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Nonsense-mediated mRNA decay (NMD) is a surveillance 
mechanism ensuring the fast decay of mRNAs harboring a 
premature termination codon (PTC). As a quality control 
mechanism, NMD distinguishes PTCs from normal termination 
codons in order to degrade PTC-carrying mRNAs only. For 
this, NMD is connected to various other cell processes which 
regulate or activate it under specific cell conditions or in 
response to mutations, mis-regulations, stresses, or particular 
cell programs. These cell processes and their connections with 
NMD are the focus of this review, which aims both to illustrate 
the complexity of the NMD mechanism and its regulation and 
to highlight the cellular consequences of NMD inhibition. 
[BMB Reports 2017; 50(4): 175-185]

INTRODUCTION

Nonsense-mediated mRNA decay (NMD) is a surveillance or 
quality control mechanism which targets for accelerated decay 
mRNAs harboring a premature termination codon (PTC) (1-7). 
In mammals, NMD is activated on an mRNA when the first 
stop codon of the open reading frame is located more than 
50-55 nucleotides upstream of an exon-exon junction (8). 
Recent studies have shown that NMD can also be elicited 
when the distance between the first stop codon of the open 
reading frame and the poly(A) binding protein becomes 
abnormally long (9-12). From these two NMD activation 
models has emerged a combinatory model taking both 
originally proposed activation pathways into account, but this 
model requires further experimental support (6, 11, 13).

The proteins UPF1, UPF2, and UPF3X (also called UPF3b) 
play a central role in NMD and are universally conserved 
within the eukaryotic kingdom (14). Extensive studies on UPF1 

have demonstrated that this phosphorylated protein is an RNA 
helicase that clears the region downstream from a PTC to 
prepare the mRNA for decay (15-20). Phosphorylation and 
subsequent dephosphorylation of UPF1 are required to elicit 
NMD. In addition to their role in NMD, UPF proteins are 
involved in other cellular mechanisms (see below). Since 
NMD can be mechanistically different according to the species 
(14), this review focuses mainly on NMD in human cells and 
on interactions between the NMD mechanism or NMD factors 
and other processes occurring in human cells. In particular, we 
discuss the connections between NMD and upstream or 
downstream processes involved in gene expression and the 
influence of various cell pathways on NMD.

NMD ACTIVATION MODELS

The EJC-dependent activation model
Experimental data show that a stop codon is recognized as a 
PTC only if it is located more than 50-55 nucleotides upstream 
of an exon-exon junction (Fig. 1A) (21-23). A protein complex 
called EJC (for Exon Junction Complex) is deposited 20-24 
nucleotides upstream of exon-exon junctions after pre-mRNA 
splicing occurs (24, 25). EJC recruits NMD factors UPF3X/ 
UPF3b and then UPF2. During the pioneer round of 
translation when the 5’-cap is still bound by the CBP80/CBP20 
heterodimer and the poly(A) tail is bound by the poly(A) 
binding proteins N1 and C1 (PABPN1 and PABPC1, respec-
tively), the first ribosome reads the mRNA and removes all 
EJCs present on its path (26). If the mRNA carries no stop 
codon more than 50-55 nucleotides upstream of an exon-exon 
junction, no EJCs will remain on the mRNA once the ribosome 
reaches the normal stop codon after the pioneer round of 
translation. The mRNP will then be remodeled to undergo 
steady-state translation with replacement of CBP80/CBP20 by 
eIF4E and the presence of PABPC1 only on the poly(A) tail. If 
the mRNA carries a stop codon located more than 50-55 
nucleotides upstream of an exon-exon junction, the ribosome 
will pause at this stop codon. At least one EJC will still be 
present on the mRNA when the ribosome reaches this stop 
codon. This EJC then recruits the SURF complex formed by 
SMG1, SMG8, SMG9, UPF1, and the release factors 1 and 3 
(16). SMG1 phosphorylates UPF1, causing the departure of the 
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Fig. 1. Models of NMD activation. (A) The EJC-dependent model. 
PTCs are recognized if they are present more than 50-55 
nucleotides upstream of an exon-exon junction during the pioneer 
round of translation. The mRNA carries the CBP20/CBP80 hetero-
dimer at the 5’cap and PABPN1 and PABPC1 on the poly(A) tail 
at the 3’ end. In this model UPF1 is recruited by the UPF3X and 
UPF2 proteins bound to the exon junction complex (EJC). 
Translation termination occurs because UPF1 interacts with the 
release factors eRF1 (1) and eRF3 (3). (B) The PTC-PABPC1 
distance model. PTC recognition is based on the probability that 
translation termination will occur via the interaction between 
UPF1 and release factors (NMD translation termination) or via the 
interaction between PABPC1 and release factors (normal tran-
slation termination).

ribosome and the release factors (20). Then SMG5, SMG6, 
SMG7, and the protein phosphatase 2A (PP2A) are recruited, 
causing the exit of SMG1, SMG8, and SMG9. Phosphorylated 
UPF1 then interacts directly with the RNA, and its RNA 
helicase activity is activated so as to remove proteins from the 
region downstream from the PTC on the mRNA and to prepare 
the mRNA for decay (15). The RNA helicase MOV10 also 
seems to be involved in the removing of RNA secondary 
structures and proteins downstream of PTCs (27). 
Phosphorylated UPF1 also interacts with the proline-rich 
nuclear receptor coregulatory protein 2 (PNRC2) to recruit the 
decapping enzyme DCP1a, involved in the 5’ to 3’ decay 
pathway (28). Then PP2A dephosphorylates UPF1, and the 
mRNA decay pathways are activated to degrade the mRNA, 
from both ends and also via endonucleolytic cleavage by 
SMG6 in the vicinity of the PTC (29-32).

In this model, NMD occurs only during the pioneer round of 
translation. This round is characterized by a dedicated trans-
lation initiation complex and the presence of the heterodimer 
CBP80/CBP20 on the 5’cap, of EJCs on the mRNA, and of 
PABPC1 and PABPN1 on the poly(A) tail (27, 33, 34). 
According to the model, only newly synthesized mRNAs are 
targeted for NMD, and if they are not recognized as NMD 

targets during the pioneer round of translation, they will be 
immune to NMD (27, 35).

The EJC-dependent model fits most cases, but some ex-
perimental data challenge this model. For instance, EJCs are 
not present upstream of all exon-exon junctions (36, 37). 
Furthermore, some PTCs located less than 50 nucleotides 
upstream of the last exon-exon junction trigger NMD (38, 39), 
and some PTCs located more than 55 nucleotides upstream of 
the last exon-exon junction do not (40, 41).

PTC-PABPC1 distance-dependent activation
The second model describing activation of NMD in mammalian 
cells is based on the distance between the PTC and the 
PABPC1. This model is similar to the model of NMD 
activation in other species such as yeast, worm, and fly (14). 
Basically, when the 3’UTR of an mRNA is abnormally long 
because of the presence of a PTC for instance, NMD is 
activated to degrade that specific mRNA (42). In the above- 
mentioned species, the size of the 3’UTR tends to be relatively 
homogenous, which facilitates recognition of abnormally long 
3’UTRs (43). In mammals, the molecular mechanism may be 
more complex because of evolution, and particularly because 
of the highly variable size of the 3’UTR, from 21 nucleotides 
to more than 8 kb (44).

Many reports indicate that the distance between PABPC1 
and the PTC is what triggers NMD (9-12, 45). This model 
suggests that certain cis- or trans-acting elements can provide a 
measure of the length of the 3’UTR. In particular, it is thought 
that specific elements might be involved in regulating NMD 
on mRNAs with long 3’UTRs and in preventing unnecessary 
degradation by NMD. Among these regulatory elements, 
secondary structures in the 3’UTR might bring PABPC1 closer 
to the normal stop codon and thus prevent inappropriate 
activation of NMD under specific conditions (10). Long human 
3’UTRs have also been reported to contain NMD-inhibiting 
regulatory sequences (46).

In the PTC-PABPC1 distance model, NMD occurs during all 
cycles of translation in an EJC-independent way (47, 48). UPF1 
has been shown to interact directly with RNA and to 
concentrate in the 3’UTR (49-52). UPF1 and PABPC1 thus 
compete to terminate the translation by interacting with 
release factor 3 when the ribosome reaches a stop codon that 
will trigger NMD (in the case of UPF1) or the normal 
translation termination (in the case of PABPC1) (Fig. 1B). The 
closer the PTC to the start of the open reading frame, the 
greater the chances that UPF1 will be involved in terminating 
translation and eliciting NMD. This model thus suggests a 
gradient of NMD efficiency, decreasing with increasing 
proximity of the PTC to the physiological stop codon (38).

The combinatory model
Given the strong experimental evidence supporting each of 
these two models, it is difficult to ignore one of them. A 
combinatory model has been proposed to reconcile the two 
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visions, taking both proposed pathways of NMD activation 
into account (6, 8, 13). In this model, a PTC can be recognized 
at two successive steps. During the pioneer round of translation, 
the EJC-dependent NMD activation pathway would be re-
sponsible for recognition of PTC-containing mRNAs as 
described above. Later, as a fraction of the PTC-containing 
mRNAs can escape NMD (for example, by being protected 
from translation for a while), the PTC-PABPC1 distance 
pathway would take charge of these PTC-containing mRNAs 
during later rounds of translation. Although such a model can 
explain the vast majority of cases of NMD activation, some 
exceptions have already been described that do not fit with 
this model, indicating that NMD activation remains 
incompletely understood (53-55). 

NMD AND SPLICING

In mammals, splicing has been implicated in NMD since the 
discovery that at least one intron must be present downstream 
of a PTC on the pre-mRNA in order to elicit NMD on the 
corresponding mRNA (23, 56, 57). These are the studies that 
gave rise to the “rule of the 50-55 nucleotides” (41), stating 
that a PTC elicits NMD only if an exon-exon junction is 
present more than 50-55 nucleotides downstream of the PTC 
(58). The molecular explanation came with the identification 
of a protein complex deposited 20-24 nucleotides upstream of 
exon-exon junctions as a consequence of splicing (24, 25). 
This complex, called EJC for Exon Junction Complex, is 
formed by splicing factors (RNPS1, SRm160, UAP56, SAP18, 
Acinus, Pnn/DRS, and Pinin), exporting factors (UAP56, 
REF/Aly, TAP/p15, Y14, or Magoh), and a group of four 
proteins forming the core of the EJC (Y14, Magoh, eIF4AIII, 
and MLN51) (59-71). This complex is fully exported to the 
cytoplasm before undergoing the pioneer round of translation 
responsible for PTC detection, in keeping with the cytoplasmic 
cellular location of NMD (45, 71).

While splicing is required for NMD, NMD is also very 
useful in eliminating defective or unwanted mRNA products 
generated by splicing. Splicing is indeed the major source of 
PTC-containing mRNAs, since one-third of the mRNAs 
generated by alternative splicing are targeted for NMD 
because of the presence of a PTC (72, 73). As more than 95% 
of multi-exon pre-mRNAs are subject to alternative splicing 
(74), NMD needs to be very efficient to eliminate all the 
unwanted splicing products. Alternative splicing and NMD are 
involved in regulating many genes under specific cellular 
conditions. For example, splicing factors such as members of 
the SR family (75) decrease their own synthesis, when their 
level is too high, by incorporating into their mRNAs, via 
alternative splicing, a poison cassette exon harboring an 
NMD-eliciting PTC (76, 77).

NMD AND miRNA

MicroRNAs (miRNAs) regulate gene expression by either 
inducing the decay or inhibiting the translation of their target 
mRNAs. NMD and the miRNA pathway interact at two 
different levels at least. Firstly, miR128 is reported to regulate 
the expression of both the UPF1 gene and the MLN51 gene, 
encoding one of the core components of the EJC (78). This 
finding suggests fine regulation of NMD efficiency by the 
miRNA pathway, although the specific conditions under which 
miR128 targets UPF1 and/or MLN51 mRNAs remain to be 
elucidated. Secondly, a factor playing a role in both the NMD 
and miRNA decay pathways has been identified. mRNA decay 
via the miRNA pathway involves proteins, such as Argonaute, 
found also in the siRNA pathway. This makes Argonaute a key 
player of two RNA decay pathways. The protein Argonaute 2 
is also reported to inhibit the pioneer round of translation by 
competing with the heterodimer CBP80/CBP20 for binding to 
the 5’ cap (79, 80). Since CBP80 plays a role in NMD by 
promoting the interaction between UPF1 and UPF2 during the 
pioneer round of translation, binding of Argonaute 2 to the 5’ 
cap promotes NMD inhibition (79-81). It is worth noting that 
this competition between CBP80/20 and Argonaute 2 occurs 
only on mRNAs carrying a binding site for miRNA in the 
3’UTR. This limits the number of mRNAs subject to this 
regulation. 

NMD AND STAUFEN-MEDIATED mRNA DECAY (SMD)

Staufen 1 and Staufen 2 are RNA-binding proteins targeting for 
accelerated decay mRNAs containing a specific type of hairpin 
or a double-stranded structure made of complementary Alu 
elements in the 3’UTR. Staufen proteins can recruit UPF1 to 
the mRNA independently of other UPF proteins or EJC 
components. Once UPF1 is recruited, mRNA decay is 
triggered by a machinery that has not been yet identified (29). 
SMD and NMD share a central protein, UPF1, and thus 
compete for the available UPF1. An example of this 
competition concerns the proteins myogenin, required for 
myogenesis, and PAX3, a transcription factor that inhibits the 
differentiation of myoblasts to myotubes (82). Myogenin 
mRNA is a natural NMD target and PAX3 mRNA is an SMD 
substrate. UPF1 can interact either with UPF2, to induce 
NMD, or with Staufen proteins, to trigger SMD. If the 
UPF1-UPF2 interaction is favored, NMD will be active, 
myogenin mRNA will be degraded, and myogenesis will be 
inhibited. If the UPF1-Staufen protein interaction is favored, 
SMD will be active, PAX3 mRNA will be degraded, and this 
will lead to the differentiation of myoblasts to myotubes (83). 

NMD factors have been implicated in many different 
mechanisms that could be antagonistically linked to NMD 
according to the same principle of factor availability as 
described above. For instance, as UPF1 has been shown to 
play a role in maintaining telomere length, in S-phase 
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progression, and in histone mRNA decay (84, 85). All these 
processes could be antagonistically related to NMD.

NMD AND TRANSLATION 

NMD and translation are tightly interconnected at different 
levels. First, PTC recognition requires the translation machinery. 
Interference with translation by chemicals, suppressor tRNAs, 
or secondary structures blocking ribosome progression has 
been shown to impair NMD (86, 87). In particular, the 
translation inhibitors cycloheximide, puromycine, and emetin 
are reported to strongly inhibit NMD (87, 88). Second, NMD 
affects mRNAs being translated during both the pioneer round 
and other rounds of translation (26, 47, 48). During the 
pioneer round, a peptide is synthesized (89), consistently with 
the presence of CBP80-bound mRNAs in the subpolysomal 
fractions of a polysome gradient (33), but this peptide is 
targeted for rapid decay via stimulation of the proteasome by 
UPF1 (90, 91). Third, several translation initiation factors are 
required for NMD, such as eIF4G (34), eIF2 (33), eIF4F (47), 
and eIF3e (92, 93). Interestingly, these factors are tightly 
regulated. An example is eIF2, whose phosphorylated 
isoform is inactive. Its phosphorylation is induced by various 
cell stresses, such as hypoxia, endoplasmic reticulum stress 
due to accumulation of unfolded proteins, and amino acid 
starvation leading to inhibition of the pioneer round of 
translation and hence to NMD (33, 94, 95). Fourth, NMD 
activation, or more precisely UPF1 phosphorylation, leads to 
inhibition of translation, so as to prevent initiation of new 
translation cycles and the synthesis of truncated proteins (96). 
Finally, the NMD factors UPF1, UPF2, UPF3/UPF3a, and 
UPF3X/UPF3b have been shown to stimulate translation when 
tethered to an unspliced mRNA (97, 98). Although its molecular 
mechanism remains unclear, this translation stimulation 
illustrates the close interconnection of NMD and translation.

NMD AND READTHROUGH

Readthrough is a natural process leading to incorporation of an 
amino acid into the growing peptide when the ribosome 
reaches a stop codon during translation (6, 99). So far, 
readthrough has been found to regulate the expression of four 
genes in human cells (100). Molecules such as aminoglycosides, 
ataluren/PTC124, and readthrough compounds (RTC) induce 
readthrough of PTCs but not of physiological stop codons (99, 
101, 102). The involvement of UPF proteins in this mechanism 
is controversial. Knockout of UPF proteins in yeast was first 
found to increase readthrough, and this was attributed to 
decreased translation termination fidelity (103, 104). Then it 
was proposed that readthrough efficiency is independent of the 
presence or absence of UPF proteins (105). In human cells, 
knockdown of UPF proteins has recently been reported to 
impair readthrough. This suggests a role of these proteins in 
readthrough in humans and hence a link between NMD and 

readthrough (106).
Favoring PTC readthrough is a highly promising therapeutic 

approach for genetic diseases caused by a nonsense mutation 
(107). Yet the readthrough efficiency generated even in the 
presence of readthrough activator molecules remains low, 
likely because PTC-readthrough substrates are first NMD 
substrates, so that the amount of PTC-containing mRNAs 
available for readthrough is very low. It has therefore been 
proposed to combine NMD inhibitors with readthrough 
activators, to improve the synthesis of full-length readthrough 
proteins. Such combinations have been shown to increase 
substantially the production of the readthrough proteins from 
PTC-containing mRNAs in both cell cultures (108, 109) and in 
vivo, in a mouse model (110). Yet the fact that UPF proteins 
are required for both PTC readthrough and NMD suggests that 
strategies for inhibiting NMD should exclude targeting any 
UPF protein, as this would compromise the efficiency of 
readthrough. The role of UPF proteins in readthrough should 
be studied in depth in order to propose an efficient therapeutic 
approach to treating nonsense-mutation-related diseases. 

NMD AND THE CYTOSKELETON

In mammalian cells, NMD has been clearly demonstrated to 
be a cytoplasmic event (45) occurring during or soon after 
mRNA export to the cytoplasm (111). Furthermore, NMD 
factors and substrates have been reported to transit through 
cytoplasmic foci called P-bodies (112, 113). P-bodies are foci 
scattered through the cytoplasm and containing RNA-degrading 
enzymes and RNAs such as miRNAs and PTC-containing 
mRNAs (114, 115). As PTC-containing mRNAs are exported to 
the cytoplasm and transit through P-bodies before being 
degraded, this suggests that they are transported from the 
nucleus to P-bodies at least. It has recently been reported that 
to promote this transport and allow NMD, an active cytoskeleton 
is required (106). Interestingly, when the cytoskeleton is 
impaired and in particular when the microtubules are 
disrupted, NMD factors and substrates are found concentrated 
in P-bodies, suggesting that the cytoskeleton is responsible 
either for transporting to P-bodies a factor required for NMD or 
for transporting PTC-containing mRNPs from P-bodies to the 
cellular location of NMD (106).

NMD AND APOPTOSIS

When cells undergo apoptosis, a specific gene expression 
profile is activated so as to induce cell death. This profile 
includes both the transcription of specific genes and the decay 
of targeted proteins. Investigators have wondered whether a 
quality control mechanism such as NMD is still active during 
apoptosis or whether it becomes useless, since the accumulation 
of nonfunctional or deleterious truncated proteins could even 
be part of the cell death process. This question was recently 
answered in two studies where the efficiency of NMD was 
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measured after activation of apoptosis with chemicals (116, 
117). Both studies demonstrated that NMD is inhibited during 
apoptosis. The molecular mechanism was also determined: 
UPF1 and UPF2 are targeted and inactivated by caspases 3 
and 7. In addition, the UPF fragments generated by caspase 
cleavage show apoptotic activity, inducing an amplification 
loop that precipitates cell death (116). This amplification loop 
is also generated upon NMD inhibition, via expression of 
apoptotic genes which are normally repressed by NMD: genes 
encoding cell cycle inhibitors and the caspase activators 
GADD45, GADD45, and CDKN1A (117). 

The findings of both studies show that an RNA surveillance 
mechanism such as NMD can be regulated according to the 
cell status and is a direct target during programmed cell death 
by apoptosis.

NMD AND AUTOPHAGY

NMD is a quality control mechanism and a gene regulation 
pathway for about 5-10% of human genes (118). When NMD 
is impaired, many mRNAs are up-regulated and can be 
translated. The mRNA encoding ATF4 is a natural substrate of 
NMD which becomes up-regulated when NMD is inhibited. 
ATF4 is a transcription factor activating the transcription of 
genes involved in autophagy, a process through which both 
proteins and organelles are degraded (119). Inhibition of NMD 
by means of an siRNA against UPF1 or UPF2 causes activation 
of ATF4 expression, promoting increased autophagy in the cell 
in response to the synthesis of aberrant proteins. Conversely, 
activation of NMD by overexpression of UPF1, for instance, 
leads to minimal autophagy in the cell (120). The ultimate 
consequence of autophagy is cell death. Autophagy is thus an 
additional programmed cell death pathway related to NMD 
inhibition (116, 117), alongside apoptosis. 

NMD AND THE UNFOLDED PROTEIN RESPONSE

About 30% of proteins present in a cell are secreted or 
transmembrane proteins. They are thus synthesized and folded 
in the endoplasmic reticulum (ER). When unfolded or misfolded 
proteins accumulate in the ER, a protein degradation pathway, 
called the unfolded protein response (UPR), is activated to 
eliminate them. This response involves activation of certain 
transcription factors and inhibition of translation, which stops 
the synthesis of unfolded or misfolded proteins. Another 
consequence of UPR activation is inhibition of NMD (121). 
NMD, as a process regulating the expression of some genes, 
influences the expression of several genes involved in UPR, 
such as ATF3, ATF4, ATF6, and IRE. Inhibition of NMD thus 
creates a positive feedback loop (122-124). Interestingly, 
inhibition of NMD as a first event does not induce UPR. This 
indicates that the origin of this regulation loop must be ER 
stress, and not NMD inhibition unrelated to ER stress (122). 
The ER could also modulate the efficiency of NMD in another 

way. The ER is a calcium storage site that can regulate the 
cytoplasmic concentration of calcium (125). Recently, an 
increase in the intracellular calcium concentration was found 
to inhibit NMD (126). This opens prospects for a new 
therapeutic approach to inhibiting NMD in some cases of 
nonsense-mutation-related genetic diseases.

NMD IN CELL DIFFERENTIATION AND ORGANISM 
DEVELOPMENT

As described above, many genes involved in splicing or NMD 
(among others) use NMD to regulate their own expression. 
This suggests that no NMD at all would probably promote 
chaos in the cell. Accordingly, knockout of UPF1, UPF2, or 
SMG1 in mouse leads to embryo death very early during 
development (127-129). This suggests a major role of NMD 
during development and particularly in the expression of 
genes involved in the early development and differentiation 
program. In support of the view that NMD plays a key role in 
development and in the homeostasis of multi-cellular organisms, 
only a few patients with a default in the NMD machinery have 
been reported. Some cases of mental retardation have been 
attributed to loss of UPF2, UPF3, UPF3X, SMG6, or of an EJC 
component such as eIF4A3 or RNPS1 (130-136).

In mice where UPF2 was conditionally knocked out, some 
cell populations, such as proliferative cells, were found to be 
more sensitive than others to a lack of NMD (137). In hemato-
poietic cells, genomic DNA rearrangements at particular loci 
generate specific isoforms of immunoglobulins or T cell 
receptor (TCR). These DNA rearrangements attest the wide 
diversity of peptides involved in antigen recognition. Yet 
two-thirds of these DNA rearrangements result in a faulty 
message with a PTC and are silenced thanks to NMD (138). 
When NMD is deficient, aberrant shortened peptides are 
synthesized from the PTC-containing TCR or immunoglobulin 
mRNAs and interfere with the lymphocyte maturation process, 
causing developmental arrest and death of the organism. This 
highlights the crucial roles played by NMD (139). 

NMD AS AN ANTIVIRAL BARRIER

Besides its interconnection with endogenous cell processes, 
NMD can also interact with exogenous machineries. For 
instance, viruses have genomes with an unconventional gene 
organization as compared to eukaryotic genomes. Splicing and 
multiple open reading frames encoded by a single mRNA are 
common in viruses, suggesting that in eukaryotic cells, some 
virus mRNAs could be targeted by NMD because of the 
presence of “PTCs”. In keeping with this view, down- 
regulation of NMD factors results in a strong increase in the 
production of viral proteins (140). Viruses have developed 
strategies for escaping NMD and using components of the 
NMD machinery to their own advantage. HIV-1, for instance, 
uses UPF1 and other NMD factors to facilitate the export of its 
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Fig. 2. NMD interacts with cellular processes in different ways: (i) 
bidirectional interactions in which NMD and a cellular process 
influence each other (bidirectional arrows); (ii) unidirectional inter-
actions in which NMD influences a cellular process (arrows pointing
a cellular process); (iii) unidirectional interactions in which a 
cellular process regulates NMD efficiency (arrows pointing NMD).

RNA molecules from the nucleus thanks to a Rev-UPF1 
interaction that prevents UPF2 from binding UPF1 (141). Once 
in the cytoplasm, UPF1 remains bound to the viral RNA and 
can also be encapsidated in virions (142). Down-regulation of 
UPF1 reduces the infectivity of HIV virions, suggesting an 
unexpected role of UPF1 in promoting infectivity. This could 
provide a basis for an interesting antiviral approach.

DISCUSSION

NMD has been found in all eukaryotic organisms studied to 
date. The role of this quality control mechanism is to eliminate 
faulty mRNAs harboring a PTC in order to prevent the 
synthesis of aberrant truncated proteins (1, 2, 8). In eukaryotes, 
NMD is also a regulatory pathway for some wild-type genes: 
5-10% of human genes, for instance (118, 143). NMD occurs 
in the cytoplasm, during or after mRNA export to this 
compartment and before steady-state translation (144). Some 
proteins involved in NMD, however, are loaded onto the 
mRNA in the nucleus (63, 71, 145). To accurately perform its 
role, NMD must be activated at the right moment, at the right 
place, and on the right mRNA. All these parameters can be 
influenced by cell conditions or stimuli, and various other 
signaling and metabolic pathways are involved. Exactly how 
many and which mechanisms affect NMD activation is still 
under investigation, and the list presented here is far from 
exhaustive. We would like to apologize to colleagues whose 
work is not cited in this review because of space limitation. As 
described here, many different mechanisms are also tightly 

linked to NMD, such as the miRNA gene regulation pathway, 
the unfolded protein response, and apoptosis. The interaction 
of all these pathways with NMD reflects the central role of 
NMD in cell homeostasis and in the development of multi- 
cellular organisms. We can divide the interactions between 
these processes and NMD into three categories: (i) bidirectional 
interactions in which NMD regulates a mechanism and this 
mechanism can also influence NMD efficiency; (ii) uni-
directional interactions in which NMD influences a specific 
process; (iii) unidirectional interactions in which a process 
influences NMD (Fig. 2). It is crucial to study and understand 
these interactions, especially because inhibiting NMD appears 
as an attractive therapeutic approach to correcting nonsense 
mutations in genetic diseases (6, 146). Such therapies will 
have to allow some NMD to occur or they will have to target 
their NMD-inhibiting action to specific nonsense-mutation- 
containing mRNAs rather than to all PTC-containing mRNAs. 
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