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Abstract

Background

Genomic selection (GS) is a recent selective breeding method which uses predictive mod-

els based on whole-genome molecular markers. Until now, existing studies formulated GS

as the problem of modeling an individual’s breeding value for a particular trait of interest, i.

e., as a regression problem. To assess predictive accuracy of the model, the Pearson corre-

lation between observed and predicted trait values was used.

Contributions

In this paper, we propose to formulate GS as the problem of ranking individuals according

to their breeding value. Our proposed framework allows us to employ machine learning

methods for ranking which had previously not been considered in the GS literature. To as-

sess ranking accuracy of a model, we introduce a new measure originating from the infor-

mation retrieval literature called normalized discounted cumulative gain (NDCG). NDCG

rewards more strongly models which assign a high rank to individuals with high breeding

value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate se-

lection of individuals with high breeding value.

Results

We conducted a comparison of 10 existing regression methods and 3 new ranking methods

on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest

that tree-based ensemble methods including McRank, Random Forests and Gradient

Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and

RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regres-

sion methods such as Bayesian lasso, wBSR and BayesC were found less suitable for

ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests

two important messages. First, ranking methods are a promising research direction in GS.

Second, NDCG can be a useful evaluation measure for GS.
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Introduction
Traditional selective breeding, based on phenotypic or pedigree information, has led to much
genetic improvement. Genomic selection (GS) [1] is a recent selective breeding method which
uses predictive models based on whole-genome molecular markers. Compared to traditional
marker-assisted selection methods, the key benefit of GS is that it uses markers covering the
whole genome, thus making it possible to predict polygenic traits. With the constantly decreas-
ing cost of marker technology, genotyping is currently less costly than phenotyping in applied
plant breeding programs [2]. GS has already been adopted by dairy industries worldwide and is
expected to double genetic gains for milk production and other traits [3]. GS can also accelerate
selection cycles, since markers can be genotyped at birth or even before [4]. The effectiveness
of GS has been confirmed in numerous studies, both for plant and animal breeding [2, 4–10].

Until now, GS has traditionally been formulated as the problem of predicting an individual’s
breeding value for a given trait of interest; for instance, grain yield or or milk production.
Therefore, GS was fundamentally formulated as a regression problem. To estimate a regression
model, many different parametric and non-parametric methods were proposed in the literature
including BayesA, BayesB, best linear unbiased prediction (BLUP) in the original work of [1],
Bayesian lasso [7, 11, 12], a fast EM algorithm for the BayesB model called wBSR [13] and re-
producing kernel Hilbert space (RKHS) regression [10, 14]. Recently, [15] compared popular
methods from the GS literature with other machine learning methods including support vector
regression, random forests and neural networks. Their results suggested that GS could be based
on a reduced set of models such as Bayesian lasso, wBSR and random forests.

In this paper, we propose to formulate GS as a ranking problem. This is motivated by the
fact that in order to select the most favorable individuals, we do not necessarily need to accu-
rately predict breeding values. Instead, it is often sufficient to correctly rank individuals from
most favorable to least favorable. As an example, consider the problem of selecting wheat lines
according to their grain yield. In existing studies, this would be formulated as the problem of
predicting grain yield from genotypes. In our approach, this is formulated instead as the prob-
lem of correctly ranking wheat lines in order of decreasing grain yield. Our proposed frame-
work allows us to employ machine learning methods for ranking which had previously never
been considered in the GS literature. Until now, the predictive accuracy of a model was typical-
ly assessed using the Pearson correlation between observed trait values and the predicted trait
values (a.k.a. genomic estimated breeding values, GEBV). However, our experiments show that
Pearson correlation may correlate poorly with ranking accuracy. In this paper, we introduce a
new measure originating from the information retrieval literature called normalized dis-
counted cumulative gain (NDCG) [16]. NDCG rewards more strongly models which assign
high rank to individuals with high breeding value. In addition, NDCG focuses on the top indi-
viduals in the ranking, while Pearson correlation treats all individuals uniformly. Therefore,
NDCG reflects a prerequisite objective in selective breeding: accurate selection of the top indi-
viduals with highest breeding value.

Regression-based genomic selection

General approach
In this section, we first review the two-phase approach usually taken by traditional regression-
based GS methods.

In themodel estimation phase (also known as training phase), a reference population,
which has been genotyped and whose trait values are known, is used to estimate a statistical
model of the relationship between genotypes and the trait. For a reference population of size n,
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we denote the genotypes by x1, . . ., xn, where xi 2 X� R
p, and the associated trait values by y1,

. . ., yn, where yi 2 Y� R. The number p indicates the number of molecular markers (e.g.,
DArT, SNP, . . .) used for genotyping. For simplicity, in the remainder of this paper, we use xi
to refer to both individual i and its vector representation after genotyping. Likewise, phenotypic
values or estimated breeding values will simply be referred to as “trait values”. Trait values of
the reference population are typically obtained by field testings, which are expensive and time-
consuming. Therefore, n is usually small. On the other hand, the number of markers p is usual-
ly large for genome-wide genotyping. Therefore, n is usually much smaller than p. This is
known as the n� p problem. Existing GS approaches estimate a regression model h: Rp ! R

such that h(xi)� yi for all i 2 {1, . . ., n}. We briefly review common approaches for estimating
h further below. In the following, we denote by X the n × pmatrix which gathers individuals x1,
. . ., xn, by y the n-dimensional vector which gathers their true trait values y1, . . ., yn and by ŷ
the n-dimensional vector which gathers the predicted values ŷ1; . . . ; ŷn, where ŷ i ¼ hðxiÞ.

In the candidate selection phase, predicted trait values are computed using the fitted model
for candidate individuals to be selected. We denote the genotypes ofm candidates by
�x1; . . . ; �xm. Contrary to the reference population, the true trait values of the candidates are not
known. Throughout this paper, we assume that the individuals from the reference population
x1, . . ., xn and candidate individuals �x1; . . . ; �xm are sampled i.i.d. (independent and identically
distributed) from the same (unknown) distribution.

Traditional evaluation measures
Model evaluation is the task of evaluating how good a model is and is crucial to choose the best
model among several possible choices. In the GS literature, model evaluation has traditionally
been carried out using mainly two measures: mean squared error (MSE) and Pearson correla-
tion. MSE is defined by

MSEðy; ŷÞ ¼ 1

n

Xn

i¼1

ðyi � ŷ iÞ2:

The model is better whenMSEðy; ŷÞ is lower and perfect fit is achieved whenMSEðy; ŷÞ ¼ 0.
Obviously,MSEðy; ŷÞ ¼ 0 if ŷ i ¼ yi for all i. In other words, a model achieves zero error if it
predicts perfectly all trait values. Note that this can only happen when heritability is one and all
genetic variance is explained by the markers.

A more commonly used measure in the GS literature is the Pearson correlation between ob-
served and predicted trait values. It is defined by

rðy; ŷÞ ¼
Pn

i¼1ðyi � myÞðŷ i � mŷÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyi � myÞ2

Pn
i¼1 ðŷ i � mŷÞ2

q ;

where my ¼ 1
n

Pn
i¼1 yi and mŷ ¼ 1

n

Pn
i¼1 ŷ i. The model is better when rðy; ŷÞ is higher and perfect

correlation is achieved when rðy; ŷÞ ¼ 1. Contrary to MSE, correlation does not require to ac-
curately predict trait values. Indeed, it can be seen that rðy; ŷÞ ¼ 1 if there exists a> 0 and b
such that ŷ i ¼ ayi þ b for all i. In other words, the set of points fðyi; ŷ iÞgni¼1 must be collinear in
order to achieve perfect correlation. Again, perfect correlation can only happen when heritabil-
ity is one and all genetic variance is explained by the markers. When heritability is less than
one, correlation has an upper limit which is equal to the square root of heritability. If the pro-
portion of genetic variance that markers can explain is less than one, the upper limit decreases
from the square root of heritability.
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Overview of popular regression models
In this section, we briefly describe various regression models, focusing on the most popular
ones in the GS literature.

Ridge and RKHS regression. One of the first methods proposed for genomic selection
was ridge regression, which is equivalent to best linear unbiased prediction (BLUP) in the con-
text of mixed models [1]. Let Ip be the identity matrix of size p × p. The basic model is y = X β +
�, where β � Normalð0; s2

uIpÞ and � � Normalð0; s2
eÞ. The solution for the marker effects can

be obtained by β = (XTX+λIp)
−1 XTy, where l ¼ s2

e=s
2
u is the ratio between the residual and

marker variances. Predictions can be computed by h(x) = βTx. The representer theorem [17,
18] guarantees that β can be written as a linear combination of the data, i.e., β = XTα for some
α 2 R

n. This has two important implications. The first is that we can equivalently compute β
by β = XTα = XT(XXT+λIn)

−1y. The main difference is that we now need to invert a n × nma-
trix instead of a p × p one. This is advantageous in GS because we usually have n� p. The sec-
ond implication is that ridge regression can now be “kernelized” by using the identity
ŷ ¼ Xβ ¼ XXTα ¼ Kα, where K = XXT and α = (K+λIn)

−1 y. In practice, K can be replaced by
any positive semidefinite kernel matrix with elements Kij = κ(xi, xj), where κ is the correspond-
ing kernel function. Predictions can then be computed by hðxÞ ¼ Pn

i¼1 aiκðx; xiÞ. The result is
known as kernel ridge regression in the machine learning literature and as RKHS regression in
the GS literature. The elements Kij correspond to inner products in a high-dimensional (possi-
bly infinite) space called reproducing kernel Hilbert space (RKHS). This allows to model non-
linear relationships between X and y. RKHS regression is equivalent to ridge regression when
using a linear kernel.

Bayesian lasso (BL). Bayesian lasso [11] is the Bayesian counterpart of the lasso [19]. Fol-
lowing the parameterization of [20], the effect of marker j, βj, was assumed to follow a hierar-
chical prior distribution,

Normalðbjj0; 1=t2j t20ÞInvGammaðt2j j1; l2

B=2Þ;

where Normal and InvGamma indicate the normal and inverse gamma distributions, respec-

tively, t2j determines the shrinkage magnitude for βj, 1=t20 is the residual variance and l
2

B is a

hyper-parameter that defines the distribution of t2j . We modified the method of [20] such that

marker effects were conditional on the residual variance (precision), as in [11]. The prior distri-

bution of l2B is the gamma distribution Gamma(ϕ, ω), where ϕ and ω are the shape and rate pa-
rameters, respectively.

Extended Bayesian lasso (EBL). In the EBL [21], l2B is replaced with d2Z2j , where δ
2 is a

global shrinkage factor and Z2
j is a shrinkage factor for marker j. The priors used are Gamma(ϕ,

ω) for δ2 and Gamma(ψ, θ) for Z2j .

Weighted Bayesian shrinkage regression (wBSR). wBSR [13] uses the indicator variable
γj to determine whether the marker effect βj is included in the regression model (γj = 1) or not
(γj = 0). A prior Bernoulli distribution, Bernoulli(γjjπ), is assumed for γj. The marker effect βj is
assumed to follow a hierarchical prior distribution,

Normalðbjj0; s2
j ÞInvChi2ðs2

j jn; S2Þ;

where InvChi2 indicates a scaled inverse chi-squared distribution, ν is the degree of freedom
and S2 is the scaling parameter.
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BayesC. In BayesC [22], βj is assumed to follow a spike and slab prior distribution,

pðbjÞ �
(Normalðbjj0; s2Þ if rj ¼ 1

0 if rj ¼ 0
;

where ρj is an indicator variable. The prior distributions used for ρj and σ
2 are Bernoulli(ρjjπ)

and InvChi2(σ2jν, S2), respectively.
Stochastic search variable selection (SSVS). SSVS [23] assumes the following prior distri-

bution for βj,

pðbjÞ �
(Normalðbjj0; s2Þ if rj ¼ 1

Normalðbjj0; cs2Þ if rj ¼ 0
;

where c< 1 determines the relative magnitude of the variances of the two normal
distributions.

Bayesian mixture regression model (MIX). For the prior distribution of βj, MIX [24] as-
sumes a mixture of two normal distributions with variances independent of one another:

pðbjÞ �
(Normalðbjj0; s2

1Þ if rj ¼ 1

Normalðbjj0; s2
0Þ if rj ¼ 0

:

In [24], the prior distributions of s2
1 and s

2
0 were InvChi2ðs2

1 jn; S2Þ and InvChi2ðs2
0 jn; S2Þ. We

modified the prior of s2
0 to InvChi2ðs2

0 jn; cS2Þ so as to encourage clustering of markers accord-
ing to the magnitude of their effects.

Random forests (RF). RF [25] are an ensemble algorithm based on randomized regression
trees. In RF, each tree is built from a sample drawn with replacement (i.e., a bootstrap sample)
from the training set. The final prediction is computed by averaging the predictions of all trees
in the forest. This procedure is known to improve the bias-variance trade-off of regression
trees and leads to highly accurate predictions. To further reduce overfitting, two heuristics are
typically applied in RF. The first heuristic consists, when splitting a node during the construc-
tion of a tree, in selecting the best split from a random subset of the features (“max_fea-
tures”). This both improves accuracy and reduces training time. The second heuristic
consists in limiting the maximum depth of the regression trees (“max_depth”). This ensures
that trees are not too complicated. Although careful tuning of these two parameters can im-
prove accuracy, we find that RF are pretty robust to their choice.

Gradient boosted regression trees (GBRT). In gradient boosting [26], an ensemble of re-
gression models is built in a stage-wise fashion so as to minimize a differentiable loss function.
GBRT refers to gradient boosting when the models are regression trees. GBRT starts with a
base model h0. For regression with squared loss, a common choice is the base model which al-
ways outputs the training set’s target mean irrespective of x: h0ðxÞ ¼ 1

n

Pn
i¼1 yi. Subsequently,

GBRT incrementally adds new trees h1, . . ., hM to obtain an ensemble hðxÞ ¼ PM
s¼0 ashsðxÞ.

For the squared loss, the tree hs at stage s is fitted against the residuals of the ensemble so far e1,

. . ., en, where ei ¼ yi �
Ps�1

r¼1 arhrðxÞ. For other differentiable loss functions, residuals are re-
placed with the negative gradient, which [26] calls “pseudo-responses”. At each stage s, GBRT
finds αs by line search and multiply the result by a small learning rate, typically between 10−3

and 1, to avoid overfitting. To further reduce overfitting, the same heuristics as RF can be ap-
plied (“max_features” and “max_depth”). Although past GS works did not consider
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GBRT, we include it in our comparison since it achieved among the leading results in the
Yahoo! learning to rank challenge [27].

Ranking-based genomic selection

General approach
Similarly to existing regression-based approaches, our approach is broken down into a model
estimation phase and a candidate selection phase. The main difference is that, in our approach,
we do not impose that the model h satisfy h(xi)� yi. Instead, in our approach, h is a scoring
function: it assigns a score to each candidate. The scores are then used to determine a ranking
of the candidates. In this ranking framework, GS can be summarized by the following two
phases:

1. Model estimation. Using the reference population, estimate a scoring function h which can
be used for ranking. Intuitively, a perfect scoring function would satisfy h(x(1))� h(x(2))�
. . .� h(x(n)) if y(1) � y(2) � . . .� y(n).

2. Candidate selection. Using h, rankm candidates �x1; �x2; . . . ; �xm by decreasing scores. We
denote the ranked candidates by �xð1Þ≽h�xð2Þ≽h . . .≽h�xðmÞ, where xi ≽h xj means h(xi)� h

(xj). Finally, select the top k candidates �xð1Þ≽h �xð2Þ≽h . . .≽h�xðkÞ for further field testing.
Typically, the number of selected candidates k is chosen much smaller than the total num-
ber of candidatesm, i.e., k�m.

Our ranking-based formulation naturally captures a prerequisite objective in selective
breeding: accurate selection of individuals with high breeding value. In this section, since we do
not impose that h(xi)� yi, ŷ does not necessarily represent predicted trait values. Instead, ŷ is
the n-dimensional vector which gathers predicted scores ŷ1; . . . ; ŷn, where ŷ i ¼ hðxiÞ, from
which individuals can be sorted in decreasing order.

Evaluation measures for global ranking
As we explained previously, the Pearson correlation does not require to accurately predict trait
values. It only requires the set of points fðyi; ŷ iÞgni¼1 to be collinear. In that sense, the Pearson
correlation can be seen as a ranking measure. However, the collinearity requirement may
sometimes be too strict. To illustrate the problem, consider the case when y = [3.5, 2.8, 1.2] and
ŷ ¼ ½10:3; 3:7; 0:1�. In this example, the model achieves perfect ranking since y1 � y2 � y3 and
ŷ1 � ŷ2 � ŷ3. However, because the true and predicted trait values are not perfectly collinear,
the correlation is only equal to rðy; ŷÞ ¼ 0:92. This example shows that it is not necessary to
achieve perfect correlation to achieve perfect ranking. In this section, we present two related
measures for global ranking evaluation that do not assume collinearity: pairwise accuracy and
Kendall’s τ.

Given the reference trait values y, we define the preference set as P(y) = {(i, j):yi> yj}. Intui-
tively, if (i, j) 2 P(y), then xi is preferred to xj (e.g., xi has higher grain yield than xj). Given the
predicted scores ŷ, we define the set of concordant pairs as Cðy; ŷÞ ¼ fði; jÞ 2 PðyÞ : ŷ i > ŷ jg
and the set of discordant pairs as Dðy; ŷÞ ¼ fði; jÞ 2 PðyÞ : ŷ i < ŷ jg. Pairs in the set Tðy; ŷÞ ¼
fði; jÞ 2 PðyÞ : ŷ i ¼ ŷ jg are neither concordant nor discordant.

Pairwise accuracy (c.f., e.g., [28]) is simply defined as the proportion of concordant pairs:

pairwise accuracyðy; ŷÞ ¼ jCðy; ŷÞj
jPðyÞj ;
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where jSj is the cardinality of the set S. Pairwise accuracy is 0 when not a single pair was con-
cordant and is 1 when all pairs were concordant. For binary trait values, pairwise accuracy is
exactly equivalent to the area under the ROC curve (AUC) and is closely related to the Mann-
Whitney-Wilcoxon statistic [29]. Pairwise ranking algorithms such as RankSVM [30], Rank-
Boost [31] and RankNet [32] maximize an upper-bound on pairwise accuracy.

Another commonly used measure is Kendall’s τ[33]:

tðy; ŷÞ ¼ jCðy; ŷÞj � jDðy; ŷÞj
jPðyÞj

Intuitively, Kendall’s τ is the difference between the ratio of concordant pairs and the ratio of
discordant pairs. Kendall’s τ is always between −1 and 1.

Assuming Tðy; ŷÞ is an empty set (which is likely to be the case, since ŷ is a continuous vec-
tor), Kendall’s τ and pairwise accuracy are directly related by the following formula:

tðy; ŷÞ ¼ 2jCðy; ŷÞj
jPðyÞj � 1 ¼ 2	 pairwise accuracyðy; ŷÞ � 1:

Therefore, algorithms which are designed to maximize pairwise accuracy will also maximize
Kendall’s τ.

Evaluation measures for top-k ranking
One issue with pairwise accuracy and Kendall’s τ is that they treat all pairs equally. Intuitively,
a good ranking evaluation measure should fulfill two requirements. First, it should reward
more strongly assigning a high rank to individuals with high breeding value. Second, it should
focus on the top k individuals in the ranking. Oftentimes, it does not matter if a model cannot
correctly order individuals with low breeding value. Instead, it is sufficient to rank as many in-
dividuals with high breeding value as possible at the top. In this section, we introduce two mea-
sures that fulfill the above two requirements: discounted cumulative gain (DCG) [16] and its
normalized version (NDCG). In the information retrieval (IR) literature, NDCG has been pop-
ularly used to measure the ability of search engines to retrieve highly relevant documents in the
top search results. In this paper, we use NDCG to measure the ability of GS models to select the
top k individuals with highest breeding value.

To introduce discounted cumulative gain (DCG), we first note that any predicted score vec-
tor ŷ ¼ ½ŷ1; . . . ; ŷn� induces a permutation π = [π1, . . ., πn] of [1, . . ., n] such that the scores are
sorted in decreasing order: ŷp1

� ŷp2
� . . . � ŷpn

. Given the reference trait values y = [y1, . . .,

yn] and any such permutation π, the DCG at position k (we assume k
 n) is defined by

DCG@kðy; pÞ ¼
Xk

i¼1

gðypiÞdðiÞ:

Here, g(y) is a monotonically increasing gain function and d(i) is a monotonically decreasing
discount function. Common choices for the gain function are g(y) = y (linear gains) and g(y) =
2y−1 (exponential gains). For the discount function, a common choice is dðiÞ ¼ 1

log2ðiþ1Þ. Intui-

tively, a model obtains the highest possible DCG@k when the order of the predicted scores ŷ
agrees with the order of the true observed traits y.

DCG can be difficult to interpret because its values are unbounded. In practice, the normal-
ized DCG (NDCG) is often used instead. If we define by π(y) = [π(y)1, . . ., π(y)n] a permutation
of [1, . . ., n] for sorting y in decreasing order, i.e., yπ(y)1 � . . .� yπ(y)n, then NDCG at position k

A Ranking Approach to Genomic Selection
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is defined by

NDCG@kðy; ŷÞ ¼ DCG@kðy; pðŷÞÞ
DCG@kðy; pðyÞÞ :

Intuitively, NDCG is simply the ratio between the DCG score of the predicted ranking and the
DCG score of the ideal ranking. NDCG is easier to interpret than DCG because its values are
always between 0 and 1, assuming y 2 R

n
þ.

In our experiments, we also report results of Mean NDCG@K, which is simply the mean of
NDCG scores from k = 1 to k = K:

Mean NDCG@Kðy; ŷÞ ¼ 1

K

XK
k¼1

NDCG@kðy; ŷÞ:

We discuss the choices of the position k, gain function g(y) and discount function d(i) in the
“Discussion” section.

Background on “learning to rank”
Estimating a ranking model, commonly known as “learning to rank”, has attracted a great deal
of research in the machine learning community. Intuitively, when formulating GS as a ranking
problem, we should estimate a model so as to directly maximize a ranking accuracy measure of
interest, such as NDCG. Unfortunately, this turns out to be a non-convex problem that can be
NP-hard [34]. To solve this problem, learning to rank approaches replace the true loss function
by an easier to optimize one called surrogate loss function. Learning to rank approaches are
typically divided into three categories depending on the type of surrogate loss function used.

Pointwise approaches involve a surrogate loss function on individual samples xi. They typi-
cally reduce ranking to either regression, classification or ordinal regression/classification. It
was shown that DCG errors are bounded by regression [34] and classification [35] errors.

Pairwise approaches involve a surrogate loss function on pairs of samples (xi,xj). Their
main idea is that if yi> yj, then the model h does not need to predict yi and yj accurately: it only
needs to respect the relative order h(xi)> h(xj). RankSVM [30], RankBoost [31] and RankNet
[32] are based on pairwise versions of the hinge, exponential and logistic surrogate loss func-
tions, respectively.

Listwise approaches involve a surrogate loss function or algorithm based on a list of sam-
ples. Some listwise methods such as LambdaMART [36] can optimize top-k ranking accuracy
directly.

For more details on “learning to rank”, we refer the reader to [37, 38].

Overview of ranking models
Our ranking-based formulation allows us to employ machine learning methods for ranking
which had never been considered in the GS literature before. For our experiments, we chose
three representative methods of the pointwise, pairwise and listwise categories.

McRank (pointwise). McRank [35] is a method for indirectly optimizing NDCG through
multiple classification. This is motivated by the fact that classification can be an easier task
than regression. Suppose that the traits can only take on a finite number B of values, i.e., Y =
{b1, b2, . . ., bB}, where br 2 R. If that is not the case, we can always discretize the trait values (of
the training set only), as explained in our experiments. The main idea of McRank is to rank
candidates according to their expected trait value, which can be computed by
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hðxÞ ¼ PB
r¼1 Prðy ¼ br j xÞbr. McRank exists in two variants: multiclass and ordinal McRank.

The variants differ in how they compute the Pr(y = brjx) probabilities.
Multiclass McRankmodels the Pr(y = brjx) class probabilities using a probabilistic classifi-

er. Any probabilistic classifier (e.g., logistic regression) can in theory be used. Although the
original McRank paper used gradient boosting as classifier, in this paper, we used random for-
ests, since they worked better in our experiments. Unfortunately, multiclass McRank complete-
ly ignores the natural ordering b1 
 b2 
 . . .
 bB.

Ordinal McRank addresses this problem as follows. Notice that Pr(y = brjx) = Pr(y
 brjx)
−Pr(y
 br−1jx). In other words, we can model class probabilities Pr(y = brjx) using cumulative
probabilities Pr(y
 brjx) and Pr(y
 br−1jx). The advantage is that this takes into account the
natural ordering b1 
 b2 
 . . .
 bB. Cumulative probabilities Pr(y
 brjx) can easily be mod-
eled as follows. First, we partition the training data into two groups {yi
 br} (positive class)
and {yi � br+1} (negative class). Using this partition, we can then train a two-class probabilistic
classifier. The probability of the positive class gives Pr(y
 brjx). Again, although any probabi-
listic classifier can be used, we used random forests since they performed best in our
experiments.

RankSVM (pairwise). Recall that we previously defined the preference set as P(y) = {(i, j):
yi > yj}. The main idea of RankSVM [30] is to use the support vector machine (SVM) frame-
work in order to find a model h(x) such that h(xi)> h(xj) for all (i, j) 2 P(y). In this paper, we
consider the kernelized version of RankSVM [39], which minimizes the objective

minimize
a2Rn

f ðaÞ � l
2
aTKaþ

X
ði;jÞ2PðyÞ

max ð0; 1� aTKi þ aTKjÞr;

where λ is a regularization parameter, K 2 R
n × n is a kernel matrix with elements Kij = κ(xi,xj),

Ki 2 R
n is the ith column of K and r 2 {1, 2}. Once α has been obtained, the model hðxÞ ¼Pn

i¼1 aiκðx; xiÞ can be used to sort candidates in decreasing order. Using the kernelized version
of RankSVM has the same advantages as RKHS regression. First, the model is non-linear if we
use a non-linear kernel. This allows to model non-linear relationships. Second, the optimiza-
tion problem is n-dimensional instead of p-dimensional, which is advantageous in GS. When
r = 2, the RankSVM objective is differentiable and can thus be solved by gradient methods such
as the conjugate gradient method or limited-memory BFGS (L-BFGS) [40]. The gradient ex-
pression necessary to run these methods is given by

rf ðaÞ ¼ lKaþ 2
X
ði;jÞ2P

max ð0; 1� aTKi þ aTKjÞðKj � KiÞ:

The global solution, which is unique, is guaranteed to be found, since RankSVM has a strictly
convex objective [39]. When r = 1, the conjugate gradient and L-BFGS methods cannot be
used, since the RankSVM objective is not differentiable everywhere. Instead, it is possible to
solve the objective using the subgradient method.

LambdaMART (listwise). LambdaMART [36, 41] is a method which builds upon GBRT
(c.f. overview of regression models) to optimize NDCG@k. It achieved the leading results in
the Yahoo! learning to rank challenge [27]. As explained previously, GBRT incrementally

builds an ensemble ofM regression trees hðxÞ ¼ PM
s¼0 ashsðxÞ by adding on each stage a regres-

sion tree hs fitted against “pseudo-responses”, the negative gradient of the objective function.
To deal with the discontinuity of the NDCG objective, LambdaMART uses an approximation
of the negative gradient called λ-gradient. GBRT is also known as MART (multiple additive re-
gression trees), hence the name LambdaMART. Let us define the following expressions on
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stage s:

lij ¼ signðoijÞjDNDCGij

@Cij

@oij
j l�gradient for the ðxi; xjÞ pair

@Cij

@oij
¼ 1

1þ exp ðoijÞ
cross� entropy derivative

oij ¼ ŷ i � ŷ j prediction score difference

DNDCGij ¼ NDCG gained by swapping xi and xj

ŷ i ¼
Xs�1

r¼0

arhrðxiÞ prediction score up to stage s� 1:

Then, the λ-gradient on stage s is an n-dimensional vector whose elements are defined by
li ¼

Pn
j¼1 lij. The λij can be interpreted as follows. If xi has higher breeding value than xj, then

xj will get a push downwards of strength jλijj. Otherwise, xj will get a push upwards of strength
jλijj. However, if xi and xj are both not ranked in the top-k elements, then, by the definition of
NDCG, there will be no gain from swapping them. Therefore, ΔNDCGij = λij = 0 in this case.
For a detailed derivation and discussion of the λ-gradient, see [41]. To reduce overfitting, the
same techniques as RF and GBRT can be used.

Complexity comparison. We now briefly compare the computational complexity of train-
ing algorithms for ranking and regression. We assume that the number of samples n is much
smaller than the number of markers p, as is usually the case in GS. For RKHS regression (a.k.a.
kernel ridge regression), we pre-compute the kernel matrix K, which takes O(n2p). Once this is
done, a closed form solution can be obtained by solving a system of linear equations, which
takes O(n3). Alternatively, an approximate solution can be obtained by any gradient solver,
such as the conjugate gradient method or limited-memory BFGS (L-BFGS). In this case, the
main cost per iteration comes from computing the gradient, which takes O(n2). For kernel
RankSVM, we also pre-compute the kernel matrix. Since a closed form solution is not available,
we use a gradient method. The main cost per iteration stems from computing the gradient,
which takes O(n2), the same as for RKHS regression. For random forests, GBRT, McRank and
LambdaMART, the computational cost is proportional to the number of trees in the ensemble.
Tree induction takes O(p0n log2 n) in average and O(p0n2logn) in worst case, where p0 
 p is the
number of markers considered for node splitting [42]. For LambdaMART, each tree needs to
be fitted against the λ-gradient. Computing the λ-gradient takes O(kn), where k is the parame-
ter used for NDCG@k.

Experimental results

Datasets
We evaluated the validity of our ranking approach using the following 6 datasets.

Arabidopsis. This dataset comprises 422 lines of Arabidopsis thaliana developed by INRA
[43]. We chose 3 traits, flowering time in short days (FLOSD), shoot dry matter in non-limiting
nitrogen conditions (DM10) and shoot dry matter in limiting nitrogen conditions (DM3),
which were also selected in [15, 44]. We excluded 5 lines which were not evaluated for these
traits. Marker genotypes were available for 69 SSRs. We imputed the missing genotypes using
the R package qtl[45]. The dataset is available at http://publiclines.versailles.inra.fr/page/33.

Barley. The Barley-CAP project evaluated the grain yield of 432 barley lines in Aberdeen,
Idaho (trial name: NSGC_2012_NormN_Irr_Aberdeen). Among them, 381 lines were
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genotyped using 3945 SNPs. We imputed missing genotypes using BEAGLE [46]. The dataset
is available at http://triticeaetoolbox.org.

Maize. This dataset, used in the study of [10], comprises 264 maize lines genotyped using
1076 SNP markers. We imputed missing values using BEAGLE [46]. The dataset is provided as
example data in SelectionTools [47], available at http://www.uni-giessen.de/cms/fbz/fb09/
institute/pflbz2/population-genetics/downloads.

Rice. This dataset consists of 395 lines genotyped with 1311 SNPs [48]. We imputed miss-
ing genotypes using BEAGLE [46]. Among these lines, phenotypic values of a total of 34 traits
were available for 383 lines, with some missing records [49]. We chose 335 lines without miss-
ing records in 14 traits. The traits were flowering time, flag leaf length, flag leaf width, number
of panicles per plant, plant height, panicle length, primary panicle branch number, number of
seeds per panicle, number of florets per panicle, seed length, seed width, seed volume, seed sur-
face area and amylose content. The dataset is available at http://www.ricediversity.org/data/
index.cfm.

Wheat (CIMMYT). This dataset comprises 599 wheat lines developed by the CIMMYT
Global Wheat Breeding program [10]. Trait values correspond to grain yield evaluated in 4 dif-
ferent environments. Wheat lines were genotyped using 1447 DArT (Diversity Array Technol-
ogy) markers. Markers may take on the values 1 or 0, indicating their presence or absence.
Markers with allele frequency less than 0.05 or greater than 0.95 were removed. The total num-
ber of markers retained after this processing was 1279. The dataset is provided as part of the R
package BLR.

Wheat (Pérez-Rodríguez). This dataset, used in the study of [50], consists of 306 lines
genotyped with 1695 DArT markers. Phenotypic values for two traits, grain yield and days to
heading, were available for these lines. The dataset is available at the same URL as for Maize
data.

For SSR and SNP markers, genotypes were encoded by 0 (AA), 1 (AB), and 2 (BB). For
DArT markers, the presence or absence of an allele was encoded by 0 and 1 for Wheat (CIM-
MYT) and by 0 and 2 for Wheat (Pérez-Rodríguez).

For datasets comprised of several traits, we build one model per trait and report the aver-
aged evaluation scores.

All traits described above are inherently non-negative quantities. In the case of the Wheat
(CIMMYT) dataset, grain yield values were centered so as to have zero mean prior to public re-
lease of the dataset. As a result, the dataset contains negative yield values. In order to avoid neg-
ative NDCG scores, we converted the yield values back to positive values. To do so, since the
original centering was not known to us, we simply shifted the yield values such that the smallest
value in the entire dataset is zero.

Experimental setup
Cross-validation setup. To estimate the generalization performance of different models,

i.e., the ranking accuracy on new candidates, we used a randomized cross-validation scheme.
For each cross-validation iteration, the dataset was split into 80% for model estimation and
20% for evaluation. To ensure fair comparison, we made sure that all methods use the same
splits. Evaluation scores were computed for 10 cross-validation iterations and averaged. We re-
port results for 6 evaluation measures: Pearson correlation, Kendall’s τ, NDCG@1, NDCG@5,
NDCG@10 and Mean NDCG@10. For models which need hyper-parameter tuning, we further
used 5-fold cross-validation within the train split. To obtain the best possible results, we always
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selected the hyper-parameters which maximize the same measure as used for evaluation. For
example, for NDCG@10 results, the hyper-parameters were selected to maximize NDCG@10.

Parameter inference for Bayesian regression methods. Parameters of the Bayesian re-
gression methods were estimated using variational Bayesian approaches. The algorithms for
BL and EBL were proposed by [20]. The wBSR algorithm was introduced by [13]. [51] intro-
duced a variational Bayesian algorithm for linear regression with a spike and slab prior. A dif-
ference between the algorithm for BayesC in this study and that in [51] is that the authors used
importance sampling to infer the posterior distribution of σ2, t20 and π, whereas we inferred the
factorized posteriors of σ2 and t20, and used a fixed value for π as described further below. The
algorithms of SSVS and MIX were implemented by the second author and will be published
elsewhere. Phenotypic values were standardized prior to training. All Bayesian regression
methods were performed with a program written in C.

Model estimatation for other methods. For random forests and GBRT, we used imple-
mentations provided in the scikit-learn Python package [52, 53]. For ridge and RKHS regres-
sion, we used the R package rrBLUP[54]. For McRank and LambdaMART, we used the source
code available at https://github.com/mblondel/ivalice. For RankSVM, we solved the objective
function with r = 2 by L-BFGS [40]. We set the maximum number of iterations to 500.

Hyper-parameter tuning. For BL, we tested five values, 0.1, 1, 10, 30 and 100, for ϕ. For ω,
we tested six log-spaced values from ϕ/20p to 5ϕ, where p is the number of markers. Because

E½1=tj� ¼ 2=l2B if t
2
j � InvGammað1; l2

B=2Þ, and the expectation of l2B is ϕ/ω, these values of ϕ

and ω correspond to the grids of 1=t2j from 1/10p to 10, which are obtained by replacing 2=l2B
with ϕ/ω. In total, this corresponds to 30 possible parameter combinations. For EBL, we used
the same values for ψ and θ and tested three values, 0.1, 1 and 10. For ϕ and ω, we tried the
same values as for BL. Consequently, this corresponds to a total of 90 parameter combinations.
For wBSR and BayesC, we fixed ν to 4. For π, we tested 5 log-spaced values from 1/p to 1. For
S2, we tested 10 log-spaced values from 1/20p to 5. Because the expectation of InvChi2(ν, S2) is
νS2/(ν−2), these values of ν and S2 correspond to the grids of s2

j from 1/10p to 10. This corre-

sponds to a total of 50 possible parameter combinations for wBSR and BayesC. For SSVS and
MIX, we fixed ν and π to 4 and 0.01, respectively. For c, we tested 5 values from 10−5 to 10−1.
The values tested for S2 were the same as that of wBSR and BayesC. This corresponds to a total
of 50 possible parameter combinations tested for SSVS and MIX.

For tree-based ensemble methods including random forests (RF), gradient boosting regres-
sion trees (GBRT), McRank and LambdaMART, we used 300 trees in the ensemble. The pa-
rameter max_features was set to 0.6, meaning that only 60% of the features are considered
when searching for the best split during tree induction. This both speeds up tree induction and
reduces overfitting. The maximum tree depth max_depth was chosen from {3, 5, 10}. For
GBRT and LambdaMART, we chose the learning rate parameter from {0.001, 0.01, 0.1, 1.0}.
For McRank, we chose the number of bins from {3, 4, . . ., 20}.

For ridge and RKHS regression, we used the R package rrBLUP[54], which can estimate the
regularization and kernel parameters automatically by (restricted) maximum likelihood (i.e.,
without cross-validation). This approach is closely related to gaussian processes in the machine
learning community [55].

For RankSVM, we set l ¼j P j ~l, where jPj is the number of preference pairs, and chose ~l
from 15 log-spaced values between 10−6 and 106. We use the RBF kernel κ(xi,xj) = exp
(−γkxi−xjk2). Following [54], we set g ¼ 1

4ps2, where p is the number of markers. We then chose

σ from 10 linearly-spaced values between 0 and 1.
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Cross-validation results
The general method ranking across six datasets is given in Table 1. Overall, the five best meth-
ods for each evaluation measure were as follows:

• Pearson correlation: RKHS regression, Ordinal McRank, RF, RankSVM, wBSR

• Kendall’s τ: RKHS regression, Ordinal McRank, RF, RankSVM, wBSR

• NDCG@1: RF, RankSVM, Ordinal McRank, RKHS regression, GBRT

• NDCG@5: Ordinal McRank, RF, RankSVM, RKHS, BL

• NDCG@10: Ordinal McRank, RKHS regression, RF, RankSVM, GBRT

• Mean NDCG@10: Ordinal McRank, RF, RKHS regression, RankSVM, GBRT

Detailed results for each dataset are given in Tables 2–7. For datasets comprising several
traits, we report the average scores only, for the purpose of clarity. Bold numbers in parentheses
indicate the ranking of the five best methods with respect to the corresponding evaluation mea-
sure. We do not include results of LambdaMART with respect to Pearson correlation and Ken-
dall’s τ, since LambdaMART is a method designed to optimize NDCG.

Comparison of RKHS regression and RankSVM
We compared RKHS regression and RankSVM when varying the regularization and RBF ker-
nel hyper-parameters. Heatmaps indicating Mean NDCG@10 for various hyper-parameter
combinations are shown in Fig 1. Overall, our results reveal an interesting trend: RankSVM
achieves better Mean NDCG@10 than RKHS regression for many different hyper-parameter
settings. That is, RankSVM appears to be much more robust than RKHS regression to hyper-
parameter choice.

Table 1. General method ranking, obtained by sortingmethods according to their average ranking across 6 datasets.

Method Correlation Kendall’s τ NDCG@1 NDCG@5 NDCG@10 Mean NDCG@10

Ordinal McRank 2 2 3 1 1 1

RF 3 3 1 1 3 2

RKHS 1 1 4 4 1 3

RankSVM 4 3 2 3 4 4

GBRT 6 7 5 6 5 5

LambdaMART 8 10 8 6

Ridge 12 12 7 7 6 7

BL 7 6 5 5 8 8

MIX 11 11 10 11 10 9

SSVS 8 9 11 8 12 10

BayesC 8 8 12 9 11 11

EBL 10 10 9 12 7 12

wBSR 4 5 13 13 13 13

doi:10.1371/journal.pone.0128570.t001
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Experiments with tree-based ensemble methods
Effect of the learning rate and number of trees on GBRT. An important parameter to

prevent overfitting in GBRT is the learning rate parameter. This parameter controls the impor-
tance given to the trees added at each stage of the algorithm. We compared GBRT with learn-
ing rates {1.0, 0.1, 0.01, 0.001} when varying the number of trees. Results for Mean NDCG@10
are shown in Fig 2. Our results show that, in order to obtain optimal accuracy, the learning rate
must be set neither too large nor too small. This is because large values overfit the training set
while small values underfit it. Except on the Maize dataset, the best learning rate was 0.1. This
is value is therefore a good rule of thumb for a practical application of GBRT to GS.

Effect of the number of bins on McRank. Since McRank assumes that Y is a finite set, we
need to discretize the continuous training trait values. To do so, we divided the training trait

Table 2. Cross-validation results on the Arabidopsis thaliana dataset, averaged across 3 traits.

Method Correlation Kendall’s τ NDCG@1 NDCG@5 NDCG@10 Mean NDCG@10

RKHS 0.651 (1) 0.481 (1) 0.836 0.884 (2) 0.907 (1) 0.883 (1)

SSVS 0.628 (5) 0.470 (2) 0.855 (2) 0.885 (1) 0.903 (3) 0.881 (2)

MIX 0.630 (3) 0.468 (3) 0.844 (3) 0.872 0.899 (4) 0.878 (3)

RF 0.628 (5) 0.450 0.841 (4) 0.879 (3) 0.899 (4) 0.877 (4)

LambdaMART 0.814 0.870 0.904 (2) 0.876 (5)

BL 0.627 0.468 (3) 0.861 (1) 0.876 0.894 0.874

Ordinal McRank 0.636 (2) 0.455 0.833 0.879 (3) 0.899 (4) 0.873

BayesC 0.617 0.462 0.840 (5) 0.871 0.888 0.872

RankSVM 0.594 0.437 0.825 0.877 0.892 0.869

GBRT 0.619 0.442 0.802 0.863 0.896 0.866

EBL 0.625 0.468 (3) 0.821 0.872 0.897 0.863

wBSR 0.630 (3) 0.468 (3) 0.819 0.878 (5) 0.873 0.857

Ridge 0.464 0.319 0.839 0.846 0.866 0.848

doi:10.1371/journal.pone.0128570.t002

Table 3. Cross-validation results on the Barley dataset.

Method Correlation Kendall’s τ NDCG@1 NDCG@5 NDCG@10 Mean NDCG@10

RankSVM 0.581 0.436 (3) 0.816 (1) 0.832 (1) 0.850 (1) 0.830 (1)

Ordinal McRank 0.566 0.432 0.783 (3) 0.803 (4) 0.829 (4) 0.808 (2)

LambdaMART 0.729 0.824 (2) 0.804 0.805 (3)

RF 0.568 0.425 0.764 (5) 0.809 (3) 0.833 (3) 0.802 (4)

RKHS 0.604 (1) 0.447 (1) 0.766 (4) 0.799 (5) 0.834 (2) 0.795 (5)

GBRT 0.554 0.409 0.722 0.768 0.820 (5) 0.775

SSVS 0.585 (4) 0.428 0.718 0.771 0.809 0.774

Ridge 0.572 0.421 0.700 0.756 0.820 (5) 0.763

BL 0.581 0.432 0.790 (2) 0.782 0.813 0.762

MIX 0.582 (5) 0.434 (5) 0.745 0.765 0.805 0.759

BayesC 0.593 (2) 0.438 (2) 0.682 0.765 0.814 0.756

EBL 0.578 0.419 0.764 (5) 0.744 0.808 0.746

wBSR 0.592 (3) 0.435 (4) 0.492 0.758 0.768 0.733

doi:10.1371/journal.pone.0128570.t003
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values into B equal-width bins and computed their means b1, b2, . . ., bB. Then, we replaced
training trait values yi by the mean value of the bin they belong to. Although this discretization
might sound like a loss of information, it can be beneficial when the goal is to maximize
NDCG on unseen data, i.e., data that does not belong to the training set. We compared the
Mean NDCG@10 of multiclass and ordinal McRank when varying the number of bins. The
number of trees used was fixed to 300. Results are shown in Fig 3. For comparison, we also in-
dicate the results of RF regression. Our results clearly show the superiority of ordinal McRank
over multiclass McRank. Therefore, modeling the cumulative probabilities, as done in ordinal
McRank, seems clearly beneficial.

Table 4. Cross-validation results on the Maize dataset.

Method Correlation Kendall’s τ NDCG@1 NDCG@5 NDCG@10 Mean NDCG@10

Ordinal McRank 0.427 (4) 0.298 (3) 0.762 (3) 0.783 (1) 0.795 (1) 0.773 (1)

GBRT 0.419 (5) 0.283 (4) 0.793 (1) 0.721 0.768 (4) 0.768 (2)

RankSVM 0.445 (1) 0.317 (1) 0.780 (2) 0.771 (3) 0.794 (2) 0.765 (3)

RF 0.444 (2) 0.309 (2) 0.726 (4) 0.763 (4) 0.776 (3) 0.757 (4)

LambdaMART 0.696 0.697 0.740 0.741 (5)

Ridge 0.403 0.255 0.716 (5) 0.740 0.743 0.741 (5)

MIX 0.361 0.229 0.603 0.702 0.733 0.739

RKHS 0.431 (3) 0.278 (5) 0.675 0.736 0.761 (5) 0.737

BL 0.383 0.241 0.626 0.755 (5) 0.725 0.725

BayesC 0.393 0.242 0.582 0.773 (2) 0.744 0.708

wBSR 0.404 0.258 0.360 0.716 0.719 0.705

SSVS 0.398 0.240 0.592 0.734 0.730 0.687

EBL 0.390 0.236 0.654 0.725 0.739 0.644

doi:10.1371/journal.pone.0128570.t004

Table 5. Cross-validation results on the Rice dataset, averaged across 14 traits.

Method Correlation Kendall’s τ NDCG@1 NDCG@5 NDCG@10 Mean NDCG@10

RF 0.719 (2) 0.535 (2) 0.930 (1) 0.941 (1) 0.946 (1) 0.941 (1)

Ordinal McRank 0.717 (3) 0.533 (3) 0.921 (2) 0.940 (3) 0.946 (1) 0.940 (2)

RankSVM 0.702 0.525 0.921 (2) 0.937 (4) 0.944 (5) 0.937 (3)

GBRT 0.713 (5) 0.527 (5) 0.917 (5) 0.941 (1) 0.945 (3) 0.937 (3)

RKHS 0.720 (1) 0.536 (1) 0.916 0.937 (4) 0.945 (3) 0.936 (5)

Ridge 0.694 0.511 0.909 0.932 0.940 0.930

LambdaMART 0.920 (4) 0.931 0.934 0.929

BL 0.714 (4) 0.529 (4) 0.896 0.924 0.938 0.924

EBL 0.708 0.526 0.889 0.921 0.935 0.922

MIX 0.676 0.502 0.886 0.923 0.933 0.920

SSVS 0.686 0.506 0.889 0.918 0.932 0.916

BayesC 0.688 0.505 0.899 0.918 0.932 0.914

wBSR 0.693 0.508 0.830 0.909 0.925 0.904

doi:10.1371/journal.pone.0128570.t005
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Comparison of evaluation measures
Table 1 shows that the best methods tend to vary depending on the evaluation measure used.
To quantify the similarity (or lack thereof) between evaluation measures, we computed their
Spearman’s correlation coefficient, also known as Spearman’s ρ, which is a measure of how
well their rankings agree. The results, given in Table 8, indicate several interesting trends.

First, Pearson correlation and Kendall’s τ correlate poorly with NDCG@k when k is small.
This is not surprising since Pearson correlation and Kendall’s τ are evaluation measures for
global ranking which treat all individuals equally, regardless of their importance. This confirms
that one should not use these measures for evaluation and hyper-parameter selection when one
is mostly concerned with ranking accuracy at the top.

Table 6. Cross-validation results on theWheat (CIMMYT) dataset, averaged across 4 traits.

Method Correlation Kendall’s τ NDCG@1 NDCG@5 NDCG@10 Mean NDCG@10

RKHS 0.503 (1) 0.359 (1) 0.698 (2) 0.752 (1) 0.780 (1) 0.748 (1)

Ordinal McRank 0.486 (2) 0.351 (2) 0.688 (5) 0.745 (2) 0.764 (2) 0.740 (2)

RF 0.482 (3) 0.346 (3) 0.697 (3) 0.739 (3) 0.760 (3) 0.736 (3)

RankSVM 0.463 0.329 (5) 0.713 (1) 0.718 0.760 (3) 0.733 (4)

BL 0.454 0.314 0.671 0.718 0.751 0.733 (4)

GBRT 0.472 (4) 0.331 (4) 0.690 (4) 0.725 (4) 0.757 (5) 0.732

Ridge 0.451 0.310 0.651 0.724 (5) 0.755 0.719

BayesC 0.464 0.320 0.650 0.697 0.732 0.711

SSVS 0.463 0.319 0.654 0.707 0.728 0.711

MIX 0.458 0.318 0.658 0.709 0.735 0.706

EBL 0.448 0.312 0.675 0.690 0.735 0.699

LambdaMART 0.636 0.695 0.715 0.697

wBSR 0.465 (5) 0.322 0.524 0.627 0.677 0.666

doi:10.1371/journal.pone.0128570.t006

Table 7. Results on theWheat (Pérez-Rodríguez) dataset, averaged across 2 traits.

Method Correlation Kendall’s τ NDCG@1 NDCG@5 NDCG@10 Mean NDCG@10

RKHS 0.662 (2) 0.448 (2) 0.981 (2) 0.979 (3) 0.982 (1) 0.981 (1)

RankSVM 0.649 (4) 0.448 (2) 0.969 0.981 (1) 0.982 (1) 0.980 (2)

RF 0.658 (3) 0.438 (4) 0.973 (5) 0.980 (2) 0.981 (4) 0.979 (3)

Ordinal McRank 0.665 (1) 0.452 (1) 0.975 (4) 0.979 (3) 0.982 (1) 0.979 (3)

Ridge 0.602 0.398 0.982 (1) 0.979 (3) 0.980 (5) 0.979 (3)

GBRT 0.649 (4) 0.434 (5) 0.976 (3) 0.977 0.980 (5) 0.976

LambdaMART 0.973 (5) 0.976 0.975 0.975

BL 0.608 0.398 0.972 0.977 0.975 0.974

EBL 0.596 0.387 0.959 0.969 0.975 0.969

BayesC 0.586 0.374 0.953 0.969 0.972 0.967

MIX 0.568 0.365 0.944 0.963 0.974 0.964

SSVS 0.570 0.373 0.936 0.964 0.971 0.961

wBSR 0.578 0.381 0.915 0.951 0.965 0.959

doi:10.1371/journal.pone.0128570.t007
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Second, and more surprisingly, Pearson correlation was more correlated with NDCG@k
than Kendall’s τ. This suggests that a method designed to maximize Pearson correlation might
perform better than a pairwise ranking method.

Finally, the most correlated measure with NDCG@1, NDCG@5 and NDCG@10 was Mean
NDCG@10. This suggests that choosing a model which maximizes Mean NDCG@k is a good
compromise, if we want a model which works reasonably well (without retraining) at various
positions k.

Discussion
The choices of the position k, gain function g(y) and discount function d(i) used in the DCG
and NDCG definitions naturally depend on the usecase. For long-lived perennial plants, such
as fruit and forest trees, it is important to select good candidates at their juvenile stage (or even
at their small seedling stage) for further field testing. At the same time, it is also important to
select a small number k of candidates because selected candidates usually become parents for

Fig 1. Comparison of RKHS regression and RankSVMwhen using the RBF kernel with parameter g ¼ 1
4ps2 and when varying the regularization

parameter l ¼ N
~
l, whereN = n (RKHS regression) orN = jPj (RankSVM). The scores indicated are the test Mean NDCG@10 averaged over 10 CV

iterations and across all traits.

doi:10.1371/journal.pone.0128570.g001
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Fig 2. Effect of the learning rate (LR) parameter on GBRT when varying the number of trees. The scores indicated are the test Mean NDCG@10
averaged over 10 CV iterations and across all traits.

doi:10.1371/journal.pone.0128570.g002

Fig 3. Effect of the number of bins onmulticlass and ordinal McRank. The straight line indicates the results of RF for comparison. The scores indicated
are the test Mean NDCG@10 averaged over 10 CV iterations and across all traits.

doi:10.1371/journal.pone.0128570.g003
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the next generation. If too many candidates are selected, selection intensity becomes low and it
is not possible to obtain good improvement of the target trait in the next generation. For these
reasons, and since field testing is typically expensive, we chose to evaluate models for small val-
ues of k: k 2 {1, 5, 10}. In the IR literature, the exponential gain function g(y) = 2y−1 is fre-
quently used. This is because it is often assumed that more relevant documents are
exponentially more useful than irrelevant documents. However, in IR, y is usually a small num-
ber (say, between 1 and 5) which assesses the relevance of a document to some query. In con-
trast, in GS, y can take on much larger values depending on the trait. For this reason, we
choose the linear gain function g(y) = y. For the discount function, a possible choice is to not
use any discount at all, i.e., d(i) = 1. This amounts to completely ignore order in the top-k can-
didates. This choice is only reasonable if we are sure to conduct field testing for all k selected
candidates. Another possible choice is dðiÞ ¼ 1

log2ðiþ1Þ, which is also the most common choice in

the IR literature. This discount function assigns a monotonically decreasing weight to candi-
dates as a function of their rank. It thus takes into account the fact that a candidate is more like-
ly to be examined if it is placed higher in the ranking. This choice is more reasonable if we need
to prioritize field testing of candidates with high breeding value, for example due to budget or
time constraints. For this reason, we chose dðiÞ ¼ 1

log2ðiþ1Þ in our experiments.

Trees are a non-parametric method which can approximate complex functions. However,
they tend to severely overfit the training data when used alone. For this reason, trees are usually
used as part of an ensemble method. Overall, we found that tree-based ensemble methods per-
form very well for ranking. This confirms a trend which was also observed during the Yahoo!
learning to rank challenge [27]. With respect to Mean NDCG@10, Ordinal McRank, RF and
GBRT achieved overall 1st, 2nd and 5th places. Tree-based ensemble methods have a number
of other advantages including their ability to handle categorical variables, handle missing val-
ues without prior imputation and estimate variable importances and interactions [25, 26].
Therefore, while the GS community has until now mainly focused on ridge regression and
Bayesian regression methods, we believe that tree-based ensemble methods should be consid-
ered a top contender in the context of GS.

RKHS regression achieved 1st place with respect to Pearson correlation on four out of six
datasets. Therefore, our results confirm the good results of RKHS regression previously re-
ported in the literature [10]. With respect to Mean NDCG@10, RKHS regression proved to be
a very good method, achieving an overall 3rd place. However, this shows that the best method
with respect to Pearson correlation is not necessarily the same as the best method with respect
to NDCG or Mean NDCG.

RankSVM achieved an overall 4th place with respect to Mean NDCG@10. However, with
respect to NDCG@1 and NDCG@5, RankSVM outperformed RKHS regression. On the Barley

Table 8. Spearman’s rank correlation coefficient of evaluation measures averaged across 6 datasets.

Method Correlation Kendall’s τ NDCG@1 NDCG@5 NDCG@10 Mean NDCG@10

Correlation - 0.899 0.604 0.774 0.775 0.744

Kendall’s τ 0.899 - 0.564 0.665 0.674 0.664

NDCG@1 0.604 0.564 - 0.811 0.827 0.901

NDCG@5 0.774 0.665 0.811 - 0.923 0.920

NDCG@10 0.775 0.674 0.827 0.923 - 0.962

Mean NDCG@10 0.744 0.664 0.901 0.920 0.962 -

doi:10.1371/journal.pone.0128570.t008
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dataset, RankSVM outperformed other methods on all NDCGmeasures by a very large mar-
gin. Our results also show that RankSVM is less sensitive than RKHS regression to hyper-pa-
rameter choice.

LambdaMART achieved a disappointing overall 6th place with respect to Mean NDCG@10.
This is worse than regular GBRT, of which LambdaMART is an extension. This is surprising,
since LambdaMART achieved the leading results in the Yahoo! learning to rank challenge [27].
However, in the Yahoo! learning to rank challenge, the number of samples n was much greater
than the number of features p, i.e., n� p. This contrasts with GS, where typically n� p. We
thus hypothesize that LambdaMART does not work well in the n� p setting.

Traditional (Bayesian) regression methods overall did not perform well with respect to
NDCG and Mean NDCG. For example, although they were suggested as some of the best
methods in the recent study of [15], BL and wBSR only achieved overall 7th and 13rd places,
with respect to Mean NDCG@10. One exception where traditional regression methods per-
formed well is the Arabidopsis thaliana dataset, with RKHS regression, SSVS and MIX achiev-
ing 1st, 2nd and 3rd places, respectively, with respect to Mean NDCG@10. In the Arabidopsis
dataset, genotypes are all recombinant inbred lines (RILs) derived from two homozygous pa-
rents. Therefore, quantitative trait loci (QTL) harbored by lines (i.e., RILs) are completely bi-al-
lelic. In contrast, in other datasets, QTL harbored by lines may have allelic variation. In fact,
important agronomic traits have multiple alleles in candidate genes [56]. In this case, allelic ef-
fects cannot be represented by a single bi-allelic marker. Therefore, there may exist complex re-
lationships between causal polymorphisms and SNPs linked to the polymorphisms. In the
Arabidopsis dataset, the extent of linkage disequilibrium (LD) between a marker and QTL is
simply related to the recombination rate between the marker and QTL. In contrast, in other
datasets, the extent of LD between a marker and QTL may be affected by various other factors
such as demographic history [57]. In this case, the relationship between markers and QTL be-
comes complex and may be difficult to model via linear regression models.

On the rice dataset, the difference between the best (RF) and worst (wBSR) methods with re-
spect to NDCG@10 appears quite small (0.925 vs. 0.946), while it appears larger with respect to
NDCG@1 (0.930 vs. 0.830). Similar trends are shown in other datasets, such as barley and
wheat. We observed that the NDCG@k score typically increases as a function of k (although
not monotonically). That is, if k< r then NDCG@k< NDCG@r will usually hold. Since
NDCG@k is always between 0 and 1, this means that NDCG@k gets closer to 1 as k increases.
This also means that the range of possible values taken by NDCG@k will typically decrease as a
function of k. This however does not necessarily mean that small values of k are better for dis-
criminating between methods. In general, k should be set to the number of candidates one
wants to select when applying the model.

Sometimes, both ranking and regression accuracies are important. This is for example the
case when predicted trait values are used to determine a selling price (e.g., determine crop price
in terms of the predicted grain yield). Because of their overall good ranking accuracy, RF and
RKHS regression seem like a good choice in this case. Unfortunately, RankSVM and Lambda-
MART cannot be used in this case, since the loss function they minimize only guarantees rank-
ing. On the other hand, McRank can be used, since it can compute the expected trait values.

For simplicity, we assumed throughout this paper that our goal is to select candidates with a
high trait value. Of course, it is easy to adapt our framework if the goal is to select candidates
with low trait value instead. However, sometimes it may be necessary to select candidates with
an appropriate value, rather than highest or lowest value. For example, a certain level of acidity
is necessary for fruits, but excessive or insufficient acidity is not preferred. In this case, model
evaluation based on mean squared error (MSE) may be more suitable.
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Pearson correlation is a commonly used measure in GS because it enables to predict the re-
sponse to selection (provided there is no non-genetic cause of resemblance between offspring
and parents) [58]. Because the response to selection corresponds to the change of population
mean, Pearson correlation is important for breeding schemes that focus on whole population
improvement. This is typical in animal breeding such as dairy cattle, where a single head of cat-
tle contributes only little to the total production gain. However, particularly in breeding of
plants that can be clonally reproduced (e.g., inbred crops or graftable fruit trees), the aim is
often to produce a few excellent lines, rather than improving an entire population. In this case,
Pearson correlation may not always be a good choice. Our results using 4 plant species show in-
deed that Pearson correlation often correlates poorly with NDCG. On the other hand, we
found that Mean NDCG was the most correlated with NDCG at various positions.

Our study suggests two important messages. First, ranking methods are a promising re-
search direction in GS. Second, NDCG and Mean NDCG can be useful evaluation measures
for GS, especially in plant breeding.
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