19, 25–27).
Moreover, TGA is increasingly used to investigate the efficacy
of anticoagulant therapy beyond CCA, also during critical
illness (28–31).

To the best of our knowledge, we are the first to describe TGA
in patients with severe kidney injury requiring extracorporeal
organ support with regional citrate anticoagulation.

Petros and colleagues performed conventional and TM-
modified TGA in patients with severe sepsis (26). As in our study,
tests were performed at baseline (within 24 h of the diagnosis of
severe sepsis) and with a follow-up (by day 8). The parameters
of conventional TGA differed significantly at baseline compared
to healthy controls, except for ETP levels. Lag time, time to
peak, and peak thrombin were lower in non-survivors in both
the conventional and the TM-modified assay. Unfortunately, the
results are not comparable to our study owing to the different TM
concentration used (5 pM in the final solution).

Gouya and colleagues performed TGA to describe the
bioactivity of enoxaparin beyond conventional antiXa
measurement in 16 critically ill patients (31). Peak thrombin
levels measured with RC high reagent were much higher at
baseline (344 nM, IQR 150; 657) and 3 h after administration of
LMWH (269 nM, IQR 34; 482) than in our study. In contrast, the
authors found ETP levels (median at baseline ∼750 nM; median
3 h after administration ∼630 nM) far below those we found in
our patients. It should be noted that normal renal function was a
precondition for participation in this study.

Also of note, ETP ratios comparing ETP measured in the
presence and absence of TM have not yet been reported in either
of these patient cohorts.

ETP measurement is affected by temperature and

concentration of tissue factor and phospholipids (12). For that

reason, in 2017 Tripodi appealed for the careful standardization

of ETP by calculating ETP ratios (12). The ETP-TM ratio

represents the resistance to the anticoagulant activity of TM (12).
The higher the ratio, the greater the procoagulant imbalance (12).
ETP-TM ratios remained stable during the observation period
of our study, but were significantly higher in patients compared

TABLE 4 | Results of Multiplate during CVVHD: no significant effect on platelet

function despite successfully treated uremia.

Multiplate Baseline Day A Day B Day C p-value*

ADP (U) 39

(21;83)

45

(20;67)

41

(23;67)

43

(23;65)

0.84

ASPI (U) 54

(27;86)

66

(43;92)

58

(41;81)

62

(49;95)

0.17

COL (U) 45

(25;66)

44

(29;60)

44 (20;60) 38

(33;79)

0.57

TRAP (U) 79

(47;99)

78

(51;114)

77

(51;97)

72

(52;102)

0.3

BUN mg dl−1 74.0

(37.1;99.6)

42.0

(28.1;61.1)

26.2

(22.1;37.0)

22.8

(18.6;29.8)

<0.001

Data are presented as median (1st quartile, 3rd quartile); BUN, blood urea nitrogen

(reference range 6–23mg dl−1); U, unit (= area under the curve); *p-values from

hypothesis tests for differences between results at baseline and day C.

to the standardized plasma of healthy volunteers, indicating
a greater procoagulant potential. Tripodi also postulated the
interpretation of the ETP-TM ratio in relation to ETP levels
of standardized plasma of a healthy control group to enhance
sensitivity and reproducibility of TM-modified measurements
(12). When the ETP ratio was compared to standardized normal
plasma samples in our cohort, we observed an increase in ratio
from baseline until day C. The calculation of ETP ratios has
not yet become standard; ETP ratios have been reported in
cirrhotic patients, patients with polycythemia vera, essential
thrombocytopenia, and idiopathic myelofibrosis, but not in
critically ill patients (12).

In addition to TGA, we performed MEA at the uremic
state and tracked platelet function throughout CVVHD. The
AUC revealed an impaired platelet function affecting platelet
activation via arachidonic acid, adenosine diphosphate, collagen,
and TRAP-6-related pathways at baseline. Test results remained
below defined reference ranges despite efficient elimination of
urinary excreted substances.

Underlying pathomechanisms of uremia-related platelet
dysfunction (e.g., diminished release of thromboxane A2,
altered composition of surface receptors resulting in decreased
interaction with the endothelium, other platelets, and fibrinogen)
are complex and have been described previously (9, 15, 32).
Data on platelet function in uremic patients are also available
for MEA. Gäckler and colleagues performed MEA in non-
critically ill patients undergoing intermittent hemodialysis due to
chronic end-stage renal disease (33). Reduced AUC levels were
found only in some patients: 25% of patients showed reduced
AUC in the ADP test, 45% in the ASPI test, and 10% in the
TRAP test (33). Notably, the test results are not comparable to
data we found in our study, as the type of hemodialysis and
anticoagulation differ. Wand and colleagues investigated MEA
in a partly comparable setting to ours: Multiplate R© performed
in patients with acute kidney injury before start of CRRT and
6, 12, 24, and 48 h after initiation of CRRT (34). Similar to our
results, the authors did not find a significant change in platelet
function over time during CRRT, except for one significant drop
in AUC in the ASPI test 6 h after initiation of CRRT (34).

Frontiers in Medicine | www.frontiersin.org 8 June 2021 | Volume 8 | Article 680540

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wiegele et al. TGA and MEA During CRRT

In contrast to our results, the median AUC of the TRAP and
ASPI assay remained within the defined reference ranges for
the test. However, here too, the ADP test revealed persistent
impaired platelet function (34). As the reported reference ranges
differ from ours, we can assume a different composition of
reagents was used, explaining why the absolute values are
not comparable (34).

It is worth noting that median platelet count in our patient
cohort remained above 100G L−1 which, to date, is the
recommended lower limit for achieving reliable test results in
point-of-care platelet tests such as Multiplate R©1.

The following limitations should be considered: firstly, TGA
still lacks defined reference values; and test reagents vary between
studies. To achieve some degree of standardization, we followed
the recommendation to compare the test results from patients to
those from the standardized plasma of healthy donors. Secondly,
the results of MEA did not allow us to draw conclusions
with respect to the potential underlying pathomechanisms of
platelet dysfunction in our patient cohort. We performed MEA
to rule out the potential impact of platelets on prohemostatic
alterations and did not intend to fully elucidate platelet function
in this defined context. Thirdly, for a variety of reasons,
the study inclusion took several years. However, both, the
material and standard procedures for CVVHD, as well as the
anticoagulant regimes, were identical throughout the entire
study period.

In summary, in-depth analysis using standard and modified
TGA, as well as the calculation of ETP ratios, revealed no further
aggravation of the procoagulatory shift in the critically ill patient
by/during CVVHD using regional citrate anticoagulation. MEA
ruled out the potential impact of platelets.

1https://diapharma.com/wp-content/uploads/2016/07/

Multiplate_Package_Inserts_R5_ML-02-00011-.pdf.
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