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Abstract
COVID-19 has been declared a pandemic by the World Health Organization on March 11, and since then, more than 3 million cases
and a quarter million deaths have occurred due to it. Lately, there is a growing evidence for an ophthalmologic symptom
(conjunctivitis) to be connected with the disease. This seems to happen in early stages of the infection by SARS-CoV-2, and thus, it
is of major importance to understand the mechanism through which the virus can facilitate such a symptom. Here, we are proposing a
molecular mechanism through which the novel coronavirus could act in order to affect the eye and use it as another, secondary but
alternative, point of entry to the host organism.
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Introduction

The SARS-CoV-2 virus, a novel coronavirus, emerged in
December 2019 in China, and then Japan, South Korea,
Europe, and North America. On March 11, 2020, the World
Health Organization declared the spreading novel coronavirus
outbreak as a pandemic, thus showing the possibility that the
virus spread to all countries worldwide [1]. As of May 13,
2020, about 4.5 million confirmed cases of coronavirus disease
2019 (COVID-19) and almost 300,000 deaths have been report-
ed, with one third of the cases andmore than 25%of the deaths to
have occurred in the USA (John Hopkins Coronavirus Resource
Center statistics). In response to the most serious global health
threat in a century, researchers from all biomedical fields world-
wide have participated in an unprecedented response to the

COVID-19 pandemic, with rapidly increasing resources aimed
at finding safe and effective treatments for the disease (compre-
hensively reviewed in [2]).

Research for treatments has emerged from different back-
grounds, pharmacologically with the use of well-known drugs
for other diseases [3–7], with corticosteroids [8], immunologi-
cally from the serum of antibodies against former
coronaviruses or from patients that have recovered from
COVID-19 [9–11] or even with the use of revolutionary ideas
such as CRIPR-Cas13 [12–14]. Another tremendous effort
from NIH (ClinicalTrials.gov Identifier: NCT04283461) and
all countries around the globe focuses on the successful
development of a vaccine that would prevent the emergence
of COVID-19 through the years and create a repeating cycle of
spreading, like the influenza virus [15, 16].

While up to mid-April 2020, the only symptoms that were
officially recognized as linked with COVID-19 were fever,
cough, shortness of breath, or difficulty breathing, the CDC
(Centers for Disease Control and Prevention) have lately up-
dated the symptom list based on changes in the disease’s def-
inition adopted by the Council of State and Territorial
Epidemiologists (CSTE). Chills, rigors, myalgia, headache,
sore throat, and new olfactory and taste disorder(s) have been
officially added in CDC’s website as symptoms connected
with SARS-CoV-2 infection. Moreover, gastrointestinal
symptoms like nausea, vomiting, and diarrhea are stated as
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reported symptoms for the same disease in CDC’s official
website (CDC.gov). Importantly, it is already known that a
substantial percentage of patients do not exhibit any
symptom while infected with SARS-CoV-2 [17, 18].

In this review, we will focus on another symptom that has
not been officially recognized, yet is arguably found in a small
percentage of COVID-19 patients [19], and is of a major con-
cern for ophthalmologists, i.e., conjunctivitis or pink eye. We
will summarize all the cases reported in other publications,
and through basic molecular biology mechanisms, we will
propose a possible explanation of the etiology of this
symptom.

Background

The Molecular Biology of Coronaviruses and SARS-
CoV-2

Coronaviruses (CoVs) are RNA viruses with the largest RNA
in base length identified so far and belong to the
Coronaviridae family. They are divided into 4 groups: α-,
β-, γ-, and δ-CoV [20]. SARS-CoV and SARS-CoV-2 have
89.8% sequence identity in their spike (S) protein S2 subunits,
which mediate the membrane fusion process, and both of their
S1 subunits utilize human angiotensin-converting enzyme 2
(hACE2) as the receptor to infect human cells [21]. Most
importantly, the ACE2-binding affinity of the S protein of
SARS-CoV-2 is 10- to 20-fold higher than that of SARS-
CoV [15], which contributes to the higher infectivity of
SARS-CoV-2 as compared with SARS-CoV [22].

After binding of the S protein of the virion to the ACE2
receptor on the target cell, the heptad repeat 1 (HR1) and 2
(HR2) domains in its S2 subunit of the S protein interact with
each other to form a six-helix bundle (6-HB) fusion core [23],
bringing viral and cellular membranes into close proximity for
fusion and infection [24]. Therefore, the specificity of the
virus is determined through the S-protein–receptor interaction
to a host cell receptor. Cathepsin protease action is the first
step for the virus in order to access the host cell’s cytosol by
proteolytic cleavage of the S protein, followed by fusion of the
virus and the host’s membranes. Fusion occurs within the
endosomes and the formation of the bundle after fusion mixes
viral and cellular membranes. As a result, the viral genome is
released into the cytoplasm [24].

Coronavirus lifecycle proceeds with the translation of the
replicase gene from their genomic RNA, where the
polyproteins pp1a and pp1ab encoded from two large ORFs
[25, 26]. Polyproteins of coronaviruses are further cleaved by
a group of proteases [27, 28].

Importantly, many non-structural proteins (nsps) are as-
sembling the replicase–transcriptase complex (RTC) needed
for RNA synthesis, while specifically nsp12 encodes the

RNA-dependent RNA polymerase (RdRp) domain, arguably
the most important enzyme for the replication of the virus.
This is the enzyme that will elongate new positive sense
RNA molecules from the original RNA of the virion [29].

Subgenomic RNAs (sgRNAs) are abundantly produced by
the virus. SgRNAs serve as mRNAs mainly for the structure
of the virus. Importantly, homologous and non-
homologous recombination can happen in the virus ge-
nome at this stage [30, 31].

After replication and sgRNA synthesis, S, E, and M struc-
tural proteins are translated and transferred into the endoplas-
mic reticulum (ER). These proteins move to the endoplasmic
reticulum–Golgi intermediate compartment (ERGIC) [32, 33]
and are encapsulated into membranes to form mature virions
[34]. The M protein is responsible for most protein–protein
interactions required for assembly of coronaviruses, while the
E protein functions as a chaperone to the M protein [35].
Lastly, the S (spike) protein that is not required for
assembly is transferred to virions by interacting with
the M protein. As already stated, the trimeric S protein
is the spike-like protein on the surface of the virus [36,
37] and acts as a class I fusion protein [24] that ensures
attachment to the host receptor. Following assembly,
newly made viruses transport to the cell surface and
are released to the environment by exocytosis [38].

Viral Conjunctivitis

Conjunctivitis, or pink eye, is an irritation or inflamma-
tion of the conjunctiva, which covers the white part of
the eyeball [39] . It can be caused by bacteria, viruses,
or allergies. It can be contagious as it is spread by
contact with eye secretions. Symptoms include itching,
redness, and tearing of the eyes. It can also lead to
discharge or crusting around the eyes [40].

It is important to stop wearing contact lenses while affected
by conjunctivitis. While allergic conjunctivitis can be treated
with antihistamines and bacterial conjunctivitis can be treated
with antibiotic eye drops to speed up the recovery process, the
only way to recover from viral conjunctivitis is to let it resolve
on its own while taking care of the overall good health of the
patient [41].

Adenovirus is the most common cause of viral conjuncti-
vitis. Viruses of the Adenoviridae family consist of non-
enveloped, double-stranded DNA. The most frequent infec-
tions caused by the adenovirus are eye infections, upper respi-
ratory tract infections, and diarrhea in children [42]. Except
for adenovirus derived, herpes conjunctivitis is also common
in children [43]. Except for DNA viruses though, RNA virus-
es are often associated with conjunctivitis. Picornaviruses can
cause acute hemorrhagic conjunctivitis and are highly infec-
tious, and HIV can also cause conjunctivitis producing red-
ness, irritation, and tearing [44].
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Cell infection of picornaviruses starts with its attachment to
cell receptors. These receptors are subdivided into two major
groups, i.e., canyon and non-canyon binders, which refers to
different structures of the virus’ surface [45, 46]. Canyon re-
ceptors like ICAM-1, PV receptor, or αvβ3 and αvβ6 integrin
receptors bind into the canyon of the viral surface, triggering
conformational changes of the virus essential for infection,
while non-canyon binders such as the LDL receptor, P-
selectin glycoprotein ligand-1 (PSGL-1), and heparan sulfate
proteoglycan (HSPG) receptors attach to the virus surface else-
where except for the canyon, guiding the virus to the host cell
surface and as a result signal for virus endocytosis [47–50]. The
HSPGs are continuously reported as providers of an increased
efficiency of viral attachment to host cells, thus allowing the
binding of the virus to another receptor [51–53].

Conjunctivitis as a COVID-19 Symptom

It is not uncommon for coronaviruses to be found in tears
through the years. SARS-CoV, HCoV-NL63, and SARS-
CoV-2 coronaviruses have been detected active through RT-
PCR in tears in previous coronavirus outbreaks [54–58]. On

the other hand, other studies have shown no evidence of live
viruses in tears of patients infected with several different
strains of coronaviruses [59, 60].

Given the uprising number of publications and case reports
of COVID-19 patients showing conjunctivitis [61, 62] and the
history of other coronaviruses that are found in tears, we have
to consider the possibility of a separate, alternative viral mech-
anism through which the virus can enter the patient’s organ-
ism through epithelial cells of the eye [63]. The growing ev-
idence on COVID-19 and its ocular implications and manifes-
tations, in both animals and humans, is covered by many
interesting reviews, all published 5 to 6 months after the novel
coronavirus’ outbreak [64–68], something that reveals the
need to understand the virus from different perspectives—
which at first may have seemed secondary in priority—in
order to be able to reach a treatment.

Discussion

As not much has been yet published about the SARS-CoV-2
pathogenic mechanism, from genomic and structural analyses,

Fig. 1 SARS-CoV-2 viruses find the ACE2 receptor on corneal epithelium cells via the help of HSPG receptors in the eye’s ECM
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it is known that the SARS-CoV-2 has a similar receptor bind-
ing mechanism as SARS-CoV. The angiotensin-converting
enzyme-2 (ACE2) receptor is so far the best candidate for
the main entry mechanism of SARS-CoV-2 [69].

The ocular surface is comprised by the conjunctival and
corneal epithelia which are connected to the upper respiratory
system [70]. Liquid from the eye is absorbed by the conjunc-
tiva and cornea epithelium and drained into the nasal cavity
through the nasolacrimal duct to the respiratory tract through
the trachea [71]. As a result, pathogens from the eye can be
transported to the respiratory system.

Interestingly, the human eye has its own intraocular angio-
tensin system (RAS), which has been popular as a way of
antiglaucoma drug development. As secondary evidence,
ACE2, the main entry receptor of HCoV-NL63, SARS-
CoV, and SARS-CoV-2, has been found in the aqueous hu-
mor [72] and at the conjunctival epithelial cells of the ocular
surface [73]. However, ACE2 expression in human ocular
surface is much lower than in other tissues [74].

Besides the immune conditions of the host, the efficiency of a
virus infection depends on the infection rate of the virus and the
viral receptors on the host cell membrane. As with picornavirus
and other viruses, HSPG receptors are known to create a first
attachment of the virus close to an epithelium that consists of
cells with a low number of the ACE2 receptors. The entry of the
virus inside these cells is facilitated through the ACE2 receptors,
but HSPGs provide an environment of enrichment of the virus
load close to the host cells through low affinity interactions [45].

While the exact mechanism still remains unclear, many
investigations point to the fact that the infection of SARS-
CoV and HCoV-NL63 into human cells is mediated by more
receptors other than ACE2 on host cell membrane. Among
other factors, HSPGs can clearly also serve as first attachment
receptors [75]. First, the virus is docked to the host cells with a
first link between the S protein on viral surface and the hepa-
ran sulfate chains of HSPGs on the host cell membrane [76,
77]. This binding event acts as an anchor for the more stable
binding of the S protein to ACE2 receptor of the host cell
membrane, followed by endocytosis of the viral particles
[78, 79]. As shown in Fig. 1, this is very likely to be the
mechanism of the invasion of SARS-CoV-2 in the epithelial
cell of the cornea and conjunctiva as well.

By better understanding the mechanism discussed here
with more clinical and experimental trials, ophthalmologists
can play a major role on tracking early symptoms of COVID-
19 and helping in the better treatment of the disease.
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