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Central motor rhythm-generating networks controlling di�erent functions

are generally considered to operate mostly independently from one another,

each controlling the specific behavioral task to which it is assigned. However,

under certain physiological circumstances, central pattern generators (CPGs)

can exhibit strong uni- or bidirectional interactions that render them closely

inter-dependent. One of the best illustrations of such an inter-CPG interaction

is the functional relationship that may occur between rhythmic locomotor

and respiratory functions. It is well known that in vertebrates, lung ventilatory

rates accelerate at the onset of physical exercise in order to satisfy the

accompanying rapid increase in metabolism. Part of this acceleration is

sustained by a coupling between locomotion and ventilation, which most

often results in a periodic drive of the respiratory cycle by the locomotor

rhythm. In terrestrial vertebrates, the likely physiological significance of this

coordination is that it serves to reduce the mechanical interference between

the twomotor systems, thereby producing an energetic benefit and ultimately,

enabling sustained aerobic activity. Several decades of studies have shown that

locomotor-respiratory coupling is present in most species, independent of the

mode of locomotion employed. The present article aims to review and discuss

mechanisms engaged in shaping locomotor-respiratory coupling (LRC), with

an emphasis on the role of sensory feedback inputs, the direct influences

between CPG networks themselves, and finally on spinal cellular candidates

that are potentially involved in the coupling of these two vital motor functions.

KEYWORDS

breathing rate modulation, locomotor-respiratory coupling, neural network

interactions, lumbar glutamatergic neurons, limb proprioceptive inputs

Coordination of locomotor and respiratory
rhythms

Breathing is a continuous rhythmic motor activity that maintains the homeostasis

of blood gas tension. Its level of activity is thus finely tuned when body homeostasis

is challenged, such as during physical effort. First, at the onset of exercise, breathing

frequency increases in order to match or to anticipate the subsequent increase in
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energy consumption (Krogh and Lindhard, 1913; Dejours,

1959). Secondly, and in the specific context of locomotor

activity, walking or running at increasing speeds results in

an increase in respiratory frequency rates. Although the

breathing frequency can be progressively and continuously

adjusted during locomotion through the combined activation of

peripheral and central chemoreceptors and mechanoreceptors

located in joints and muscles, data collected across the

vertebrate phylum have shown that specific coordination

patterns between locomotor and respiratory activities can also

occur in several species (Stickford and Stickford, 2014). This

phenomenon, reported for fish, birds and mammals (Bramble

and Carrier, 1983) is referred to as locomotor-respiratory

coupling (LRC). One typical example of LRC is the 1:1 coupling

that preferentially emerges in most mammals, notably during

gallop (Figure 1). In this case, each locomotor cycle is associated

with a coordinated respiratory motor sequence. LRC can also

be favored by the contribution of multiple factors including

FIGURE 1

Locomotor-respiratory coupling (LRC) ratios in the animal kingdom. (A–C), Graphical representation of the most common LRC ratios observed

in mammals (A), and birds (B,C). The colored dots indicate the LRC ratios commonly observed, depending on the mode of locomotion used, in

mammals (red, gallop; blue, trot; green, hopping/bond; purple, bipedal running), and birds (green, running; orange, flying). Note that for the

same gait either one (e.g. gallop) or several (e.g., trot) LRC can be observed. Adapted from Boggs (2002), Stickford and Stickford (2014).

external stimuli such as auditory cues (Bernasconi and Kohl,

1993) and training (Bramble and Carrier, 1983). But in some

species, the synchronization of breaths to strides can be either

absent [for example in adult mice (Hérent et al., 2020)], or

differently expressed, as is the case in running or flying birds.

Therefore, many different harmonic couplings (2:1, 3:1, 4:1,

5:2, etc.) have been reported in birds during flight (Butler

and Woakes, 1980; Funk et al., 1992b; Boggs et al., 1997),

and also in running quadrupeds and humans (Bechbache and

Duffin, 1977; Bramble and Carrier, 1983; Perségol et al., 1991;

Banzett et al., 1992; Bernasconi and Kohl, 1993). Finally, and

regardless of the different coupling patterns that may occur,

LRC has been suggested to produce a number of important

physiological benefits by reducing biomechanical interferences

between the respiratory and locomotor effector systems in order

to assist breathing from forces produced during locomotion

(Bramble and Carrier, 1983; Brown, 1999) or by decreasing the

energetic cost of lung ventilation (Funk et al., 1992a). It has
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also been proposed that in running humans, LRC may reduce

work in breathing by minimizing fatigue in the respiratory

muscles that are essential for endurance aerobic activity

(Daley et al., 2013).

Biomechanical mechanisms

LRC can be ascribed to several underlying, and possibly

redundant, mechanisms, the respective contributions of which

may vary between animal species and might operate in parallel.

Among these mechanisms, the biomechanical characteristics of

the individual can be involved. Firstly, the “visceral piston”

theory has been proposed to explain the 1:1 LRC observed in

galloping quadrupeds. This idea proposes that the mechanical

forward/backward movement of the internal organs during

galloping physically affects movement of the diaphragm and

contributes to the emergence of a 1:1 coupling between the

locomotor and respiratory cycles (Bramble and Carrier, 1983;

Young et al., 1992; Bramble and Jenkins, 1993). A similar

mechanism could also operate in hopping animals that also

express such coupling. Secondly, 1:1 LRC could result from

changes in volume and pressure within the rib cage that occur

when ground contact is made in each cycle. In galloping

mammals, for example, the impact of the forelimbs with

the ground results in an external loading on the thorax

that compresses the rib cage. The resultant decrease in

thoracic volume and the accompanying increase in pulmonary

pressure thereby facilitates exhalation (Bramble and Carrier,

1983; Boggs, 2002). Finally, it has been postulated that 1:1

coupling could also emerge from changes in volume and

pressure within the thoracic cavity associated with dorsiflexion

of the lumbo-pelvic region. Mainly observed in fast running

mammals such as the cheetah, the alternating lumbosacral

flexions/extensions contribute to the rhythmic displacement

of the visceral mass, which in turn facilitates exhalation

and inspiration, respectively (Bramble, 1989; Stickford and

Stickford, 2014).

Neurogenic mechanisms

The above biomechanical mechanisms cannot explain either

the emergence of harmonic LRC (e.g., 2:1, 3:2, 4:1, etc.)

observed in birds and bipeds, or the progressive changes in the

breathing rhythm that is observed during or even before the

onset of locomotor episodes (Tobin et al., 1986; Gravel et al.,

2007), implying that other mechanisms are also involved (Viala,

1997). On the one hand, neurogenic coupling processes, mainly

involving feedforward mechanisms (Gariépy et al., 2010, 2012),

have also been proposed to play a critical role in the regulation

of breathing frequency during exercise. Indeed, feedforward

pathways originating from the hypothalamus (Eldridge et al.,

1981; Horn and Waldrop, 1998), the mesencephalic locomotor

region (Horn and Waldrop, 1998; Ryczko and Dubuc, 2013;

Opris et al., 2019), or medullary structures (Romaniuk et al.,

1994), are likely to simultaneously influence the level of

excitability of both the respiratory and locomotor rhythm

generating networks. On the other hand, direct interactions

between neuronal groups controlling locomotor and respiratory

activities can also account for LRC. For instance, generation of

the rhythmic locomotor and respiratory motor patterns both

rely on so-called central pattern generator networks (CPG)

located in the spinal cord (Viala and Vidal, 1978; Yamaguchi,

1992; Cazalets et al., 1995; Kiehn and Kjaerulff, 1996; Ballion

et al., 2001; Kiehn, 2016) and the brainstem (Smith et al.,

1991; Gray et al., 2001; Del Negro et al., 2018), respectively.

Central pathway-mediated interactions between the locomotor

and respiratory CPGs have been described in different animal

models ranging from decerebrated paralyzed rabbits (Viala

et al., 1987; Perségol et al., 1988; Corio et al., 1993), cats

(Kawahara et al., 1989a,b), birds (Funk et al., 1992a,b), and ex

vivo preparations of rodent central nervous systems (Morin and

Viala, 2002; Le Gal et al., 2020). In all cases, experimental data

have clearly indicated that the spinal locomotor CPGs can adjust

the level of activity of the respiratory network through purely

central mechanisms. In the following sections of this review,

we will focus on the neurogenic mechanisms that subserve LRC

(Figure 2A), or in a differentmanner, the ability of the locomotor

neural system to regulate breathing frequency (Figure 2B).

Peripheral feedback signals for
locomotor-respiratory coupling

In different species, passive mobilization of the limbs

modulates breathing activity and, in some cases, is able to

entrain the breathing rhythm in a 1:1 manner (Bramble and

Carrier, 1983; Viala, 1997; Boggs, 2002). During locomotion,

limb sensory receptors are rhythmically activated (Prochazka

and Gorassini, 1998a,b) and play an important role in the

transition between the swing and stance phases of each

movement cycle (Orlovsky et al., 1999; Duysens et al., 2000).

This afferent control of the locomotor pattern timing ismediated

through a direct feedback action on the spinal locomotor CPGs

themselves (Conway et al., 1987; Kiehn et al., 1992; Sqalli-

Houssaini et al., 1993; Perreault et al., 1995; Iizuka et al.,

1997; Pearson et al., 1998; Schomburg et al., 1998; Juvin

et al., 2012). Interestingly, fore and hindlimb sensory afferents

also have access to the respiratory CPG where they are also

likely to influence the latter’s operation (Figure 2A) (Iscoe and

Polosa, 1976; Bramble and Carrier, 1983; Palisses et al., 1988;

Funk et al., 1992a). Indeed, passively-activated or electrically-

stimulated limb sensory pathways are able to reset and entrain
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FIGURE 2

Summary schematics of the neurogenic pathways contributing to locomotor-respiratory coupling (A) and locomotion-derived breathing rate

modulation (B). 1, Ascending projections from limb sensory a�erents to the PB/KF complex; 2, Pathway enabling spinal proprioceptive a�erents

to modulate the excitability of spinal inspiratory motoneurons via a GABA-releasing relay; 3, Parallel descending drives from the MLR to the

spinal locomotor CPG and to the PBC; 4, E�erence copy signals conveyed by ascending glutamatergic projections from the spinal locomotor

CPG to respiratory CPG networks through an SP-releasing relay; 5, Propriospinal pathway enabling the locomotor CPG to modulate activity of

spinal expiratory neurons. Abd., abdominal muscles; CPG, central pattern generator; Diaph., diaphragm; exp., expiratory neurons; insp.,

inspiratory neurons; MLR, mesencephalic locomotor region; Mn, motoneurons; PBC, preBötzinger Complex; PB/KF, parabrachial/Kölliker-Fuse

nucleus; pFRG, parafacial respiratory group; RF, reticular formation; SP, substance P. Adapted from Morin and Viala (2002), Giraudin et al. (2008,

2012), Le Gal et al. (2016, 2020).

respiratory activity in a 1:1 manner in a large array of species

and experimental preparations (Iscoe and Polosa, 1976; Bramble

and Carrier, 1983; Funk et al., 1992a; Morin and Viala, 2002;

Potts et al., 2005; Giraudin et al., 2008, 2012). For instance, in

an in situ preparation of young rats (Potts et al., 2005), electrical

stimulation of somatic afferents can reset the respiratory pattern

cycle through a mechanism that does not rely on an intercalated

intraspinal reflex-like mechanism, but rather via a direct action

on the respiratory CPG itself. This was indicated by the finding

that such resetting induced by somatic afferents involves the

generation of a complete respiratory-like pattern, comprising

the pre-inspiratory, inspiratory and expiratory phases of each

cycle (Giraudin et al., 2008). In addition, repeated sensory

stimulations are able to entrain the respiratory rhythm in a 1:1

manner, albeit within a specific range of stimulation frequencies

(from 0.2 up to 0.4Hz), which would not be expected from

the involvement of a reflex-like mechanism (Potts et al., 2005).

Similar results were reported from an ex vivo brainstem/spinal

cord preparation of the newborn rat, where rhythmical electrical

stimulation of spinal dorsal roots resets and entrains the ongoing

respiratory rhythm over a limited range of stimulus frequencies

[0.125 up to 0.25Hz, (Morin and Viala, 2002)]. Moreover, this

entrainment seems to be phase-dependent, since respiratory

rhythm resetting appears to be facilitated when activation of

limb somatic afferents are applied during expiration (Morin

and Viala, 2002; Potts et al., 2005), producing a significant
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increase in the firing rate of medullary expiratory neurons

(Potts et al., 2005). When stimulated, therefore, the somatic

afferents cause initiation of inspiration via the initial activation

of expiratory neurons. This respiratory phase transition, termed

an “inspiratory on-switching” mechanism operating in the

ponto-medullary region, relies strongly on the involvement of

the parabrachial/Kölliker-Fuse (PB/KF) nucleus (see Figure 2A,

pathway 1) (Cohen, 1971; Miura and Takayama, 1991;

Chamberlin and Saper, 1994; Dutschmann and Herbert, 2006;

Mörschel and Dutschmann, 2009). Indeed, several findings have

indicated that the integrity of the PB/KF nucleus is necessary for

respiratory entrainment during LRC. Firstly, calcium-imaging

revealed that a cell population located within the PB/KF elicits

calcium transients in response to individual spinal dorsal root

stimulations (Giraudin et al., 2012). However, a reversible

pharmacological inhibition of the PB/KF complex (Potts et al.,

2005) or its bilateral lesion (Giraudin et al., 2012), prevent both

the resetting and entrainment of the respiratory activity induced

by limb sensory pathway stimulation. Although the exact role of

the PB/KF complex in LRC remains open to debate, this pontine

relay could be of primary importance during locomotion in

gating out inappropriately timed sensory information resulting

from antagonistic (flexor/extensor) movements of each of

the four limbs. Such filtering would therefore ensure that

the remaining ascending signals provide effective descending

commands sent to medullary interneurons engaged in the

cycle-by-cycle regulation of respiratory rhythmogenesis. The

excitability of medullary respiratory neurons (Potts et al.,

2005) and, ultimately, phrenic cervical motoneurons (Figure 2A,

pathway 2) (Morin and Viala, 2002) would be modulated in

such a way as to “prepare” these cell ensembles for responding

preferentially to the premature respiratory command triggered

by the spinal sensory afferent activation.

Finally, the exact nature and relative contributions of

the different sensory afferent populations to the operation

of the respiratory CPGs still remain uncertain, but virtually

all types of fibers could be involved (Bruce et al., 2019). So

far, small myelinated and non-myelinated fibers from groups

III and IV muscle afferents have been found to contribute

to the modulation of respiratory activity (Senapati, 1966;

Decherchi et al., 2007; Amann et al., 2010). In contrast,

the contribution of Ia and Ib primary afferents still remains

a matter of debate in light of contradictory observations

reported in the literature, with studies supporting (Bessou

et al., 1959; Koizumi et al., 1961; Senapati, 1966; Carcassi

et al., 1983; Morin and Viala, 2002; Potts et al., 2005;

Giraudin et al., 2008, 2012) and others excluding their

contribution (Waldrop et al., 1984). Further work is therefore

needed to unravel whether these discrepancies arise from

significant differences between experimental protocols or to

species differences in the relative contributions of the different

afferent populations.

Central feedforward influences for
breathing rate modulation

Moving at low or moderate pace triggers an elevation of

the breathing frequency which is not directly coupled to the

locomotor cycle frequency (Kawahara et al., 1989a; Hérent

et al., 2020), especially in humans where LRC is observed

during running but only sporadically during walking (Hill

et al., 1988). This is also the case in the decerebrated cat, for

instance, during locomotor episodes induced by stimulation

of the mesencephalic locomotor region (MLR). At moderate

locomotor pace, such as during trotting, the frequency of

breathing activity increases, but LRC emerges only at the most

rapid locomotor pace, especially during galloping (Kawahara

et al., 1989a). The elevation of the ventilatory rate observed at

the initiation of locomotion, or even before the onset of the

physical effort (Tobin et al., 1986; Gravel et al., 2007) cannot

only rely on sensory feedback mechanisms, including peripheral

chemoreception, since blood gas homeostasis is maintained at

the onset of exercise (Mateika and Duffin, 1995; Haouzi et al.,

1997). On this basis, therefore, the anticipatory respiratory

response must rely on central feedforward mechanisms that are

different from those involved in direct locomotor–respiratory

coupling (Figure 2B) (Tobin et al., 1986; Bell, 2006; Gravel

et al., 2007; Gariépy et al., 2010). Several brain regions

involved in the initiation of locomotor episodes, including

the hypothalamus (Eldridge et al., 1981; DiMarco et al.,

1983; Waldrop and Iwamoto, 2006), the MLR (Gariépy et al.,

2012), and the ponto-medullary reticular formation have been

shown to produce modulation of the breathing frequency. In

the unanesthetized decorticated cat, electrical stimulation of

the sub-thalamic locomotor region (SLR) triggers episodes of

locomotion. Significantly, the initiation of locomotor movement

is preceded by a rapid modulation of the breathing frequency,

with breathing amplitude correlated to the intensity of the

locomotor activity (Eldridge et al., 1981). These anticipatory

responses were also observed in the paralyzed cat where phasic

sensory feedback from limb afferents was lacking due to the

absence of muscle contractions (Eldridge et al., 1981). In the cat

and the lamprey, stimulation of the MLR also triggers a rapid

elevation of respiratory rate concomitant with the initiation

of locomotor activity (Figure 2B, pathway 3) (Kawahara et al.,

1989b; Gariépy et al., 2012). In the lamprey model furthermore,

these authors reported that the MLR projects directly to

the respiratory CPG network, and that stimulations of the

MLR that fail to trigger locomotion can nonetheless increase

the respiratory frequency. Thus, an activation of supra-spinal

locomotor structures is capable of eliciting an integrated

response in both the respiratory and locomotor systems.

Such a feedforward mechanism would serve to adapt ongoing

respiratory activity in order to anticipate and minimize the

metabolic changes induced by locomotion. However, the nature
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and relative contribution of the different locomotor regions in

the feedforward regulation of the respiratory network remains

to be fully described.

Other CNS regions are also involved in the modulation of

the respiratory CPG network, especially the spinal cord where

the locomotor CPGs controlling the limbs are located. In the

ex vivo neonatal rat brainstem-spinal cord preparation, both

locomotor and respiratory motor outputs can be recorded from

specific spinal motor roots (Smith and Feldman, 1987). In this

isolated preparation, the motor commands normally sent to the

limb muscle effectors were monitored by electroneurograms,

and the recorded activities referred to as “fictive” respiration

and locomotion due to the inevitable absence of effective

movement. In this preparation, we have shown that the

specific activation of the spinal locomotor CPGs induces

a rapid increase in the frequency of spontaneous fictive

respiration (Morin and Viala, 2002; Le Gal et al., 2014). Similar

to the activation of the supra-spinal locomotor regions, a

slowly increasing pharmacological stimulation of the spinal

locomotor CPGs evokes an increase in fictive respiration

frequency that precedes the onset of fictive locomotion (Le

Gal et al., 2020). Moreover, both the lumbar and cervical

locomotor CPGs controlling the hindlimbs and forelimbs,

respectively (Cazalets et al., 1995; Ballion et al., 2001) can

modulate respiratory activity (Le Gal et al., 2020), with this

ascending central influence being integrated at the level of

the parafacial respiratory group (pFRG) via an intercalated

substance P-releasing relay (Figure 2B, pathway 4). Both

the bilateral removal of the pFRG or the pharmacological

blockade of brainstem substance P receptors abolishes the

ascending modulation of the respiratory network by the spinal

locomotor CPGs (Le Gal et al., 2014). However, blocking

spinal thoracic circuitry interposed between the brainstem

respiratory network and the lumbar locomotor CPG does

not affect the ascending modulatory action, indicating the

involvement of long ascending projection pathways originating

in the lumbar spinal area (Le Gal et al., 2020). In order to

identify the nature of the neurons involved in this modulation,

we performed optogenetic stimulation of glutamatergic Vglut2-

positive neurons previously shown to participate in the

generation of fictive locomotion (Hägglund et al., 2010). Using

this stimulus method, we found a concomitant increase in

the rate of fictive respiration (Le Gal et al., 2020). Moreover,

spinal V2 interneurons themselves are likely to be a source of

the long ascending projections to the respiratory CPG, since

firstly, they are known to interconnect the lumbar and cervical

locomotor networks to strengthen interlimb coordination

(Ruder et al., 2016), and second, they are rhythmically active

during fictive locomotion (Dougherty and Kiehn, 2010; Zhong

et al., 2010; Dougherty et al., 2013). Additionally, a subset

of glutamatergic V2 neurons (V2a) have been found to

project from the spinal cord to the brainstem where they

convey an internal efference copy of the ongoing motor

command sent to the forelimb muscles during skilled reaching

(Brockett et al., 2013; Azim et al., 2014).

Finally, the spinal locomotor CPGs also influence respiratory

motor output at the level of the spinal cord itself. In the

isolated brainstem–spinal cord preparation from neonatal rat,

the activity of expiratory, but not inspiratory, motoneurons

and interneurons is rhythmically modulated during fictive

locomotion (Figure 2B, pathway 5) (Le Gal et al., 2016). Similar

results were obtained when recording simultaneously from the

spinal ventral roots, motor nerves and limb and trunk muscles

in semi-intact preparation of newborn rat (Iizuka et al., 2022).

From a functional perspective, this latter observation is relevant

to the existence of bi-functional muscles, as is the case for

the abdominal muscles, which participate in both respiration

and locomotion (Saunders et al., 2004; Iizuka et al., 2022).

Indeed, axial musculature, which is involved in expiration in

mammals (Koterba et al., 1988; De Troyer et al., 1990; Deban

and Carrier, 2002), is also engaged in locomotion (Grillner

et al., 1978; Puckree et al., 1998; Deban and Carrier, 2002; Reilly

et al., 2009). It has been proposed that this influence of the

lumbar locomotor generator on expiratory neurons that control

trunk movements could induce bending of the spine, thereby

generating a forward displacement of the pelvis, which is known

to facilitate exhalation.

Concluding remarks

The spinal and supraspinal circuits involved in the

interactions between locomotor and respiratory functions are

distributed over several CNS regions, making their overall

understanding a challenging task. Clearly, the neural networks

and pathways described here represent only a portion of

the circuitry involved and, besides mechanical constraints

and neurogenic control processes, metabolic conditions also

influence locomotor-respiratory coordination. Although it is

very likely that the experimental observations thus far obtained

using reduced CNS preparations have only partially revealed

the mechanisms engaged in the coordination between the

respiratory and locomotor networks, these data have nonetheless

provided important insights into the functional relationships

between these two mammalian motor functions. Already

initiated in the newborn rodent (Le Gal et al., 2020), efforts to

identify the cell types involved in this coupling should now be

further pursued, both by using ex vivo preparations but also in

the behaving animal, in particular by taking advantage of the

development of transgenic models and advanced experimental

tools to monitor and analyze motor activities. Ultimately,

a precise knowledge of the neural mechanisms and cellular

pathways involved in the coordination between these two vital

behaviors should have important implications for developing

rehabilitation procedures after an incomplete spinal cord injury

(Sutor et al., 2022).
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