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SUMMARY

Increasing evidence supports a pathogenic role of unabated neuroinflammation in var-

ious central nervous system (CNS) diseases, including epilepsy. Neuroinflammation is

not a bystander phenomenon of the diseased brain tissue, but itmay contribute to neu-

ronal hyperexcitability underlying seizure generation, cell loss, and neurologic comor-

bidities. Several molecules, which constitute the inflammatory milieu in the

epileptogenic area, activate signaling pathways in neurons and glia resulting in patho-

logic modifications of cell function, which ultimately lead to alterations in synaptic

transmission and plasticity. Herein we report the up-to-date experimental and clinical

evidence that supports the neuromodulatory role of inflammatory mediators, their

related signaling pathways, and involvement in epilepsy.We discuss how thesemecha-

nisms can be harnessed to discover and validate targets for novel therapeutics, which

may prevent or control pharmacoresistant epilepsies.

KEY WORDS: Epileptogenesis, Glia, Cytokines, HMGB1, IL-1, COX-2, Anti-inflam-
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A dysregulated neuroinflammatory response has been
suggested to play a pathogenic role in several central ner-
vous system (CNS) diseases, including acute and chronic
neurodegeneration,1–3 and epilepsy.4–7 Indeed, there are
several examples in the literature showing that a persistent
neuroinflammatory response in the injured brain may result
in neuronal and glial cell dysfunction, alterations in blood–
brain barrier (BBB) homeostasis, or neuronal cell death.
Inefficient anti-inflammatory control by endogenous

resolving mechanisms may play a pivotal role in igniting
persisting neuroinflammation.8,9

There is evidence supporting a reciprocal causal link
between neuroinflammation and epilepsy.4,10–12 Experimen-
tal findings have highlighted that seizure activity is sufficient
per se to trigger synthesis and release of pro-inflammatory
molecules from brain resident cells. This event is part of a
phenomenon defined “neurogenic inflammation.”13 How-
ever, in human epilepsy, seizures are unlikely to be the only
factor triggering a persistent neuroinflammatory response. In
fact, the inflammatory milieu detected in brain specimens
from focal cortical dysplasia (FCD) type 1 vs type 2 is very
different in the extent and type of inflammatory cells and
their mediators despite similar seizure frequency.14

Increasing pre-clinical and clinical evidence points to the
involvement of several inflammatory mediators in the
pathogenesis of seizures, neuropathology, and neurologic
comorbidities in epilepsy. The pathologic relevance of neu-
roinflammation is reinforced by the discovery that: (1) it is a
common hallmark of various drug-resistant forms of
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epilepsy with differing etiologies and is not only linked to
autoimmune disorders or active CNS infections15; (2)
inflammatory mediators are endowed with CNS-specific
neuromodulatory roles that may contribute to hyperex-
citability and excitotoxicity.16

In this review, we summarize and discuss the main evi-
dence gathered in patients with epilepsy and the related
experimental models that support the active involvement of
specific inflammatory processes in brain hyperexcitability
underlying onset and recurrence of seizures, as well as cog-
nitive deficits. We focus on those inflammatory signaling
pathways that have been also demonstrated to occur in brain
specimens from patients with pharmacoresistant epilepsies.

Cytokines and Danger Signals

Interleukin-1 receptor/Toll-like receptor (IL-1R/TLR)
signaling

The interleukin-1 receptor/Toll-like receptor (IL-1R/
TLR) signaling is a key upstream generator of the neuroin-
flammatory response. Upon its activation by the endoge-
nous ligands or their mimicry molecules, the IL-1/TLR
signaling pathway leads to the transcriptional induction of
nuclear factor kappa-light-chain-enhancer of activated B
cells (NFjB)–regulated inflammatory genes, and as a con-
sequence, to the generation and rapid amplification of the
neuroinflammatory cascade.17,18 TLRs are pattern-recogni-
tion receptors (PRRs) sensing molecular patterns expressed
by various pathogens during infection. PPRs can also be
activated by damage-associated molecular patterns
(DAMPs) expressed by endogenous molecules (i.e., danger
signals) that are released by injured cells in the absence of
infection, thereby eliciting sterile inflammation.19

IL-1R type 1 (IL-1R1) and TLR4, and their prototypical
endogenous ligands (i.e., the pro-inflammatory cytokine IL-
1b and the danger signal High Mobility Group Box 1
[HMGB1], respectively) are induced in neuronal and glial
cells following various epileptogenic injuries in rodents—
such as, status epilepticus (SE), stroke, neurotrauma, and
CNS infection—as well as during seizures.11,20,21 In particu-
lar, the IL-1R1-TLR4 axis is rapidly and persistently activated
in rodent models of SE-induced epileptogenesis in brain areas

involved in seizure generation and propagation.20,22 Such
changes do not solely reflect neuronal cell loss or ongoing sei-
zure activity, since they also occur in nonlesional seizure
models21,23–25 and before the onset of spontaneous seizures,
implying their potential involvement in epileptogenesis (i.e.,
the development and extension of brain tissue capable of gen-
erating spontaneous seizures).20,22 The induction of this sig-
naling pathway involves mostly activated microglia and
astrocytes, as well as neurons andBBB cell components.20,22

The IL-1R/TLR4 signaling pathway is induced in surgi-
cally resected epileptogenic foci from patients with struc-
tural/lesional pharmacoresistant epilepsies, including
malformations of cortical development (MCDs) such as low-
grade epilepsy-associated glioneuronal tumors (gangli-
oglioma, dysembryoplastic neuroepithelial tumors),26,27 focal
cortical dysplasia and tuberous sclerosis,26,28,29 and temporal
lobe epilepsy (TLE) with/without hippocampal sclerosis
(HS),21,22,30 as compared to control tissue. Control specimens
included both human tissue obtained at autopsy from patients
without history of seizures or other neurologic diseases, and
surgical tissue from patients with a focal epileptogenic lesion
not involving the hippocampus proper (for TLE) or perile-
sional tissue (normal-appearing cortex/white matter adjacent
to the lesion) for MCDs. Similar to animal models, the clini-
cal specimens showed that resident brain cells are major
common contributors to the activation of this pathway.

Experimental models were crucial tools for understand-
ing the pathophysiologic consequences of IL-1R/TLR sig-
nalling pathway activation. Pharmacologic studies and
genetic interference with this signaling demonstrated that
this pathway upon activation by IL-1b or HMGB1, respec-
tively, promotes seizure generation in acute and chronic sei-
zure models and favors epileptogenesis.19,31 In particular,
the activation of the IL-1R1/TLR4 pathway enhances sei-
zure frequency. Accordingly, inhibitors of this signaling
pathway (e.g., IL-1 receptor antagonist, IL-1Ra; caspase-1
inhibitors; TLR4 antagonists; and anti-HMGB1 monoclonal
antibodies), and a negative regulator of this pathway (syn-
thetic oligonucleotide analog of microRNA[miR]-146a),
mediate significant anti-seizure effects also when seizures
do not respond to clinical antiseizure drugs (ASDs).21,23,32–
41 These therapeutic effects were associated with reduced
BBB dysfunction and neuroprotection.

In immature rodents, IL-1b influences the generation of
febrile convulsions (FCs). In particular, the intracerebral
injection of this cytokine in a postnatal (PN) day 14 mouse
model of FCs, lowers the core temperature threshold that
results in seizures, acting on IL-1R1.42 Accordingly, in
PN14 rats developing fever following systemic lipopolysac-
charide (LPS), a TLR4 activator, there is evidence of
increased IL-1b in hippocampus and cortex only in animals
developing FCs following an acute injection of subconvul-
sive doses of kainic acid.43

Recent evidence demonstrated that simultaneous targeting
of the IL-1R1 and TLR4 signaling pathway in rodents with

Key points

• Inflammatory mediators may act as neuromodulators
affecting neuronal function and excitability

• Targeting specific inflammatory signaling pathways
in experimental epileptogenesis favorably modifies
the disease course

• Proof-of-concept clinical trials and case report studies
in patients show clinical efficacy of target-specific
anti-inflammatory drugs
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pharmacologic or epigenetic approaches (i.e., IL-
1Ra + HMGB-1 antagonists; caspase-1 inhibitor + TLR4
antagonist; miR-146a mimic), either shortly after SE or at the
time of epilepsy onset, prevented disease progression and sig-
nificantly reduced chronic seizure recurrence by 70-90%.44,45

Notably, these treatments mediated therapeutic effects out-
lasting drug withdrawal, and therefore supported disease-
modification, rather than purely symptomatic, effects. Simi-
larly, the transient administration of an anti-HMGB1 mono-
clonal antibody in mice during epileptogenesis resulted in
disease-modifying effects consisting of a significant reduc-
tion in spontaneous seizure frequency and improvement of
cognitive deficits.39 Pharmacologic targeting of IL1-b using
IL-1Ra in an experimental model of pediatric traumatic brain
injury (TBI) in mice, reduced seizure susceptibility to
pentylenetetrazol and the number of evoked seizures, and
improved spatial memory.46 This set of data suggests that the
IL-1b signaling pathway is involved in the mechanisms
underlying seizures and comorbidity development.

In accord with pharmacologic evidence, transgenic mice
with an impaired IL-1R1/TLR4 signaling pathway showed
significant reduction in seizure susceptibility,21,32,33,35 or in
spontaneous seizure recurrence,35 thus supporting the
involvement of this pathway in the mechanisms regulating
neuronal excitability and epileptogenesis.

Tumor necrosis factor-alpha (TNF-a)
TNF-a is rapidly induced during seizures in glial and

endothelial cells of the BBB in rodents, but its expression is
more transient than IL-1b because it declines to basal levels
after SE.47–50 A concomitant reduction in neuronal tumor
necrosis factor (TNF)-a receptor type 2 (TNFR2) and an
increase of TNFR1 was found in neurons and astrocytes.51,52

TNF-a is induced in astrocytes and neurons also in TLE
and tuberous sclerosis human brain specimens,51,53 as com-
pared to control tissue obtained at autopsy from subjects
without a history of seizures or other neurologic diseases.
Receptor analysis confirmed the changes observed in exper-
imental models.51

TNF-a has either proconvulsant or anticonvulsant effects,
which are dependent on its brain concentration (as for the
other cytokines) and the receptor subtype predominantly acti-
vated in diseased tissue. Thus mouse recombinant TNF-a
injected into the mouse hippocampus significantly reduced
seizures by activating TNFR2, while it promoted seizures by
activating TNFR1.54 Accordingly, TNF-a significantly
increased the susceptibility to seizures evoked in rats by intra-
amygdala injection of kainic acid or by amygdala kindling
acting via TNFR1, and attenuated the kindling rate via
TNFR2.52 In accordance, a protective role of TNF-a on sei-
zures was reported in mice with a genetic deletion of the
TNFR1.55 Transgenic mice with low to moderate overexpres-
sion of TNF-a in astrocytes showed decreased susceptibility
to seizure,54 whereas mice with high expression of TNF-a
develop signs of neurologic dysfunction, including seizures.56

Arachidonic Acid–related
Pathways

In rodents, cyclooxygenase-2 (COX-2) is expressed in
discrete populations of neurons and it is enriched in animal
cortex and hippocampus under basal conditions.57,58 COX-
2 is induced in forebrain after various epileptogenic inju-
ries.59,60 Prominent changes in the expression of genes
involved in prostaglandin synthesis and regulation, includ-
ing COX-2, were observed in limbic rat areas after electri-
cally induced SE.61 Most genes had a biphasic pattern of
expression, namely they were upregulated in the acute phase
of SE while returning to baseline level before spontaneous
seizures onset, and were again upregulated in the chronic
epilepsy phase.61 Immunohistochemistry confirmed that
COX-2 has a biphasic pattern of expression following SE in
rodents62 showing an early upregulation in neurons fol-
lowed by increased expression in astrocytes during epilepto-
genesis, which persisted in epileptic tissue.62–64

In hippocampal biopsies from patients with TLE, COX-2
immunoreactivity was increased in neurons.65,66 Of interest,
additional astrocytic expressions was observed but only in
patients with HS.65

Transgenic mice with increased neuronal expression of
COX-2 were more susceptible to kainic acid–induced SE,67

thus highlighting a potential proconvulsive role of this
enzyme. In accord, COX-2 deficient mice, or mice treated
with the COX-2 inhibitor nimesulide, showed reduced kin-
dling development.68 However, detailed pharmacologic
studies using selective COX-2 inhibitors, such as celecoxib,
parecoxib, indomethacin, and SC58236, have shown
dichotomous effects of COX-2 blockade on seizures.5,63 If
COX-2 inhibition is achieved before the induction of SE
with pilocarpine or kainate, then proconvulsive effects are
observed.69–71 Conversely, if COX-2 inhibition is achieved
post-SE by injecting selective antagonists during epilepto-
genesis, then either neuroprotection72 or reduced sponta-
neous seizures severity,73 or no effects,64 were reported.
Ictogenic or anticonvulsive effects are likely due to the gen-
eration of different sets of prostaglandins at the time of drug
intervention in the various experimental models of sei-
zures70 and on the timing of pharmacologic intervention.
More consistent results were obtained by targeting down-
stream effector molecules in the COX-2 signaling cascade,
such as the EP2 receptor of prostaglandin (PG)E2. The
administration of a selective EP2 antagonist after SE onset
in mice reduced mortality, neuroinflammation, BBB dys-
function, and neuronal cell loss, and prevented memory
impairment.74–78 Further studies are required to determine
the long-term effects of EP2 antagonism on epileptogenesis.

Recently, monoacyl-glycerol-lipase (MAGL) has been
identified preclinically as a novel target for the treatment of
drug-refractory SE. MAGL is the key enzyme responsible
for the biosynthesis of arachidonic acid in the CNS from the
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endocannabinoid 2-arachidonoylglycerol (2-AG). The early
administration of a brain-penetrant, small molecule, potent,
and selective irreversible MAGL inhibitor, namely CPD-
4645, significantly reduced the severity and duration of ben-
zodiazepine-refractory SE, and the consequent cell loss and
cognitive deficits in mice.79

Transforming Growth Factor-b
(TGF-b) Signaling

BBB regulates the reciprocal blood-to-brain exchange of
molecules and immune cells, and its integrity is instrumen-
tal in protecting the brain from the entry of xenobiotics or
potentially harmful molecules. BBB dysfunction occurs in
epilepsy as in other neurologic conditions such as stroke and
neurotrauma.

Inflammatory molecules released by perivascular glia
play a prominent role in BBB dysfunction by several mech-
anisms, one example of which is the downregulation of tight
junctions between endothelial cells.37,80–83 As a conse-
quence, blood-borne molecules and immune cells may enter
the brain and induce, or perpetuate, an inflammatory
response.84,85 In particular, focal opening of the BBB can be
recapitulated by exposing the rat neocortex to serum albu-
min. This procedure results in delayed development of
paroxysmal hypersynchronous activity.86,87 The presence
of serum albumin in brain parenchyma activates TGF-b
receptor type 2 (TGF-bR2) in astrocytes, thus leading to
transcriptional activation of inflammatory genes, and con-
comitant downregulation of Kir4.1 potassium channels and
the glutamate transporter.84,86–89 The resulting neuroin-
flammation and high extracellular K+ and glutamate, act in
concert to decrease seizure threshold and induce excitatory
synaptogenesis,90 thus leading to hyperexcitability in sur-
rounding tissue.86,91 Accordingly, a transient post-injury
treatment with losartan, an angiotensin II type 1 receptor
antagonist that blocks TGF-b signaling, reduces incidence
and severity of epilepsy as well as cell loss, BBB dysfunc-
tion, and neuroinflammation in rodent models of acquired
vascular injury and SE.92–94 Moreover, losartan attenuates
spontaneous seizure frequency and neuronal cell loss in
spontaneously hypertensive rats exposed to SE95 and
improved cognitive functions and neural damage after trau-
matic brain injury (TBI).96

Complement System

Although the synthesis of complement system compo-
nents occurs predominantly in the liver, both glia and neu-
rons can express these inflammatory mediators in
pathologic conditions.97,98 Various complement-related
factors are induced in the brain during SE-induced epilepto-
genesis in rodents,61,99,100 as well as in TLE patient with
hippocampal sclerosis.99,101,102 Immunohistochemistry
identified glial cells (including the astrocytic end feet

surrounding blood vessels) and in some neurons, as cellular
source of complement factors.99

The permissive role of the complement system activation
in seizures has been suggested by a seminal study showing
that the sequential intrahippocampal injection of the com-
plement factors C5b6, C7, C8, and C9, inducing the forma-
tion of the membrane attack complex, promotes seizures in
rats and hippocampal neuronal loss.103 Recently, the admin-
istration of PMX53, a C5ar1 antagonist, resulted in anticon-
vulsive effects in various murine models of seizures.104

Moreover, blockade of C5ar1 during pilocarpine-induced
SE reduced seizure power, SE-associated mortality, and
neurodegeneration in the hippocampus.104 The involvement
of complement system in seizures has been also explored
using transgenic mice lacking specific complement-related
factors. Thus, C3-deficient mice develop significantly fewer
behavioral seizures following Theiler’s virus infection as
compared to wild-type mice.105 Kindling development was
also delayed in C6-deficient rats.106

Chemokines

Various chemokines (CCL2 [MCP-1], CCL3 [MIP-1a],
CCL4 [MIP-1b], and CCL5 [RANTES]) and their cognate
receptors are elevated in brain tissue of patients with drug-
resistant epilepsy and in experimental models, in neurons,
glial and endothelial cells, as well as in infiltrating leuko-
cytes.107–110 In particular, CCR5 receptors activated by
MIP-1a and RANTES contribute to neuroinflammation,
cell loss, acute seizures, and BBB damage in experimental
models.111 Similarly, CCR2 activated by CCL2 contributes
to spontaneous seizures in mice, and mediates seizure exac-
erbation by lipopolysaccharide (LPS), a TLR4 agonist that
mimics bacterial infections.109

Oxidative Stress

Oxidative stress and brain inflammation are two phenom-
ena that are intimately associated, since they are function-
ally interconnected and reinforce each other.112 Moreover,
like brain inflammation, oxidative stress is rapidly and per-
sistently induced after epileptogenic brain injuries in animal
models.113,114 Notably, markers of oxidative stress are
increased in blood and brain tissues in human epi-
lepsy.20,113,115,116

Oxidative stress contributes to epilepsy-associated neu-
ropathology and behavioral deficits, and plays a role in
determining seizure threshold in animal models.113,117–121

Recent evidence gives support for a disease-modification
effect mediated by antioxidant treatments, namely the
investigational compound 1400W122 or the combination of
clinically-used drugs (i.e., N-acetylcysteine [NAC] and sul-
foraphane [SFN]).20 The therapeutic effects of the antioxi-
dant drug combination were associated with the prevention
of disulfide HMGB1 generation.20 This is the oxidized
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isoform of HMGB1 with ictogenic and inflammatory prop-
erties.21,123 Disulfide HMGB1 therefore represents a point
of intersection between oxidative stress and neuroinflam-
mation and plays a role in seizure generation.20

Mechanisms of

Hyperexcitability

Pro-inflammatory mediators may act as neuromodulators
by activating nonconventional intracellular signaling path-
ways that affect neuronal function and excitability. For
example, cytokines can modify the function of glutamate
and c-aminobutyric acid (GABA) receptors by altering
receptor trafficking and their subunit assembly at neuronal
membranes; cytokines can also modulate glutamate recep-
tor–mediated calcium permeability by promoting AMPA-
GluR2 and N-methyl-D-aspartate (NMDA)-NR2B receptor
phosphorylation via PI3K or Src kinases, respec-
tively.16,21,30,124,125 The role of IL-1R1/TLR4 signaling
pathway in seizure precipitation and recurrence involves the
rapid activation of Src kinases and subsequent phosphoryla-
tion of NMDA-NR2B receptors.21,126

Additional mechanisms of hyperexcitability mediated
by the IL-1R1/TLR4 signaling pathway include the
downregulation of the HCN1 channel and the related Ih
current on dendrites of hippocampal pyramidal neurons,
as assessed in rats upon intraventricular LPS injection.
Activation of the IL-1R/TLR4 signaling pathway reduces
both levels and function of HCN1 channels.127 These
channels are important regulators of the filtering proper-
ties of hippocampal pyramidal cell dendrites, their
responses to excitatory inputs, and they are involved in
theta rhythms, which have been linked to cognitive
functions. These channels are downregulated in experi-
mental and human epilepsy tissue, and contribute to sei-
zures.128,129

Cytokines and prostaglandins can also alter voltage-
gated ion channel function.16,124 In particular, somatic
and dendritic membrane excitability was significantly
reduced in CA1 pyramidal neurons using a selective
COX-2 inhibitor, and this effect was mediated by
cannabinoid receptor type 1 (CB1).130 Moreover, PGE2

increases firing and excitatory postsynaptic potentials,
most likely by reducing K+ currents in CA1 neurons.131

Thus the mechanisms underlying the effects of COX-2
inhibition may involve the reduction of prostaglandin
levels or the modulation of CB1 receptors, being COX-2
at the interface between the eicosanoid and the endo-
cannabinoid systems.132

In addition, cytokines inhibit glial glutamate reup-
take133,134 and enhance glutamate release by astrocytes,135

thus resulting in increased extracellular glutamate concen-
tration.

Activation of complement system in erythrocyte mem-
brane leads to the formation of channel conductances,
resulting in Ca2+ and Na+ influx and K+ efflux, with the net
effect of depolarizing the membrane potential.136 If this
mechanism is operative in neurons, it may result in depolar-
ization and increased neuronal excitability.

Chemokines modulate voltage-gated ion channels137 and
regulate neurotransmitter release.137,138 For example, frac-
talkine (or CX3CL1) acts as a positive modulator of
GABAA receptor in human TLE brain specimens by reduc-
ing the GABAA use-dependent desensitization (i.e., run-
down).108 This effect may be mediated by phosphorylation
of one or more GABAA subunits, thus leading to a “stabi-
lization” of the receptor. The upregulation of fractalkine
receptor in epileptogenic tissue may therefore represent a
homeostatic attempt to reduce hyperexcitability by promot-
ing GABA receptor function.

Clinical Evidence: Target-

specific Anti-inflammatory

Drugs

Based on the pathologic involvement of specific inflam-
matory pathways in animal models of seizures and epilepsy,
progress in clinical translation has been made. Notably,
there are anti-inflammatory drugs in medical use for autoin-
flammatory or autoimmune diseases that target inflamma-
tory pathways, which contribute to seizure mechanisms and
neurologic comorbidities in animal models. Proof-of-con-
cept clinical trials and case report studies have reported
signs of clinical efficacy of target-specific anti-

Table 1. Examples of clinical studies in pharmacoresistant epilepsies using target-specific anti-inflammatory

treatments

Target Drug Clinical study References

Caspase-1 inhibitor (↓IL-1b, ↓HMGB1) VX09-765-401 Phase IIA study (focal onset epilepsy, adult) 139

IL-1Ra (IL-1R1 antagonist) Kineret FIRES (case report, child) 140

Drug-resistant epilepsy (case reports, adolescent) 141

Systemic autoinflammatory disease with intractable

epilepsy (case report, adolescent)

142

TNF-a (inactivating antibody) Adalimumab Rasmussen’s encephalitis (open pilot study, adult) 143

Microglia (inhibitor) Minocycline Astrocytoma (case report, adult) 144
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inflammatory drugs (Table 1). In particular, a 6-week phase
IIA randomized, double-blind, placebo-controlled study
was completed in patients with drug-resistant focal-onset
epilepsy who were receiving the caspase-1 inhibitor (VX-
765), a drug targeting IL-1R1/TLR4 signaling pathway, by
reducing the biosynthesis and release of IL-1b and HMGB1.
The administration of VX-765 resulted in seizure reduction
in some patients that persisted for some time after drug dis-
continuation.139 Kineret (i.e., anakinra, the human recombi-
nant IL-1Ra) has been recently used in a child with super-
refractory SE secondary to febrile infection-related epilepsy
syndrome (FIRES),140 in 4 adolescents with drug-resistant
epilepsy,141 and in 1 adolescent with systemic autoinflam-
matory disorder associated with intractable epilepsy.142 In
all clinical cases, the treatment significantly improved sei-
zure control.140–142

An open-label study evaluating the efficacy and the
safety of adalimumab, a monoclonal anti-TNF-a anti-
body, has been made in Rasmussen’s encephalitis.143 The
treatment led to seizure improvement in some patients and
was associated with a stabilization in functional deficits in a
small cohort.143

Minocycline, an antibiotic with abroad spectrum of
actions including inhibition of microglial activation and
pro-inflammatory cytokine release in animal models,
induced a marked reduction in seizure frequency in a patient
with astrocytoma and drug-resistant epilepsy.144

No clinical trials using specific COX-2 inhibitors have
been conducted so far in patients with epilepsy.145 Indeed,
due to their side effects, several international drug-control
authorities have withdrawn these drugs from the market.145

Conclusions

Mechanistic studies and pharmacologic interventions on
neuroinflammatory pathways activated in clinical and
experimental epilepsy have increased our understanding of
this complex response to brain injury and helped to identify
anticonvulsive and/or antiepileptogenic properties of target-

specific anti-inflammatory drugs. Experimental evidence
suggests that a combination of anti-inflammatory treatments
may be considered a therapeutic option due to the reverber-
ant inflammatory cascade.

Treating therapy-resistant patients with specific anti-
inflammatory drugs already approved for other indications
may facilitate the clinical translation of experimental find-
ings. It is also worth considering that there are therapeutic
interventions in pharmacoresistant epilepsies, such as the
use of steroids, the ketogenic diet, vagus nerve stimulation,
and the cannabinoids, that display anti-inflammatory mech-
anisms of action which may mediate some of their therapeu-
tic effects.

The encouraging initial clinical results support further
investigations. Clinical studies would greatly benefit from
the identification of noninvasive biomarker(s) reflecting the
presence of neuroinflammation in patients. This would
allow patient stratification to test the candidate anti-inflam-
matory drugs and for designing affordable and adequately
powered antiepileptogenesis trials, and to monitor treatment
response. In this context, much progress has been made and
several noninvasive inflammation-related humoral44,146–149

(blood/cerebrospinal fluid) and imaging measures150–157

have been identified (Table 2). Such biomarkers could be
used to increase the sensitivity and precision of the available
clinical indicators.

For designing anti-inflammatory interventions in epi-
lepsy, we need to gather deeper insights into the
dynamic changes of neuroinflammation during disease
development to determine the best therapeutic window.
We also need to better distinguish homeostatic from
pathologic inflammatory signaling pathways triggered by
epileptogenic insults in order not to interfere with the
repair mechanisms.

The progress in elucidating the mechanisms underlying
the pathogenic effects of neuroinflammation in epilepsy is
critical for developing safe and effective drugs with poten-
tial disease-modifying, and not purely symptomatic, thera-
peutic effects.

Table 2. Inflammation-related humoral and imagingmeasures identified in preclinical models and validated in clinical

studies.

Measure Biomarker of References

Blood/CSF ↑HMGB1 and its isoforms Drug-resistance & seizure relapse 44

↑ TARC/siCAM5 ratio Drug-resistance 146

↑CSF/serum IL-1b ratio Post-traumatic epilepsy 147

↓ IL-1Ra/IL-6 ratio Hippocampal T2 hyperintensity after FSE 148

Imaging ↑ 11C-DPA-713 signal (PET) (microglia activation) Epileptic focus and seizure generalization areas in TLE 150

↑ 11C-PBR28 signal (PET) (microglia activation) Epileptic focus in TLE 152,153

↑ 11C-PK11195 signal (PET) (microglia activation) Epileptic focus and interictal activity in FCD (case report) 154–156
↑ 11C-deuterium-deprenyl signal (PET) (astrocyte activation) Epileptic focus in TLE 157,158

↑mIns levels (1H-MRS) (astrocyte activation) Epileptic focus in TLE 159–161

TARC, thymus and activation-regulated chemokine; siCAM5, soluble intracellular adhesion molecule 5; FSE, febrile status epilepticus; TLE, temporal lobe epi-
lepsy; FCD, focal cortical dysplasia; PET, positron emission tomography; mIns, myo-inositol; 1H-MRS, proton magnetic resonance spectroscopy.
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