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Objective. We investigated the expression patterns, potential functions, unique prognostic value, and potential therapeutic
targets of E2Fs in brain and CNS cancer and tumor-infiltrating immune cell microenvironments. Methods. We analyzed
E2F mRNA expression levels in diverse cancer types via Oncomine and GEPIA databases, respectively. Moreover, we
evaluated the prognostic values using GEPIA database and TCGAportal database and the correlation of E2F expression
with immune infiltration and the correlation between immune cell infiltration and GBM and LGG prognosis via TIMER
database. Then, cBioPortal, GeneMANIA, and DAVID databases were used for mutation analysis, PPI network analysis of
coexpressed gene, and functional enrichment analysis. Results. E2F1-8 expression increased in most cancers, including brain
and CNS cancer. Higher expression in E2FI, 2, 4, 6, 7, and 8 indicated poor OS of LGG. Higher E2F3-6 and E2F1-8
expressions correlated with poor prognosis and increased immune infiltration levels in CD8+ T cells, macrophages, neutrophils,
and DCs in GBM and CD8+ T cells, B cells, CD4+ T cells, neutrophils, macrophages, and DCs in LGG, respectively. Conclusion.
E2F1-8 and E2F2-8 could be hopeful prognostic biomarkers of GBM and LGG, respectively. E2F3-6 and E2F1-8 could be

likely therapeutic targets in patients with immune cell infiltration of GBM and LGG, respectively.

1. Introduction

E2Fs, as a set of genes encoding transcription factor family
(TFs) in higher eukaryotes, play an essential role in cell cycle
regulation and DNA synthesis [1]. In some human malig-
nancies, E2F activator expression is deactivated and is
deregulated. A report demonstrating that increased expres-
sion in E2F3a played a significant role in the development
of glioma. This study suggests that E2Fs could promote
cancer development [2].

Worldwide, brain and CNS cancer are commonly diag-
nosed as cancers and the causes of tumor death [3].
Almost 80% of malignant brain cancers are gliomas [4].
In 2016, based on data from groundbreaking research
[5], the WHO improved the correct classification of
glioma subtypes by integrating tumor morphology and
molecular genetic information [6]. The clinical therapy of
these cancers includes surgery, radiotherapy, and chemo-

therapy, which is far from sufficient in combating cancer
development. Tumor-infiltrating lymphocytes are an inde-
pendent predictor of sentinel lymph node status, and sur-
vival in cancers [7] and immunotherapy has been
considered a promising direction because of its ability to
penetrate the blood-brain barrier to treat these tumors
since the first discovery of lymphatic in CNS [8]. How-
ever, current immunotherapies, for example, anti-CTLA4,
demonstrated poor clinical efficacy in brain tumors [9].
CAR T cells also still face substantial obstacles in treating
brain tumors [10]. Besides, after the diagnosis of malig-
nant brain and CNS tumors, the overall 5-year relative
survival rate was 32.1%, of which the survival rate was
only 4.9% after the diagnosis of GBM (glioblastoma multi-
forme) [4], and metastasis often leads to a poor prognosis.
Due to the heterogeneity of tumors, currently, there are
some limitations in the biomarkers that can predict prog-
nosis, so it is necessary to search for new biomarkers in
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this field as prognostic indicators, to improve prognosis.
Also, there is an urgent need to identify new therapeutic
targets in the brain and CNS cancer so as to effectively
improve the accuracy of treatment.

E2F plays a complex and unique role in human brain
and CNS tumors. E2F1/DP1 complex was reported to inhibit
the mismatch repair proteins MSH2, MSH6, and EXOI, as
well as the homologous recombinant protein RAD51, lead-
ing to cell apoptosis [11]. Overexpression of E2F1 blocked
the proliferation repression caused by miR-342-3p or miR-
377 in glioma cells [12], and E2F1 overexpression conferred
resistance to cisplatin in glioma cells [13]. Studies have
shown that downregulation of E2F2 inhibits glioma cell
growth [14]. Overexpression of E2F2 promoted the progres-
sion of NSCLC cells [15]. Increased expression in E2F3a
played a significant function in glioma development [2].
Change in human GBM cell cycle is related to the decrease
of E2F4 level [16]. The silencing of E2F5 inhibited the prolif-
erative ability of GBM cells [17]. Moreover, the combination
of E2F6 and MATN1-AS1, which negatively targeted RELA,
inhibited the MAPK signaling pathway, thus inhibiting the
proliferation and invasion of GBM cells [18]. E2F7 could
induce autophagy of glioma [19]. Targeting E2F8 can also
regulate the development in glioma [20]. However, the
underlying mechanisms of E2F activation or inhibition and
the distinct functions of E2Fs and tumor immunology in
brain and CNS tumor have not been fully elucidated.

As far as we know, bioinformatics analysis and immune
infiltrate analysis have not been used to study the function
of E2Fs from tumors of the brain and CNS. As an important
part of biological and biomedical research, RNA and DNA
research has undergone revolutionary changes due to micro-
array technology [21]. In addition, immunotherapy, a revolu-
tion in cancer treatment, has become a promising strategy
[22]. Based on thousands of gene expression or copy number
variations published online, we analyzed the expression pat-
terns, potential functions, and prognostic value of E2Fs in
brain and CNS cancer. Furthermore, we analyzed the interre-
lationship between E2Fs and immune cell in different cancer
microenvironments to identify underlying therapeutic
targets of brain and CNS tumor.

2. Materials and Methods

2.1. GEPIA Dataset Analysis. GEPIA was used to analyze the
RNA sequencing expression data from 9,736 tumors and
8,587 normal samples from TCGA and the Genotype-
Tissue Expression (GTEx) projects. GEPIA has many func-
tional modules, including differential expression, survival,
and correlation analysis [23].

2.2. Oncomine Dataset Analysis. The transcription levels of
E2Fs of various tumors and coexpression genes of E2Fs in
brain and CNS cancer were determined through analysis in
Oncomine cancer microarray datasets.

2.3. The Cancer Genome Atlas Data [24] and cBioPortal
Datasets Analyses. cBioPortal currently contains 225 cancer
studies to explore multidimensional tumor genomics data

BioMed Research International

sets [25]. We used cBioPortal to analyze E2F alterations in
the glioblastoma multiforme (TCGA, Firehose Legacy) data-
set, including data from 604 cases with pathology reports,
and the brain lower-grade glioma (TCGA, PanCancer Atlas)
dataset, including data from 514 cases with pathology
reports. The search parameters included mutations, putative
copy number alterations (CNAs) from genomic identifica-
tion of significant targets in cancer (GISTIC), mRNA expres-
sion Z scores (RNA-seq v.2 RSEM), and protein expression Z
scores (reverse phase protein array (RPPA)). Additionally,
Kaplan-Meier survival curves were drawn in cBioPortal to
evaluate the influence of gene alterations of E2Fs on the
overall survival of GBM and LGG patients.

2.4. TCGAportal Database Analysis. TCGAportal was used to
further verify the prognostic value of mRNA level of E2F
factors in GBM and LGG patients.

2.5. TIMER Database Analysis. TIMER database includes
10,897 samples across 32 cancer types from The Cancer
Genome Atlas (TCGA) to estimate the abundance of
immune infiltrates [26]. We analyzed the correlation of the
E2F expression with the abundance of immune infiltrates,
including B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells, via gene modules. In addi-
tion, correlations between immune cell infiltration and GBM
and LGG prognosis were explored via correlation modules.
Lastly, we assessed how the E2F expression correlated with
the expression of particular immune infiltrating cell subset
markers.

2.6. GeneMANIA Database Analysis. GeneMANIA is a flexi-
ble web to construct protein-protein interaction networks,
generating hypotheses on gene role, exploring gene list, while
prioritizing genes [27]. We visualized the gene network and
predicted the functions of E2F coexpression genes via
GeneMANIA.

3. Results

3.1. Expression Levels of E2Fs of Brain and CNS Tumor.
Oncomine differential expression analysis revealed that the
E2F5 expression was remarkably upregulated in brain and
CNS tumor in five datasets (Figure 1).

In the French Brain Statistics [28], E2F5 was overex-
pressed in anaplastic oligodendroglioma versus normal
tissues with a fold change of 2.425 (Table 1). In the Sun Brain
Statistics (Table 1) [29], E2F5 was also overexpressed in ana-
plastic astrocytoma with a fold change of 2.545, in oligoden-
droglioma with a fold change of 2.580, and in glioblastoma
with a fold change of 2.877. In the Murat Brain Statistics
(Table 1) [30], E2F5 was also overexpressed in glioblastoma
with a fold change of 2.016. The Murat Brain Statistics
(Table 1) [30] showed that E2F7 was also increased in glio-
blastoma (fold change = 4.632) compared to normal samples.
In addition, in the Sun Brain Statistics (Table 1) [29], E2F7
was overexpressed in glioblastoma (fold change = 5.823), and
in the French Brain Statistics (Table 1) [28], the increased
E2F7 expression was found in anaplastic oligodendroglioma
compared to normal sample (foldchange=2.282). In the
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FIGURE 1: The transcription levels of E2F factors in different types of cancers (Oncomine).

Sun Brain Statistics (Table 1) [29], E2F8 was also overex- indicated that mRNA upregulation occupied the overwhelm-
pressed in anaplastic astrocytoma (fold change=4.196),  ing majority of alteration types (Figure 4(a)). E2Fs were
glioblastoma (fold change =7.097), and oligodendroglioma  altered in 324 (43%) of all the 514 sequenced cases with
(fold change = 3.341) compared to normal samples. LGG, which included 1 mutation, 6 cases of amplification, 3
GEPIA differential expression analysis indicated that the ~ cases of deep deletion, 10 cases of mRNA downregulation,
E2F1-8 expressions were higher in GBM tissue compared 103 cases of mRNA upregulation, and 4 cases of multiple
with normal tissue and that E2F2-8 was higher in LGG  alterations. Among the LGG cases with gene alteration of
(Figure 2). E2Fs, mRNA upregulation occupied the overwhelming
majority of alteration types (Figure 4(b)). Kaplan-Meier
3.2. The Correlations between Different E2Fs in Brain and  overall survival curves showed that gene alterations of
CNS Cancer. The cBioPortal online tool calculated Pearson ~ E2F1, E2F2, E2F4, and E2F6-8 were remarkably related to
correlations. The results showed that the following E2Fs overall survival (OS) (P <0.05) among LGG (Figure 4(d)).
showed significantly positive correlations: E2F1 with E2F2,  No significant correlation was identified between gene
E2F3, E2F7, and E2F8; E2F2 with E2F1, E2F3, E2F7, and alteration of E2Fs and OS in GBM patients (Figure 4(c)).
E2F8; E2F3 with E2F1 and E2F2; E2F7 with E2F1, E2F2,
and E2F8; and E2F8 with E2F1, E2F2, and E2F7 (Figure 3). 3.4. The Prognostic Value of E2Fs in GBM and LGG Patients.
GEPIA and TCGAportal survival analysis both revealed that
3.3. Gene Alteration of E2Fs in Brain and CNS Cancer Tissue ~ decreased E2F1, E2F2, E2F4, and E2F6-8 mRNA levels were
from cBioPortal. cBioPortal analyses revealed that E2Fs were ~ remarkably related to overall survival (OS) (P < 0.05) among
altered in 197 (33-8%) of all the 591 sequenced cases with LGG. No significant correlation was identified between E2F
GBM, which included 3 mutation, 8 cases of amplification, mRNA levels and OS in GBM patients (Figure 5).
3 cases of deep deletion, 29 cases of mRNA downregulation,
97 cases of mRNA upregulation, and 5 cases of multiple alter- ~ 3.5. Prognostic Relevance of Immune Cell Infiltration in GBM
ations. Statistical results of the gene alteration frequency  and LGG. TIMER analysis showed that the survival time of
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TaBLE 1: The significant changes of the E2F expression in transcription level between different types of brain and CNS cancer and normal

brain and CNS tissues (Oncomine database).

Type of breast cancer versus normal breast tissue Fold change P value t-test Source and/or reference
E2F1 NA NA NA NA NA
E2F2 NA NA NA NA NA
E2F3 NA NA NA NA NA
E2F4 NA NA NA NA NA
Anaplastic oligodendroglioma 2.425 3.64e-10 9.420 French Brain Statistics [28]
Anaplastic astrocytoma 2.545 1.45e-7 6.181 Sun Brain Statistics [29]
E2F5 Oligodendroglioma 2.580 1.99¢-7 5.707 Sun Brain Statistics [29]
Glioblastoma 2.877 1.78e-9 7.518 Sun Brain Statistics [29]
Glioblastoma 2.016 1.59e-7 10.319 Murat Brain Statistics [30]
E2F6 NA NA NA NA NA
Glioblastoma 4.632 1.08¢-28 17.833 Murat Brain Statistics [30]
E2F7 Glioblastoma 5.823 1.31e-21 13.696 Sun Brain Statistics [29]
Anaplastic oligodendroglioma 2.282 4.46e-5 4.698 French Brain Statistics [28]
Anaplastic astrocytoma 4.196 8.33e-6 4.893 Sun Brain Statistics [29]
E2F8 Glioblastoma 7.097 1.25e-9 8.349 Sun Brain Statistics [29]
Oligodendroglioma 3.341 9.18¢-6 5.003 Sun Brain Statistics [29]

NA: not available; TCGA: The Cancer Genome Atlas.

LGG patients with low B cells, macrophage, CD4+ T cells,
neutrophil, and DCs infiltrations was significantly higher
than that of LGG patients with high infiltration. However,
there were no meaningful findings about GBM (Figure 6).

3.6. Correlations of E2F Expression with Immune Infiltration
Levels in GBM and LGG. TIMER analysis revealed that the
E2F1 expression is remarkably positively related to tumor
purity (r=0.347, P=2.46e—13) in GBM (Figure 7(a)).
And the E2F1 expression demonstrated a very weak interre-
lation with CD8+ T cell infiltration levels in LGG (r = 0.126,
P =5.76e—-03). Also, the E2F2 expression was significantly
positively related to cancer purity (r=0.172, P = 4.09¢ — 04)
and remarkably negatively related to macrophages
(r=-0.183, P=1.65e—04), neutrophils (r=-0.305 P=
1.88¢ — 10), and dendritic cells (r =-0.264, P =4.23¢ — 08)
but no significant correlation with CD4+ T cells in GBM
(Figure 7(b)). E2F2 expression level was remarkably posi-
tively related to infiltrating levels of B cells (r=0.359, P =
5.53¢ —16), CD4+ T cells (r =0.339, P=3.13e — 14), macro-
phages (r=0.285, P=2.63e—10), neutrophils (r=0.293,
P=7.29¢-11), and dendritic cells (r=0.371, P=6.15¢ —
17) but no significant correlation with tumor purity
(r=0.119, P=8.88¢-03) in LGG (Figure 7(b)). The
E2F3 expression was remarkably positively related to
tumor purity (r=0.219, P=5.81e—-06) and neutrophils
(r=0.293, P=7.29-11) in GBM (Figure 7(c)). The
E2F3 expression was remarkably positively related to
tumor purity (r=0.157, P=5.67e—04) and infiltrating
levels of B cells (r=0.242, P=8.88¢—08), CD8+ T cells
(r=0.26, P=7.74e —09), and DCs (r=0.2, P=1.09¢ — 05)
but no significant correlation with macrophages (r =0.136,
P=2.98¢ - 03) or neutrophils (r=0.15, P=1.04e—03) in
LGG (Figure 7(c)). The E2F4 expression demonstrated a

very weak interrelation with dendritic cell (r=0.135, P=
5.75e — 03) infiltration levels in GBM (r = 0.126, P = 5.76¢ —
03). The E2F4 expression was remarkably positively related
to infiltrating levels of B cells (r=0.326, P=2.91e—-13),
CD4+ T cells (r=0.327, P=2.65e—13), macrophages
(r=0.317, P =1.58¢ — 12), neutrophils (r = 0.306, P = 8.88¢ —
12), and dendritic cells (r=0.341, P=2.14e—14) in LGG
(Figure 7(d)). The E2F5 expression was remarkably positively
related to tumor purity (r = 0.34, P = 8.99¢ — 13) and neutro-
phils (r=0.172, P=3.99¢ - 04) in GBM (Figure 7(e)). The
E2F5 expression was remarkably positively related to tumor
purity (r=0.382, P=3.93e—-18), B cells (r=0.19, P=2.80
e—05), CD8+ T cells (r=0.156, P=6.42¢ — 04), and DCs
(r=0.182, P=6.74e — 05) but no significant correlation with
macrophages (r = 0.138, P = 2.54e — 03) in LGG (Figure 7(e)).
The E2F6 expression was remarkably positively related to
tumor purity (r=0.316, P=3.66e—11), CD8+ T cells
(r=0.187, P=1.25¢ — 04), and macrophages (r =0.192, P =
8.08¢ — 05) but no significant correlation with neutrophils
(r=0.145, P=2.90e-03) in GBM (Figure 7(f)). The
E2F6 expression was remarkably positively related to tumor
purity (r=10.309, P=5.08¢—12), B cells (r=0.23, P=3.92
e—07), macrophages (r=0.264, P=5.74e—09), CD8+ T
cells (r=0.269, P =2.40e — 09), neutrophils (r=0.168, P =
2.33¢—04), and DCs (r=0.224, P=7.93¢—-07) but no
significant correlation with CD4+ T cells in LGG
(Figure 7(f)). The E2F7 expression was remarkably positively
related to tumor purity (r=0.344, P =3.54¢—-05) in GBM
(Figure 7(g)). The E2F7 expression was remarkably positively
related to tumor purity (r=0.151, P=9.03e—04), B cells
(r=0.222, P=9.06e—07), CD8+ T cells (r=0.279, P=
5.13e - 10), macrophages (r=0.199, P=1.29¢-05), and
DCs (r=0.175, P=1.22e—-04) in LGG (Figure 7(g)). The
E2F8 expression was remarkably positively related to tumor
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purity (r=0.335, P=2.00e — 12) in GBM. The E2F8 expres-
sion was remarkably positively related to infiltrating levels of
B cells (r=0.283, P=2.85¢—10), CD8+ T cells (r=0.228,

P=4.48¢-07), CD4+ T cells (r=0.218, P=1.57¢-06),
macrophages  (r=0.323, P=6.23e—13), neutrophils
(r=0.228, P =5.00e — 07), and dendritic cells (r =0.288, P =
1.64e —10) in LGG (Figure 7(h)).

3.7. Assessment of the Correlation between E2Fs and Immune
Marker Expression. In particular, TIMER analysis revealed
that E2F1 was significantly correlated with monocyte
markers (CD86), TAM markers (CCL2, IL10), and M2 mac-
rophage markers (VSIG4, MS4A4A) in GBM (P < 0.0001;
Table 2). E2F2 was significantly correlated with monocyte
markers (CD86), TAM markers (CCL2, IL10), and M2 mac-
rophage markers (VSIG4) in GBM (P < 0.0001; Table 2).
E2F5 was significantly correlated with monocyte markers
(CD115) and M1 macrophage markers (IRF5) in GBM
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FIGURE 4: E2F gene expression, mutation analysis, and survival analysis in brain and CNS cancer (cBioPortal): (a) E2F gene expression and
mutation analysis in GBM; (b) E2F gene expression and mutation analysis in LGG; (c) overall survival analysis for gene alteration of E2Fs in
GBM patients; (d) overall survival analysis for gene alteration of E2Fs in LGG patients.

(P <0.0001; Table 2). E2F6 was significantly correlated with
monocyte markers (CD86, CD115), TAM markers (CD68,
IL10), M1 macrophage markers (IRF5), and M2 macrophage
markers (VSIG4, MS4A4A) in GBM (P < 0.0001; Table 2).
E2F7 was significantly correlated with TAM markers (IL10)
in GBM (P < 0.0001; Table 2). E2F8 was significantly corre-
lated with M2 macrophage markers (VSIG4) in GBM

(P <0.0001; Table 2). Meanwhile, E2F1 was significantly
correlated with monocyte markers (CD86, CD115), TAM
markers (CCL2), M1 macrophage markers (INOS), and M2
macrophage markers (VSIG4) in LGG (P <0.0001;
Table 2). E2F2 was significantly correlated with monocyte
markers (CD86, CD115), TAM markers (CD68, IL10), M1
macrophage markers (IRF5), and M2 macrophage markers
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(CD163, VSIG4, MS4A4A) in LGG (P < 0.0001; Table 2). 3.8. Functional Enrichment Analysis of Coexpressed Genes

E2F4 was significantly correlated with monocyte markers
(CD86), TAM markers (CD68), M1 macrophage markers
(IRF5), and M2 macrophage markers (CD163, VSIG4,
MS4A4A) in LGG (P <0.0001; Table 2). E2F8 was signifi-
cantly correlated with monocyte markers (CD68), TAM
markers (CCL2, IL10), M1 macrophage markers (IRF5),
and M2 macrophage markers (CD163, MS4A4A) in LGG
(P <0.0001; Table 2).

Correlated with E2Fs in Brain and CNS Cancer. Oncomine
analyses revealed that E2F1 was positively related to CDK2,
RAB3B, FANCI, NUP88, CKS1B, TMEMI194A, UBE2S,
GINS1, SMCI1A, TOPBP1, and USPI. E2F2 was positively
corrected with ASAP3, TCEA3, ID3, RPL11, TCEBS3,
Clorf128, LYPLA2, GALE, HMGCL, SFRS13A, and PNRC2.
E2F3 was positively corrected with ARHGAP11A, MYB,
BLM, WEE1, CDC7, EXOSC8, HIST1H4C, HIST1HA4I,
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F1GURE 8: Coexpressed genes of E2Fs in brain and CNS cancer (Oncomine).

HIST1H4B, IGF2BP, and RRP1B. E2F4 was positively cor-
rected with ELMO3, LRRC29, EXOC3L, KIAA0895L,
NOL3, HSF4, FBXL8, TRADD, B3GNT9, FHODI1, and
TMEM?208. E2F5 was positively corrected with CCDC85B,
NDN, SMAD2, TFPI2, DNALI1, CDH11, FGF2, SLC39A6,
MBD2, SMAD2, and TGFA. E2F6 was positively corrected
with POLA1, STOML2, RPA2, RPAl, JMJD6, CCT7,
THOC4, SF3B3, CSTF2, CIAOI, and EIF2B1. E2F7 was pos-
itively corrected with CDKN3, CEP55, KIF4A, SHCBPI1,
CCNBI, CENPK, ECT2, DEPDCI1B, NEK2, NCAPG, and
KIF14. E2F8 was positively corrected with KIFC1, CENPM,
MYBL2, ERCC6L, AURKB, TKI1, MCM10, CDCA3,
NCAPH, NUSAPI, and MKI67 (Figure 8).

Next, we constructed a network of E2Fs and E2F-
correlated coexpressed genes via GeneMANIA. The results
showed that the biological functions of the enriched gene
set, including DNA replication, chromosome segregation,
mitosis, regulation of cell division, cell cycle phase, and regu-
lation of DNA metabolic process, were intimately associated
with E2F alterations (Figure 9).

The GO (gene ontology) and KEGG pathways in the
DAVID database were analyzed to predict the functions

of E2Fs and E2F-correlated coexpressed genes. Based on
biological processes, cell components, and molecular func-
tions, GO enrichment analyses predicted the functions of
target host genes. We found that cell cycle phase, mitotic
cell cycle, DNA replication, cell cycle checkpoint, and
mRNA transport were remarkably regulated by E2F alter-
ations in brain and CNS cancer (Figure 10(a)). Chromo-
some, replication, transcription factor complex, and
protein serine/threonine kinase activity were also signifi-
cantly controlled by these E2F alterations (Figures 10(b)
and 10(c)). The corresponding genes are known to be
associated with cell cycle.

KEGG analysis can define the pathways related to the
functions of E2F alterations and coexpressed genes corre-
lated with E2Fs. Nine pathways related to the functions of
E2F alterations in brain and CNS cancer were found via
KEGG analysis (Figure 10(d)). Among these pathways,
cfa04110: cell cycle, cfa04350: TGEF-beta signaling path-
way, ptr05200: pathways in cancer, and cfa04115: p53 sig-
naling pathway were involved in the tumorigenesis and
pathogenesis about brain and CNS cancer (Figures 11(a)
and 11(b)).
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4. Discussion

The function of E2F activators in tumorigenesis and their
prognostic relevance has been partially demonstrated in sev-
eral cancers [31-33]; however, further bioinformatics analy-
sis and analysis of immune infiltrates in brain and CNS
cancers have not been performed. This is the first study that
explored the mRNA expressions of different E2F factors in
brain and CNS cancer and investigated their prognostic
relevance and correlation with various tumor-infiltrating
immune cells. Our findings may help improve treatment of
patients with brain and CNS cancers.

E2F1 has been studied extensively in tumors of the brain
and CNS [11-13, 34-38]. E2F1/DP1 complex was reported to
inhibit the mismatch repair proteins MSH2, MSH6, and
EXO1, as well as the homologous recombinant protein
RADS5I, leading to cell apoptosis [11]. Overexpression of

E2F1 blocked the proliferation repression caused by miR-
342-3p or miR-377 in glioma cells [12], and E2F1 overex-
pression conferred resistance to cisplatin in glioma cells
[13]. MicroRNA-138 inhibited the development of GBM by
targeting E2F1 [34]. PPAR« inhibited growth of glioma cells
through the E2F1/miR-19a feedback loop [35]. miRNA-320
and miRNA-329 inhibited glioma proliferation by targeting
E2F1 [36, 37]. The ECT2/PSMD14/PTTG1 axis promoted
glioma proliferation by stabilizing E2F1 [38]. In this study,
analysis of Oncomine dataset and GEPIA dataset revealed
that elevated expression of E2F1 in human GBM. Analysis
of GEPIA and TCGAportal datasets revealed the prognostic
value of E2F1 in patients with GBM and LGG. High E2F1
expression and gene alteration of E2F1 in LGG was associ-
ated with poor OS; however, the E2F1 expression and gene
alteration of E2F1 in GBM showed no significant correlation
with OS. In TIMER datasets, the E2F1 expression in GBM
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Figure 10: Significantly enriched GO annotations and KEGG pathways of E2Fs in brain and CNS cancer (DAVID). The functions of E2Fs
and E2F coexpression genes were predicted by the analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
by DAVID (Database for Annotation, Visualization, and Integrated Discovery) tools (https://david.ncifcrf.gov/summary.jsp): (a) cellular
components; (b) biological processes; (c) molecular functions; (d) KEGG pathway analysis.

showed a positive association with tumor purity while the
E2F1 expression in LGG demonstrated a very weak interrela-
tion with CD8+ T cells infiltration level. Specifically, E2F1
was significantly correlated with monocyte markers
(CD86), TAM markers (CCL2, IL10), and M2 macrophage
markers (VSIG4, MS4A4A) in GBM. E2F1 was significantly
correlated with monocyte markers (CD86, CD115), TAM
markers (CCL2), M1 macrophage markers (INOS), and M2
macrophage markers (VSIG4) in LGG. This suggests that
E2F1 plays a role in regulating monocyte polarization in
GBM and LGG.

Downregulation of E2F2 was shown to inhibit glioma cell
growth in vitro and in vivo by inducing cell cycle arrest in
GO0/G1 [14]. Overexpression of E2F2 was found to promote
invasive growth of NSCLC cells [15]. miR-125b regulated
glioblastoma progress via E2F2 [39]. In our study, we
observed overexpression of E2F2 in GBM and LGG tissues.
However, while high E2F2 expression and gene alteration
of E2F2 in LGG was related to low overall survival (consistent
with its role as an oncogene), the E2F2 expression and gene
alteration of E2F1 showed no significant correlation with
OS in the context of GBM. Furthermore, the E2F2 expression
was positively related to cancer purity and negatively related
to macrophages, neutrophils, and DCs of GBM; however, the
E2F2 expression in GBM showed no significant correlation
with CD4+ T cells. The E2F2 expression in LGG showed a
positive correlation with infiltrating levels of B cells, CD4+
T cells, macrophages, neutrophils, and dendritic cells but

not with tumor purity. Specifically, E2F2 was significantly
correlated with monocyte markers (CD86), TAM markers
(CCL2, IL10), and M2 macrophage markers (VSIG4) in
GBM. E2F2 was significantly correlated with monocyte
markers (CD86, CD115), TAM markers (CD68, IL10), M1
macrophage markers (IRF5), and M2 macrophage markers
(CD163, VSIG4, MS4A4A) in LGG. This suggests that
E2F2 plays a role in regulating monocyte polarization in
GBM and LGG.

E2F3 overexpression is a cancer suppressor event in
many types of tumors, including brain and CNS cancers
[32, 40, 41]. miR128-1 inhibited GBM growth by targeting
E2F3 [40]. The primary factor of miR-195-mediated cell
arrest was E2F3 [41]. Increased expression in E2F3a played
a significant role in the development of glioma [2]. Interest-
ingly, SNHG5 promoted the development of glioma by tar-
geting E2F3 [42]. In our study, the E2F3 expression was
upregulated in GBM and LGG. The E2F3 expression and
gene alteration of E2F3 in LGG and GBM showed no corre-
lation with survival outcomes. However, the E2F3 expression
was positively related to tumor purity and neutrophil infiltra-
tion remarkably in GBM. About LGG, the E2F3 expression
showed a positive correlation with tumor purity and infiltrat-
ing levels of B cells, CD8+ T cells, and dendritic cells but not
with macrophages and neutrophils.

TFs play a vital role in inhibiting proliferation-related
genes. As a member of the TFs E2F family, E2F4 is rich in
nonproliferating and differentiated cells [43]. Decreased
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FIGURE 11: (a) Cell cycle and (b) TGF-beta-signaling pathway regulated by the E2F alteration in brain and CNS cancer.

levels of E2F4 in human GBM cells induced G2/M cell cycle
arrest with a concomitant 2-fold decrease with S phase cell
[16]. In our study, the expression of E2F4 in GBM and
LGG was higher than that in normal tissue. High E2F4
expression in LGG was related to poor overall survival, while
the E2F4 expression and gene alteration of E2F4 of GBM
showed no correlation with OS. In addition, the E2F4 expres-
sion in GBM demonstrated a very weak interrelation with
dendritic cell infiltration. E2F4 expression level in LGG was

positively related to CD4+ T cells, neutrophil, B cells, macro-
phage, and DCs. Specifically, E2F4 was significantly corre-
lated with monocyte markers (CD86), TAM markers
(CD68), M1 macrophage markers (IRF5), and M2 macro-
phage markers (CD163, VSIG4, MS4A4A) in LGG. This sug-
gests that E2F4 plays a role in regulating monocyte
polarization in LGG.

E2F5 was highly expressed in all kinds of tumors, such as
prostate tumor [44] and glioblastoma [45]. In addition,
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silencing of E2F5 inhibited the proliferation of GBM cells and
induced cell cycle arrest. More importantly, reintroduction of
E2F5 into GBM cells reversed the tumor-suppressive func-
tion of miR-1179 [17]. miRNA-129-3p suppressed growth
of glioblastoma via targeting E2F5 [45]. Moreover, Let-7c
inhibited glioma development by targeting E2F5 [46]. In
our study, the expression of E2F5 in GBM and LGG was
higher than that in normal tissue. The E2F5 expression and
gene alteration of E2F5 in LGG and GBM showed no corre-
lation with OS. However, the E2F5 expression of GBM was
positively related to cancer purity and neutrophil infiltration.
The E2F5 expression of LGG showed a positive correlation
with tumor purity and infiltrating levels of B cells, CD8+ T
cells, and dendritic cells but not with infiltrating level of mac-
rophages. Specifically, E2F5 was significantly correlated with
monocyte markers (CD115) and M1 macrophage markers
(IRF5) in GBM. This suggests that E2F5 plays a role in regu-
lating monocyte polarization in GBM.

The combination of E2F6 and MATN1-AS1 (which
negatively targets RELA) was shown to inhibit the MAPK
signaling pathway, thus inhibiting the development of
GBM [18]. In our study, the expression of E2F6 in GBM
and LGG was higher than that in normal tissue. Increased
E2F6 expression and gene alteration of E2F6 in LGG was
related to poor OS, while the E2F6 expression of GBM
showed no correlation with OS. In addition, the E2F6
expression of GBM was positively related to cancer purity,
CD8+ T cells, and macrophages but not with neutrophils.
The E2F6 expression in LGG showed a significant positive
correlation with tumor purity and infiltrating levels of B
cells, CD8+ T cells, macrophages, neutrophils, and den-
dritic cells but not with CD4+ T cells. Specifically, E2F6
was significantly correlated with monocyte markers
(CD86, CD115), TAM markers (CD68, IL10), M1 macro-
phage markers (IRF5), and M2 macrophage markers
(VSIG4, MS4A4A) in GBM. This suggests that E2F6 plays
a role in regulating monocyte polarization in GBM.

E2F7 and E2F8 function as transcriptional repressors
[47]. E2F7 could induce autophagy of glioma [19]. HOXD-
ASI regulated glioma progress via E2F8 [20]. In our study,
the expressions of E2F7 and E2F8 in GBM and LGG were
higher than those in normal tissues. High E2F7 and E2F8
expressions and gene alteration of E2F7 and E2F8 in LGG
were associated with poor OS. Moreover, the E2F7 and
E2F8 expressions were positively related to tumor purity in
GBM remarkably. E2F7 expression level in LGG showed a
positive correlation with tumor purity and infiltrating levels
of B cells, CD8+ T cells, macrophages, and dendritic cells.
Similarly, E2F8 expression level in LGG showed a positive
correlation with infiltrating levels of B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells.
Specifically, E2F7 was significantly correlated with TAM
markers (IL10) in GBM. E2F8 was significantly correlated
with M2 macrophage markers (VSIG4) in GBM. E2F8 was
significantly correlated with monocyte markers (CD68),
TAM markers (CCL2, IL10), M1 macrophage markers
(IRF5), and M2 macrophage markers (CD163, MS4A4A) in
LGG. This suggests that E2F8 plays a role in regulating
monocyte polarization.
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5. Conclusions

In this study, we systematically analyzed the expressions of
E2Fs in brain and CNS cancer tissues, assessed their prognos-
tic value, and investigated their correlation with tumor-
infiltrating immune cells. Our findings characterize the
heterogeneity and complexity of the molecular biology and
the immune infiltrates in brain and CNS cancers. Bioinfor-
matics analysis indicated that the increased expressions of
E2F1, 2, and 5-8 in GBM tissues and those of E2F5 and 6
in LGG tissues may play a vital role in oncogenesis. High
E2F1-8 expressions may serve as molecular markers to iden-
tify high-risk subgroups of patients with GBM. Similarly,
high E2F2-8 expressions may help identify high-risk patients
in LGG. Our findings suggest that E2F1-8 and E2F2-8 are
potential prognostic biomarkers for GBM and LGG, respec-
tively. However, increased expressions of E2F3-6 in GBM
correlated with poor prognosis and increased infiltration of
CD8+ T cells, macrophages, neutrophils, and DCs. Increased
expressions of E2F1-8 in LGG correlated with poor prognosis
and increased infiltration of B cells, CD8+ T cells, CD4+ T
cells, macrophages, neutrophils, and DCs. Therefore, E2F3-
6 and E2F1-8 are potential therapeutic targets in patients
with immune cell infiltration of GBM and LGG, respectively.
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