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Abstract

Protein motions are a key feature to understand biological function. Recently, a large-scale

analysis of protein conformational diversity showed a positively skewed distribution with a

peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution

in terms of structure-function relationships, we studied a well curated and large dataset of

~5,000 proteins with experimentally determined conformational diversity. We searched for

global behaviour patterns studying how structure-based features change among the avail-

able conformer population for each protein. This procedure allowed us to describe the

RMSD distribution in terms of three main protein classes sharing given properties. The larg-

est of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no

disordered regions, shows low conformational diversity, the largest tunnels and smaller and

buried cavities. The two additional subsets contain disordered regions, but with differential

sequence composition and behaviour. Partially disordered proteins have on average 67% of

their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of

hinges and the longest disordered regions. In contrast, malleable proteins have on average

only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected

in size by the presence of disordered regions and show the highest diversity of cognate

ligands. Proteins in each set are mostly non-homologous to each other, share no given fold

class, nor functional similarity but do share features derived from their conformer population.

These shared features could represent conformational mechanisms related with biological

functions.

Author summary

Protein motions are commonly quantified measuring structural differences between con-

formers. The extension of these differences are called conformational diversity. These

motions are essential to understand protein biology. We have found that the distribution

of conformational diversity in a large dataset of proteins could be explained in terms of

three sets sharing structure-based features emerging from the conformer population for

each protein. The first set, which we called rigid, involve proteins showing almost no
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backbone movements but with important changes in tunnels. In order of increasing con-

formational diversity, the other sets are called partially disordered and malleable, showing

disordered regions and important cavities but with different behaviour to each other.

Shared features in each set could represent conformational mechanisms related with bio-

logical functions.

Introduction

Early crystallization studies on myoglobin found no apparent way the oxygen could possibly

enter the molecule and bind to heme [1]. It took more than a decade to discover that protein

motions were essential for myoglobin to be biologically active [2,3]. After these early findings,

an overwhelming amount of information has accumulated relating protein motion with bio-

logical function. A wide range of movements have been explored in proteins, from large rela-

tive domain movements [4], secondary and tertiary element rearrangements [5] and loop

displacements [6] to small residue rearrangements [7]. The upper limit in this scale of protein

movements may certainly involve intrinsically disordered regions (IDRs) or proteins (IDPs)

characterized by their high flexibility and mobility and clearly related with well-established dis-

order-based biological functions [8] although other notion of disorder role has been proposed

[9].

A large-scale survey of protein motion degrees, studying the extension of protein conforma-

tional diversity using a redundant collection of crystallized structures for the same protein was

recently published [10]. Since the early determination of haemoglobin conformers, it is gener-

ally accepted that different crystallographic structures for the same protein (i.e. with and with-

out substrate or post-translational modifications) could represent putative instances of the

conformational space of a protein [11]. To measure the structural differences between putative

conformers, Burra and co-workers used C-alpha root mean square deviation (RMSD). Clearly,

RMSD or other structural similarity scores measure the differences in ordered parts of the pro-

teins and stress the importance of protein motions in the known protein structure space. From

this distribution, it is possible to infer how a great majority of proteins have RMSD values

compatible with the accepted error in estimating a structure using X-ray crystallography

(about 0.4 Å). The obtained distribution is consistent with other works reporting low degrees

of conformational diversity in proteins. In a study of conformational changes in 60 enzymes

between their apo and substrate-bound forms, 75% of the data had an RMSD less than 1 Å,

and 91% less than 2 Å, with an average of 0.7 Å [12]. Interestingly, comparisons of apo struc-

tures of the same protein show an RMSD of 0.5 Å, a value slightly below the observed apo and

substrate-bound average. In agreement with these results, large-scale protein motions are not

necessary to sustain biological function in the majority of proteins studied. This observation is

supported with the finding that even small changes between conformers could greatly affect

catalytic parameters and biological behaviour of enzymes [13,14]. Also, it has been suggested

that key and widely extended biological properties in proteins [15], such as allosterism and

cooperativism, could arise from changes in the width of conformational distributions

without any appreciable change in the average structure of the protein [16]. However, the dis-

tribution of Burra et al. shows also a large skew towards higher RMSD (observed maximum

RMSD = 23.7 Å) indicating that a minor fraction of the analysed dataset does require large

conformational changes to be functionally active [10]. High RMSD values, are commonly

observed in multidomain proteins where hinge motions produce relative movements of

domains as rigid bodies [17].

Conformational diversity analysis reveals three functional mechanisms in proteins
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As pointed out by Fraunfelder, the search for general concepts between dynamics and pro-

tein function is a key issue in structural biology [2]. Knowing the degree of conformational

changes could contribute highly to our understanding of how these motions modulate protein

function. Large-scale analysis of different degrees and types of protein motions could also

allow us to infer general rules about different structure-function relationships in protein struc-

tural space. In this work, we have used a large and well curated set of proteins derived from the

CoDNaS (Conformational Diversity of Native State) database [18] to reproduce Burra et al dis-

tribution. Using several structural and dynamical analyses over the available population of

conformers for each protein, we found that three main structure-function relationships

emerge. Proteins in each group are mostly non-homologous and do not show any fold prefer-

ence or functional similarity. However, proteins in each set share similar features emerged

from conformational analysis, which as a global behaviour could represent conformational

mechanisms related with protein function.

Results

General distribution and modulating factors

CoDNaS [18] is a database which contains a redundant collection of three-dimensional struc-

tures for the same sequence where each structure could be taken as snapshot of the conforma-

tional ensemble of the protein [11]. Essentially, for each protein in CoDNaS, we performed an

extensive pairwise structural comparison between all conformers and derived different struc-

tural similarity scores linked with the corresponding information of the structure determina-

tion. In this way, it is easy to study structural differences between conformers and relate them

to a given chemical and/or biological property characterizing conformers.

In Fig 1A, we show the general distribution of RMSD between conformers for all protein

chains contained in CoDNaS obtained by X-Ray crystallography (~16,000 different protein

chains). However, the presence of mutations, low resolution structures and the number of

structures could affect the assessment of the degree of conformational diversity [19]. Addition-

ally, as less than 6% of CoDNaS entries have NMR estimated structures and due to their differ-

ential flexibility behaviour compared with X-ray crystallographic structures [20], we removed

conformers for each protein determined by this method in order to avoid bias produced by

mixing NMR and X-Ray structures. In this sense, we used a reduced dataset (4,791 different

protein chains with 74,417 conformers and 1,186,312 pairs of conformers) in order to avoid

conformational diversity biases (see Methods). All distributions in Fig 1A show the previously

identified trend [10]. In our analysis, it is also possible to study the maximum conformational

diversity shown by a given chain or protein (the pair of conformers showing the maximum

RMSD between all pair-wise comparisons for a given protein). This distribution (Fig 1B) again

follows the general trend, with a median of 0.83 Å, an average of 0.99 Å and a large peak near

0.4 Å. It is possible to infer from this figure that most proteins require small movements

between conformers to accomplish their biological functions.

Mining the distribution

We have recently found that proteins showing order-disorder transitions between conformers

show higher RMSD values than proteins showing no transitions [21]. In that study, the pair of

apo and holo forms with the largest transition was selected and the RMSD was estimated using

their common folded regions. This finding induced us to explore the role of disordered regions

in the conformational diversity of folded regions in proteins. Using our working definition of

disordered regions (see Methods) mapping IDRs on all conformers of a given protein, allowed

us to split the maximum RMSD distribution (Fig 1B) into two new distributions shown in

Conformational diversity analysis reveals three functional mechanisms in proteins
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Fig 2A. One of the maximum RMSD distributions (light red in Fig 2A) with an average RMSD

of 0.87 Å contains ordered proteins with no IDRs (in any of their available conformers). While

the other has an average RMSD of 1.20 Å (light yellow in Fig 2A), and contains proteins with

IDRs (in at least one of their available conformers). These distributions are statistically differ-

ent in shape and median (Kolmogorov-Smirnov test and Wilcoxon rank-sum test respectively,

P<< 0.001).

As proteins with IDRs have higher maximum RMSD of alpha carbons between conformers,

this value could be used to predict whether that protein is disordered (at least one conformer

with IDRs) or ordered (Fig 2A). The Area Under the Receiver Operating Characteristic (ROC)

Curve (AUC) for maximum RMSD as a predictor of disordered proteins is 0.67. Also, logistic

regression for predicting disordered proteins using maximum RMSD values, shows a statisti-

cally significant coefficient (P < 0.001). For a cutoff of 0.9 Å maximum RMSD, the accuracy to

predict presence of disorder is 64% and for RMSD> 1.2 Å the accuracy is 66%. Above 0.9 Å of

maximum RMSD we found 3.03 times more proteins with disordered regions than below it.

These results show that proteins with IDRs have higher RMSD values in their structured part

than fully ordered proteins.

Fig 1. Global conformational diversity distributions of proteins in CoDNaS. (A) All pairwise RMSDs

values between proteins with conformers obtained by X-ray diffraction (XRD) (light red distribution). The light

yellow distribution considered only pairs of conformers which were obtained at resolution less than 2.5 Å and

the light red distribution just conformers without mutations. (B) Maximum conformational diversity distribution

of pairs of conformers with the maximum RMSD value per protein used in the rest of the manuscript.

doi:10.1371/journal.pcbi.1005398.g001
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Furthermore, the presence of disordered regions could still be used to separate the distribu-

tion of proteins with IDRs. Pairs of conformers showing maximum RMSD could contain or

not disordered regions. We found that proteins with IDRs in the maximum RMSD pair have

an average RMSD of 1.14 Å, while those without IDRs in the maximum RMSD pair have an

average RMSD of 1.35 Å (Kolmogorov-Smirnov test and Wilcoxon rank-sum test, P-value <<

0.01). In increasing order of higher conformational diversity, we call these three distributions

“rigid” with average RMSD = 0.85 Å (light red in Fig 2B), “partially disordered” with average

RMSD = 1.1 Å (light yellow in Fig 2B) and finally “malleable” with average RMSD = 1.3 Å
(light blue in Fig 2B). These three distributions are significantly different in their median val-

ues (Kruskal—Wallis rank sum test, P < 0.001 with a Nemenyi post-hoc test). We will show

later that, based on their structural and dynamical features, each of these distributions could

represent different global conformational mechanisms.

Importantly, maximum RMSD and the number of conformers available for each protein

have a negligible Spearman’s correlation coefficient (rho = 0.094), nor with protein length

[10]. Also, the percentage of disordered conformers characterizing the partially disordered

Fig 2. Maximum conformational diversity distributions. (A) Pairs of conformers showing maximum

RMSD for proteins with/without IDRs considering all the available conformers per protein. In light red, we

show the distribution without IDRs and in light yellow proteins with IDRs in at least one of their conformers.

The distribution of proteins without IDRs had significantly lower overall RMSD values compared with proteins

with IDRs (Kolmogorov—Smirnov test, P << 0.001). (B) The maximum conformational diversity distribution

can be represented by three main sets of proteins: rigid (all conformers per protein without IDRs), partially

disordered (with IDRs at least in one conformer and in the maximum RMSD pair of conformational diversity)

and malleable (with IDRs in at least one conformer but the maximum pair of conformational diversity without

IDRs). These three distributions are significantly different in their median values (Kruskal—Wallis rank sum

test, P << 0.001 with a Nemenyi post-hoc test).

doi:10.1371/journal.pcbi.1005398.g002

Conformational diversity analysis reveals three functional mechanisms in proteins
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and malleable sets with the number of conformers per protein have a very weak Spearman’s

correlation coefficient (rho = 0.038).

Structural characterization of the distributions

It has been suggested that temperature used in structure estimation as well as the presence of

crystallographic contacts can introduce biases in protein conformation. We found that the

maximum RMSD distributions of the rigid, partially disordered and malleable sets are robust

to the temperature used in structure estimation (room or cryogenic temperatures) and to the

mean number of crystallographic contacts (please see supplementary Figure A-C in S1 and S2

Figs).

S1 Table summarizes several structural characterizations and composition of the rigid, par-

tially disordered and malleable protein sets. It contains the mean, median and standard devia-

tion of the compared distributions. The rigid protein distribution has the lowest mean RMSD

and no disordered regions in all their available conformers. This is the most populated of the

three groups (64.18% of the analysed proteins). We found that the partially disordered and

malleable sets differ in the number of conformers with IDRs. The partially disordered set have

69.1% of their conformers with at least one disordered region, while the malleable set has only

24.86% of conformers showing IDRs. This difference is also evident in the amino acid compo-

sition of these regions. Thus, we compared the amino acid composition of disordered regions

in our sets with the DisProt [22] database (a database of proteins with experimentally deter-

mined disorder regions) relative to PDB Select 25 [23] (proteins amenable to crystallization

studies based on ordered residues). We found that IDRs in partially disordered and malleable

sets are rich in amino acids characterizing flexible regions and depleted in amino acids related

with globularity or foldability. This observation can be derived from the distribution shown in

S3 Fig, where amino acids proportions are ordered using the Vihinen amino acid flexibility

distribution [24]. It is also possible to observe that the partially disordered and malleable sets

show similar amino acid composition, but with certain differences. Malleable proteins show a

higher proportion of His, Thr and Lys and are depleted in Ala when compared with the par-

tially disordered set, which in turn show an oddly higher proportion of Pro compared with

malleable proteins and DisProt.

The differences in IDRs compositions of these sets directly impact the corresponding

RMSD distributions. As derived from S1 Table, partially disordered proteins have more IDRs

showing a higher average percent of disorder and also longer IDRs compared to the malleable

set. Malleable proteins show no IDRs in the maximum RMSD pair, mainly because their IDRs

are mostly ordered in their conformers. However, these regions are highly flexible, introducing

higher RMSD values when become ordered. On the contrary, highly flexible regions in par-

tially disordered proteins are mostly disordered and do not impact the RMSD estimation. A

direct consequence of this observation is observed when RMSD is estimated using only loop

regions. We found that again malleable proteins show higher values than partially disordered

proteins (see Figure A in S4 Fig) while no statistically significant differences were found using

other secondary structures (see Figure B-C in S4 Fig). Furthermore, when removing all regions

that appear disordered in at least one conformer available for each protein and recalculating

the RMSD, we found no difference between partially disordered and malleable populations

(Wilcoxon rank-sum test P = 0.74 and Kolmogorov-Smirnov test P = 0.83). In fact, the average

RMSD of the three sets are very similar to each other with an average re-estimated RMSD of

0.86 Å, 0.993 Å and 0.995 Å for the rigid, partially disordered and malleable sets respectively.

This supports the vision that conformational diversity of the three main groups mainly differs

Conformational diversity analysis reveals three functional mechanisms in proteins
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in the conformation of ordered regions involved in order/disorder transitions but with differ-

ent tendencies to transit between these states.

Other structural differences were also found between the sets. For example, partially disor-

dered proteins contain more than twice as many hinges as malleable and rigid proteins (S5

Fig) and also higher normalized radius of gyration (S6 Fig). The presence of hinges may be

related with an increase in conformational diversity due to relative domain movements, which

could be supported by a slightly higher average of domains for partially disordered proteins

(1.61 compared to 1.50 in malleable and 1.49 in rigid). On the other hand, the increased nor-

malized radius of gyration in partially disordered proteins could evidence larger fold volumes

and less compactness than in the other sets.

Conformers in our dataset could differ in several conditions associated to the correspond-

ing crystallization conditions (for example post-translational modifications, different oligo-

meric structure, presence of ligands). Although it is difficult to establish an exact correlation

between structural differences among conformers and protein function, we studied how the

presence of the three sets are represented using just apo and holo conformers in the maximum

pair of RMSD for each protein (see the composition of this subset in S2 Table). We found (S7

Fig) that using this subset of apo and holo conformer pairs we obtained the three main popula-

tions of rigid, partially disordered and malleable again significantly different in their median

and they follow the same tendency as the original dataset (Kruskal—Wallis rank sum test,

P< 0.001 with a Nemenyi post-hoc test).

Finally, mapping protein domains with CATH showed that more than 84% of the folds for

rigid proteins correspond to different superfamilies. The same behaviour is found in partially

disordered and malleable proteins with 74% and 78%. The most populated cluster represents

2%, 6% and 3.4% of each set for rigid, partially disordered and malleable sets. Sequence cluster-

ing at 30% identity produce 57%, 72% and 80% of one-member clusters for the rigid, partially

disordered and malleable sets respectively. These results are consistent with the idea that the

majority of the proteins in each group are not homologous.

Backbone-independent conformational diversity characterization

We have mentioned that large conformational changes are not required for proteins to sustain

biological activity. Furthermore, low RMSD values as those found in rigid proteins (average

RMSD = 0.85 Å) does not mean they lack conformational changes which may be involved in

biological processes as previously indicated for allosteric proteins [25]. We study the presence

of cavities and tunnels and their variation among conformers in order to study conformational

diversity almost independent of carbon-alpha displacements. Cavities and tunnels are struc-

tures that connect the protein surface with buried active or binding sites in proteins and are

essential for biological activity in most proteins [7,26]. Using Fpocket [27] to characterize the

presence of cavities in each conformer (usually those with higher volume values), we observe

how cavities are larger in partially disordered and malleable proteins (Fig 3A). Figures were

represented as boxplots and violin superposed plots to facilitate evaluation and interpretation

of the compared distributions (this information is also included in S1 Table). This estimation

was performed using ordered pairs of conformers of the corresponding sets. While partially

disordered and malleable proteins have similar volume cavities, they have important differ-

ences in their behaviour. Highly flexible regions commonly found in their ordered form in

malleable proteins could define larger cavities and higher volume variation than in other sets.

When IDRs in any of their conformers are removed, cavities in malleable proteins greatly

reduce their volume while partially disordered cavities remain almost unaltered (see S1 Table).

IDRs and highly flexible regions form and define, at least partially, the cavities of malleable

Conformational diversity analysis reveals three functional mechanisms in proteins

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005398 February 13, 2017 7 / 18



proteins possibly modulating interaction with ligands which are more diverse in these pro-

teins. Cavities in partially disordered and malleable sets are also more solvent exposed and

more hydrophilic than those observed in rigid proteins in terms of pocket density and ASA

values.

The size and variation of tunnels between conformers were also studied using MOLE 2.0

[28]. Considering the tunnel of maximum length and its variation among conformers, larger

values are obtained in rigid proteins (Fig 3B). Opening and closing of main tunnels between

conformers are unequivocally related with biological function [7]. Interestingly, we found that

RMSD per position for tunnel lining residues is larger when compared with residues outside

tunnels. This difference is only statistically significant when analysed rigid proteins (Kolmogo-

rov-Smirnov test and Wilcoxon rank sum tests, P< 0.01). Furthermore, rigid proteins have

statistically more important tunnels than partially disordered and malleable proteins, as mea-

sured as the ratio of the longest tunnel (normalized for protein length) in the maximum

Fig 3. Backbone-independent conformational diversity characterization. On each boxplot, bottom and top of the box correspond to the first and

third quartile, the vertical bar inside the box is the median (Second quartile) and the notches displays the median absolute deviation (M.A.D). Also, the

violin plot under the boxplot shows the probability density of given variable. (A) Maximum pocket volume distribution between conformers in maximum

pair of conformational diversity. Cavities are significantly greater in partially disordered and malleable proteins (Kruskal—Wallis rank sum test shows

significant differences between this groups P << 0.001, with a Nemenyi post-hoc test shows that the volume of cavities in rigid proteins are significantly

different of the cavity volumes in partially disordered or malleable proteins with P < 0.001). (B) Maximum tunnel length variation distribution between

conformers in maximum pair of conformational diversity. The parameter expresses the proportion of variation between largest tunnels in each

conformer and it is calculated as |L1 − L2 |/max(L1,L2), where Li is the length of the largest tunnel on the corresponding conformer in the maximum pair.

The mean value in rigid proteins is significantly greater than partially disordered proteins (Wilcoxon rank sum test, P < 0.001). (C) Mean ratio of longest

tunnel distribution between conformers in maximum pair of conformational diversity. The tunnel length is normalized by the conformer length. (D)

Average degree distributions between conformers in maximum pair of conformational diversity. Partially disordered proteins show greater mean values

than rigid proteins (Kruskal—Wallis rank sum test shows significant differences between this groups P << 0.001 with a Nemenyi post-hoc test).

doi:10.1371/journal.pcbi.1005398.g003

Conformational diversity analysis reveals three functional mechanisms in proteins

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005398 February 13, 2017 8 / 18



RMSD conformer pair (Kruskal—Wallis rank sum test P = 0.01 with Nemenyi post-hoc test)

(Fig 3C). Interestingly, these measures are not statistically different when partially disordered

and malleable proteins are compared to each other. Additionally, we found that ligand molec-

ular weights are bigger in malleable and partially disordered sets when compared with rigid

proteins (average molecular weights: 414.12, 429.27 and 388.92 respectively).

Slight conformational changes were also studied as the average degree (contacts between

residues) of the residue interaction network using RING [29]. We found (Fig 3D) that rigid

proteins have lower average contacts per residue than partially disordered and malleable pro-

teins (average degree: 5, 5.21 and 5.16 respectively, Kruskal-Wallis rank sum with Nemenyi

post-hoc test P<< 0.001). Presence of more connected networks in the proteins with order-

disorder transitions may be associated with an adaptive evolutionary process to compensate

the presence of highly flexible regions in the ordered part of the protein.

Discussion

We have found that the distribution of protein conformational diversity can be explained in

terms of three main protein sets. The differences between them do not rely on structural classi-

fication, biological activity nor common evolutionary history. The average behaviour of the

proteins in each set results from shared structural and dynamical features when their confor-

mational populations are considered. The features shared between proteins in the same set

could be seen as conformational mechanisms associated with protein function (Fig 4).

All ordered proteins have in general low conformational diversity and represents the most

populated set (~60% of our dataset). This group is characterized by slight differences between

conformers (mean maximum RMSD = 0.83 Å) evidencing how no large movements are

required to accomplish the biological functions. We named the proteins in this set rigid. How-

ever, these proteins have larger tunnels when compared with the other sets and, importantly,

the largest tunnel length variation among conformers. Apparently, backbone-independent

conformational mechanisms such as the opening and closing of tunnels are required to sustain

function. Tunnels are structures that allow the transit of ligands from the surface to the buried

binding or active site of a protein. They can also connect buried cavities with each other and

promote the exit of products [7]. As described above, residues lining these tunnels have larger

RMSD than the rest of the positions in the protein. This indicates that the minimum move-

ments for rigid proteins, are associated with the movement of functional structures such as

tunnels. Interestingly, rigid proteins have on average ligands with lower molecular weight than

the other two sets which also display larger cavities when compared with rigid proteins. These

observations could indicate how the use of tunnels to interact with ligands could have a limita-

tion handling larger ligands. The existence of open and closed tunnels or their size variation

when conformers are compared, e.g. bottleneck dynamics [30] or conformational gating [31],

may define different binding constants that could explain biological functions [32], enzyme

specificity [26] and important regulatory processes such as allosterism [15]. Over the last years,

allosterism without conformational change has been explained in terms of entropy effects aris-

ing from changes in the frequency and amplitude of thermal fluctuations around the mean

conformation [33–35], as an alternative explanation to the classical consideration of changes

in mean conformation [36,37]. The contribution of slight movements in opening and closing

tunnels, pockets and cavities to this so-called entropic allosterism [38] remains to be further

quantified. Several proteins where tunnels and cavities define protein function are human

P450 cytochrome [39], A. aeolicus lumazine synthase [26] with more than five channels longer

than 15 Å, imidazole glycerol phosphate synthase from T. maritima [40] where gating regulates

the activity of two active sites, cellulose cel48F with a 65 Å long tunnel (see Fig 5A and 5B)

Conformational diversity analysis reveals three functional mechanisms in proteins
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[41,42], as well as very well studied proteins such as myoglobin and haemoglobin are all

included in the rigid set derived from our study.

Disordered proteins are divided into two sets: partially disordered and malleable. Both sets

have an increased conformational diversity compared to the rigid set described above. We

have previously described how presence of IDRs and order-disorder transitions increases con-

formational diversity [21]. As protein function relates with motion, presence of IDRs could

influence biological functions relying on the presence of ordered regions [43]. These two sets

differ from each other in the propensity of their IDRs to appear as ordered or disordered as

reflected in three main aspects. Composition of IDRs between sets is different, and possibly

related with the different IDRs conformer content (see S1 Table). As previously indicated, the

main reason for malleable proteins to show greater conformational diversity than partially dis-

ordered ones, is the fact that highly flexible regions (mainly loops) appear ordered and in dif-

ferent arrangements in malleable proteins, introducing higher RMSD values when conformers

are compared.

Partially disordered and malleable proteins have larger cavities and shorter tunnels com-

pared with rigid proteins. This could represent different ways to interact with ligands, as cog-

nate ligands are larger in partially disordered and malleable proteins (average number of

different ligands is 4.67, 5.64 and 9.30 for rigid, partially disordered and malleable sets).

Fig 4. Visual comparison of main structural features in each of the three protein sets described in this

work. Area of each circle is proportional to the average corresponding quantitative measure.

doi:10.1371/journal.pcbi.1005398.g004
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However, these two protein sets have additional differences in their corresponding cavities

which are also more solvent exposed and hydrophilic than the rigid set. When IDRs in any

conformer are removed, cavities in malleable proteins reduce their volume to the level of rigid

proteins, while partially disordered cavities remain almost unaltered. In this sense, IDRs form

and define, at least partially, cavities of malleable proteins, possibly modulating the ligand

interaction. This higher flexibility defining cavities, appearing disordered in a minority of con-

formers, is the basic structural property characterizing the set that we called malleable. A typi-

cal example is calmodulin, a hub protein that can interact with 350 partners, which does not

have a high disorder level and is commonly considered an ordered protein [44,45] (Fig 6A, 6B

and 6C). Other well characterized proteins with flexible binding sites include the E. coli unde-

caprayl-pyrophosphate synthase where flexible loops regulate the product size [46], Cyclin-

dependent kinase 2 [47], Prothrombin [48] and Trypsin.

Contrary to malleable proteins, cavities are not affected by IDRs in the partially disordered

set. This set shows the largest number of hinges and domains, hence we assume that IDRs

could form high flexible linkers and connectors between domains [49]. This set also has the

longest IDRs (see S1 Table) and about 5% of the proteins have a maximum disorder length

which could involve entire domains. Due to the higher disorder content, a higher proportion

of disordered conformers comprising about 70% of the IDPs in our dataset, we think that par-

tially disordered proteins are mainly formed by very well characterized canonical IDPs which

mostly agree with the current zeitgeist in IDPs [8,44,50]. In this set, we found several examples

of well characterized IDPs such as the 50S ribosomal proteins L15, L11, L10 and L32e, guanine

Fig 5. Structural superposition of the cellulose cel48F conformations from Clostridium cellulolyticum. This enzyme is a processive

endo-cellulase with a large active and binding site to locate a cellulose chain which enters to the protein through a cleft located in the surface of

the protein [41]. In our dataset, this protein contains 8 conformers (PDB codes: 1F9D_A, 1F9O_A, 1G9G_A, 1FAE_A, 1FBO_A, 1FBW_A,

1FCE_A, 2QNO_A) with a maximum RMSD of 0.21 Å. (A) We can see that there is almost no significant structural difference in the carbon-alpha

trace between conformers in the pair of maximum RMSD (PDB codes: 1F9O_A, 1G9G_A), however, the tunnels (in red) as large as 65 Å long

(predicted by MOLE) appeared in one conformer (PDB code: 1F9O_A) which contains different ligands while in another conformer this tunnel is

absent. (B) The superposition of all conformers only shows slight rotations and minimal movements in lining residues (in yellow) of this main

tunnel, producing the opening and closing of the tunnel. Besides our conformers comparison, molecular dynamic simulations have also

confirmed the rigidity of this protein [42].

doi:10.1371/journal.pcbi.1005398.g005
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nucleotide-binding protein G and Thymidylate synthase [51,52] (see Fig 7A and 7B) are exam-

ples of order/disorder transitions related with function. Histo-blood group A transferase and

Endonuclease VIII are examples of IDPs where function relates to the presence of a disorder

state. An entropic chain in Serine/threonine-protein kinase PLK1 and Xanthine dehydroge-

nase/oxidase proteins serve just to mention some examples.

Historically, conformational diversity has been associated with large conformational

changes thanks to the pioneering work by Chothia, Lesk and Gerstein [4,17]. Several examples

were later compiled and extended by Gerstein in his protein motion database [5]. Where are

these proteins in the sets described above? Most of the proteins show no IDRs, so we can find

them in the higher RMSD tail of the rigid set. Just to measure the importance of such large

motions, the 75 percentiles of rigid proteins is below 1.13 Å of RMSD. Above that number, we

found 769 proteins without IDRs and with large conformational changes. Most of the changes

comprise domains and/or fragments such as loops, normally as rigid bodies with hinge, shear

or more complex motions [53]. The main point to stress is that this kind of motions represent

about 15% of the total proteins studied here.

Concluding remarks

The sustained advances in structural biology of the last years have been focused on the estab-

lishment of structure-function relationships to improve functional annotation of proteins dis-

playing similar structures and/or sequences (for example [54]). This practical and useful trend

Fig 6. Calmodulin, a Ca2++ sensor protein. Calmodulin is a hub protein that can interact with 350 partners and it is commonly considered an

ordered protein [44]. In our dataset, CaM has 79 conformers (8 with intrinsically disordered regions) with a maximum RMSD = 3.2 Å and a

maximum disordered region of 34.5%. Calmodulin contains four EF-hand motifs where a pair of them form a globular domain. Each of this

globular domains contains a pocket flexible enough to accommodate different target proteins through where four essential Met located in the

pocket play a crucial role [45]. Additionally, each globular domain could adapt their relative orientation through flexible connectors increasing

calmodulin capacity to interact with hundreds of partners. (A) We show several conformers of calmodulin superimposed (PDB codes: 1LIN_A,

1NIW_E, 3G43_A, 4DCK_B, 2FOT_A, 2X0G_B, 2BE6_A, 2O60_A, 1CDL_A, 3GP2_A). The disordered regions which are ordered in some

conformers are in orange. (B-C). Whilst, in the pair of conformers with maximum RMSD, one conformation (B, PDB code: 1NIW_E) is more

extent with a not well defined pocket respect to the conformation bound to trifluoperazine (C, PDB code: 1LIN_A), which is more compact and

has higher cavity volume. We can show on one hand the dependence of malleable protein cavities volume with disordered regions, and on the

other that the presence of these regions increase the pocket plasticity.

doi:10.1371/journal.pcbi.1005398.g006
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hides the concept that the structure-function relationship is almost an evolutionary accident in

view of the vast redundancy of similar functions sustained by different protein structures

[55,56] or the contrary where similar structures achieve completely different functions(i.e.

superfolds [57,58]). We have found three main conformational mechanisms expressed as

structure-dynamics relationships representing different ways to achieve a vast diversity of bio-

logical functions. They are general enough to describe proteins behaviour, as early suggested

by H. Frauenfelder in his search for general concepts in protein dynamics [2]. But certainly,

the search for unique functional classes using low-level descriptors inside these categories

appears to be a useless task.

Methods

Dataset generation

The CoDNaS database [59], containing a redundant collection of three dimensional structures

for the same protein, was used to recruit proteins exhibiting conformational diversity. The

final dataset contains 4,791 different protein chains with a total of 74,417 conformers (corre-

sponding to 1,186,312 conformer pairs), all structures belonging to this dataset were obtained

by X-Ray Diffraction at a resolution equal or less than 2.5 Å. The maximum conformational

diversity for each protein is the pair of conformers with maximum C-alpha RMSD. In order to

Fig 7. Human thymidylate synthase (TS). TS is responsible to catalyze the reductive methylation of dUMP to dTMP. This reaction is

essential to maintain the nucleotide pools during cell growth. This enzyme is a valuable target for cytotoxic drugs used in cancer

chemotherapy, because of its importance for DNA replication in actively dividing cells [51,52]. TS has disorder regions which plays an

important role for dimmer stabilization, assembly and regulation by order to disorder transitions. The TS has 15 conformers (11 with IDR’s) in

our data set with a maximum RMSD = 1.34 Å and a maximum percentage of disorder (according to our definition) of 9%. The disordered

region of this protein is composed by residues from one of the inserts that presents human TS differs to bacterial TS. (A) We show all

conformers of the TS superimposed (PDB codes: 1HW3_A, 1HZW_A, 1HZW_B, 1I00_A, 1I00_B, 1YPV_A, 3EDW_X, 3EHI_X, 3GH2_X,

3N5E_A, 3N5E_B, 3N5G_A, 4G2O_X, 4G6W_X, 4GD7_A). The disorder region changes from disorder to order in many conformers

(residues in orange), for example, in the active conformation (PDB code = 1HZW_A) this region is ordered while in the inactive (PDB

code = 1YPV_A) is disordered. (B) Pair of conformers with maximum RMSD (1YPV_A in pink, 4GD7_A in light blue). The disorder region

appears partially ordered in the two conformers, the only difference is that the region in the structure 4GD7_A has eleven more ordered

residues (which forms an alpha-helix) than the same region in the other conformation.

doi:10.1371/journal.pcbi.1005398.g007
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obtain a reliable and comparable estimation of conformational diversity of each protein, our

dataset only contains proteins with a minimum of 5 conformers (average 15.53 conformers

per protein). It is supported by the work of Best et. al which showed that is necessary to take

into account a given number of structures (around 5 structures) to estimate conformational

features of the native state of proteins [11] (up to 5 conformers to study backbone flexibility

and around 20 to study side-chain heterogeneity). These conformers mainly differ in the pres-

ence of bound ligands (~70% on average of the conformers).

Finding intrinsic disorder regions

We defined intrinsic disorder regions (IDRs) for each protein conformer using MobiDB [60].

If a residue has missing electron density coordinates in a structure obtained with X-ray crystal-

lography, it assumed to be disordered [61]. To define an IDR, only five or more consecutive

missing residues that were not in the amino or carboxyl terminal of the protein sequence (the

first or least twenty residues) were considered. The amino acid composition was obtained

from composition profile [62] using 10,000 bootstrap iterations.

Structural characterizations

Hinges were detected with FlexProt [63], the number of hinges identified maximizes the struc-

tural superposition between conformers. The Radius of gyration (Rg) of each conformer was

calculated using the MMTSB Tool Set (available from http://blue11.bch.msu.edu/mmtsb/).

Due to the dependence of Rg with protein size, a normalized Rg was calculated from the Rg of

the ideal sphere of the same volume of the protein structure [64].

Pockets were detected with FPocket [27], using the highest scored pocket. The percentage

of maximum variation between maximum pocket volumes (with/without IDRs residues) in

each conformer was calculated as |max(pV1,IDR, pV2,IDR) − max(pV1, pV2)|/max(max(pV1,IDR,

pV2,IDR), max(pV1, pV2)), where pVi is the pocket volume (with/without IDRs residues) on the

corresponding conformer. MOLE 2.0 [65] was used for tunnel identification and characteriza-

tion using the following parameters. Probe Radius and Origin Radius 3 Å, Interior Threshold

1.25 Å and default values for all the others. We parsed the XML file output to identify tunnel

length, number of tunnels, residues lining each tunnel and so on. The proportion of variation

between largest tunnels in each conformer was calculated as |L1 − L2 |/max(L1,L2), where Li is

the length of the largest tunnel on the corresponding conformer in the maximum pair. The

protein volume was estimated by 3vee [66] using a probe radius of 0.5 Å and a grid resolution

of 1.5 Å. Residue interactions networks (RINs) were built with RING [29].

Supporting information

S1 Table. Summary of different descriptors reported on the ‘Results’ section. The values

correspond to the mean (with the confidence interval at 95%), standard deviation and median

in each compared distribution. See Methods section for details about descriptors.

(XLSX)

S2 Table. Composition of apo/holo subset. The values correspond to the mean (confidence

interval at 95%), standard deviation and median in each compared distribution.

(XLSX)

S1 Fig. Maximum RMSD distributions at different crystallization temperatures. (A) Repre-

sentative maximum pair of conformers for each protein obtained at room-temperature (above

200 K) and Cryogenic temperature (100 K). (B) The three sets in a subset of proteins in which

the conformers of the maximum pair of RMSD has been crystallised at cryogenic temperature
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(100 K). This subset represents the 67% of the total proteins in our dataset. (C) Idem (A)

which pairs obtained at room-temperature. This subset represents the 9% of the total proteins

in our dataset.

(TIF)

S2 Fig. RMSD vs. mean number of crystal contacts, calculated for pairs of conformers with

maximum conformational diversity for each monomeric protein in our dataset. We have

used a subset of monomeric proteins from our dataset, with only one protein chain in the

asymmetric unit (392 pairs of conformers) in order to remove hetero biological complexes.

For each conformer in the maximum pair of RMSD, we estimated the average number of

crystallographic contacts (at 4.5 Å of distance) between each atom of the protein chain in the

asymmetric unit and the neighbour molecules in other unit cells. We obtained a negligible

Spearman’s correlation coefficient of 0.048.

(TIF)

S3 Fig. Amino acid composition of IDRs. Amino acid composition of IDRs presents in all

conformers of malleable (light blue) and partially disordered (yellow) proteins relative to PDB

Select 25. DisProt is used as a reference of experimental protein disorder.

(TIF)

S4 Fig. (A–C) Distributions of RMSD values for maximum pairs of conformational diver-

sity in each set discriminated by secondary structure.

(TIF)

S5 Fig. Number of hinges distribution in maximum pairs of conformational diversity in

each set. A single bar represents the relative frequency of a given number of hinges.

(TIF)

S6 Fig. Mean normalized Radius of gyration distributions between conformers in maxi-

mum pair of conformational diversity. Rigid proteins show an average significantly lower

than partially disordered proteins (Wilcoxon rank-sum test P << 0.001).

(TIF)

S7 Fig. Maximum conformational diversity distribution of the apo/holo subset.

(TIF)

S1 Dataset. Datasets used in this study.

(TAR)
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