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Molecular Modeling and Functional
Analysis ofExomeSequencing–Derived
Variants of Unknown Significance
Identify a Novel, Constitutively Active
FGFR2Mutant inCholangiocarcinoma

abstract

Purpose Genomic testing has increased the quantity of information available to oncologists.
Unfortunately, many identified sequence alterations are variants of unknown significance
(VUSs), which thus limit the clinician’s ability to use these findings to inform treatment. We
applied a combination of in silico prediction and molecular modeling tools and laboratory
techniques to rapidly define actionable VUSs.

Materials andMethods Exome sequencing was conducted on 308 tumors from various origins.
Most single nucleotide alterations within gene coding regions were VUSs. These VUSs were
filtered to identify a subset of therapeutically targetable genes that were predicted with in silico
tools to be altered in function by their variant sequence. A subset of receptor tyrosine kinase
VUSswas characterized by laboratory comparison of eachVUS versus its wild-type counterpart
in terms of expression and signaling activity.

Results The study identified 4,327 point mutations of which 3,833 were VUSs. Filtering for
mutations in genes that were therapeutically targetable and predicted to affect protein function
reducedthese to522VUSsof interest, includinga largenumberofkinases.Tenreceptor tyrosine
kinase VUSs were selected to explore in the laboratory. Of these, seven were found to be
functionally altered. Three VUSs (FGFR2 F276C, FGFR4 R78H, and KDR G539R) showed
increased basal or ligand-stimulated ERK phosphorylation compared with their wild-type
counterparts, which suggests that they support transformation. Treatment of a patient who
carried FGFR2 F276C with an FGFR inhibitor resulted in significant and sustained tumor
response with clinical benefit.

Conclusion The findings demonstrate the feasibility of rapid identification of the biologic
relevance of somatic mutations, which thus advances clinicians’ ability to make informed
treatment decisions.
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INTRODUCTION

The application of next-generation sequencing
techniques to analyze tumor tissue provides op-
portunities for identifying genes and pathways
that drive transformation in individual patients.
Precision medicine initiatives use genomic infor-
mation to facilitate decisionmaking of therapeutic
options by defining each patient’s unique tumor
mutation landscape. In addition, these data in
conjunction with the patient’s clinical data have

the potential to increase our knowledge of mech-
anistic origins, progression, and maintenance of
tumors.1-4

State-of-the-art techniques can identify muta-
tions on a genome-wide scale, including whole-
genome and transcriptome sequencing, as well as
more-focused approaches, such as targeted exome
sequencing.5,6 These procedures have become
more affordable and standardized over time.
Thus, many institutions and corporations are(continued)
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capable of generating reliable sequencing data for
individual patients. Numerous studies have identi-
fied defined mutations of known functional signif-
icance as biomarkers to predict treatment response
and disease prognosis. For example, BRAFV600E
is well accepted as a therapeutic target inmetastatic
melanoma.7 However, a current challenge in ge-
nomic oncology care is the evaluation of the po-
tential therapeutic significance of large numbers of
uncharacterized, nonsynonymous sequence alter-
ations referred to as variants of unknown signifi-
cance (VUSs) in potentially oncogenic proteins.
When novel VUSs are identified, the clinical team
must try to draw conclusions about whether the
variant is a driver mutation or has no significance
for cancer pathogenesis. Although some recurrent
mutations within oncogenic proteins have been
characterized as having an effect on protein func-
tion and thus, the promotion of transformation,
novel VUSs identified through clinical genomic
testing often are lacking functional information.
Thedefinitionof the therapeutic valueofVUSs is a
current unmet need.8

We demonstrate how in silico analysis and experi-
mental laboratory studies can rapidly determine the
potential therapeutic value of a VUS. By using bio-
informatic analysis of exome sequencing results, a
large number of potentially deleterious VUSs that
are therapeutically targetable were identified with a
high frequency of occurrence in kinases. Three-
dimensional (3D) modeling of several VUSs located
withinkinase catalytic domainspredicted likely func-
tional significance of these VUSs. Laboratory in-
vestigations of a subset of receptor tyrosine kinase
(RTK) VUSs defined several functionally altered
VUSs. Most significantly, variant F276C in FGFR2
was found to be constitutively activated and sensitive
totargetedtherapyinvitro.Theclinicalvalueofthese
findingswas supportedbyanobservedresponse toan
FGFR inhibitor, BGJ398, in a patient’s tumor that
carriedFGFR2F276C.Theseintegratedapproaches
may provide new avenues to improve personalized
treatment of patients with cancer.

MATERIALS AND METHODS

Detailed materials and methods are available in
the Data Supplement.

Patients were referred to the Center for Individ-
ualized Medicine (CIM) Oncology Service9 be-
tweenOctober 2012 andDecember 2015.Clinical
information about these patients was obtained
from Mayo Clinic medical records. Informed
consent was obtained for each patient who par-
ticipated in the CIM research protocol approved
by the Mayo Clinic institutional review board

(IRB12-007850). TheMayoClinic IRB approved
the invitro functional studies of somaticmutations
identified in tumors of patients enrolled in the
CIM Oncology Service (IRB 15-003386). RED-
Cap (ResearchElectronicDataCapture) hosted at
the Mayo Clinic was used to collect and store
clinical follow-up data.10

RESULTS

VUSs Are the Most Common Findings in
Tumor Exome Sequencing Analysis

Targetedandexomesequencingwereperformedon
heterogeneous solid (57%) and hematologic (43%)
malignancies (Data Supplement). More than 4,300
single nucleotide variants were reported from 308
patient tumors (Data Supplement). VUSs, which
constitute mutations that are functionally unchar-
acterized or previously unreported in theCOSMIC
(Catalogue of Somatic Mutations in Cancer) data-
base,11 comprised the majority (89%) of the point
mutations observed in this cohort (Fig 1A). Obsta-
cles to clinical use of these data resulted from large
numbers of VUSs identified in each patient, un-
certainty whether identified VUSs are potential
drivers of transformation, and whether encoded
proteins were therapeutically targetable.

To begin to address these difficulties, VUSs were
filtered into a subgroup of 905 in genes that encode
proteinstherapeutically targetablebyFoodandDrug
Administration–approveddrugsorby investigational
agents available through clinical trials. Protein class
analysis demonstrated that RTKs and serine/
threonine kinases represent the largest therapeuti-
cally targetable functional classes, with mutations in
both hematologic and solid tumors (Fig 1B).

These 905 therapeutically targetable VUSs were
then evaluated in silico, and those determined to
be benign by two prediction tools were removed,
which left 522 potentially deleterious, therapeu-
tically targetable VUSs in 226 patients (Data
Supplement) or 12%of the total variants detected
(Fig 1A). The distribution of protein classes rep-
resented in this deleterious, therapeutically tar-
getable subgroup (Fig 1C) was similar to that of
the therapeutically targetable VUS group (Fig
1B). A large number of the VUSs in this cohort
occurred in kinase proteins (Fig 1B). Involvement
of kinases in transformation is well established,
and Food and Drug Administration–approved
drugs/clinical trials that target these pathways
are readily available.Of 83 potentially deleterious,
therapeutically targetable VUSs for which struc-
tural data were available for potential 3D model-
ing, 41 were in kinases (Data Supplement). From
these, six underwent representative 3D modeling
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with PyMOL software (Schrodinger, New York,
NY; Data Supplement), which predicted poten-
tially altered function on the basis of their lo-
cation within the protein’s kinase domain (Data
Supplement).

In Silico and Functional Characterization of
RTK VUSs Identified a Subset of New
Targetable Mutations

Ten RTK VUSs from varied solid and hemato-
logic malignancies (Data Supplement) and in re-
gions of functional interest were selected for

additional evaluation by in vitro testing. When
structural information was available, the RTK
VUS of interest underwent 3Dmodeling to com-
pare wild type (WT) and mutated protein struc-
tures. In addition, sequence alignment across
species demonstrated that the WT residue that
corresponded to each of the 10 VUSs was com-
pletely conserved among diverse species, includ-
ing mouse, rat, bovine, and human proteins. To
characterize RTK variants in vitro, FLAG-
epitope–taggedmammalian expression constructs
were generated for each RTK VUS and its WT
counterpart. Cancer cells were transiently trans-
fected to express each VUS andWTRTK, which
were compared for cellular localization (by im-
munofluorescence), expression level (byWestern
blot for FLAG-tagged RTK), and intracel-
lular signaling (by Western blot of ERK
phosphorylation).

FGFR4 variant R78H is located in the extracel-
lular first immunoglobulin-like domain 1 (Ig1).
Although Ig2 and Ig3 domains of the receptor are
involved in binding FGF, the FGFR4R78HVUS
in the Ig1 isnot involved in ligand interaction2 (Fig
2A). Biochemical studies of R78H demonstrated
no significant differences from WT FGFR4 in
overall expression levels when expressed in
KMCH-1 cholangiocarcinoma cells (Figs 2B
and 2C). Cellular localization of WT and R78H
FGFR4 was also similar and exhibited mainly a
plasma membrane distribution with intracellular
labeling of probable Golgi membranes (Fig 2E).
However, R78H FGFR4 exhibited a small, but
significantly elevated FGF2-stimulated phospho-
ERK (pERK) level compared with WT (Figs 2B
and 2D).

Two KDR VUSs, G55E and G539R, are located
in the extracellular domain in proximity to amino
acids that form disulfide bonds (C53 and C530);
thus, these amino acid substitutions may poten-
tially affect neighboring disulfide bonds. Expres-
sion ofWT andVUSKDR proteins in KMCH-1
cells demonstrated that G539R KDR was more
highly expressed than WT (Figs 3A and 3B). In
contrast, G55E exhibited decreased expression of
full-length (approximately 200 kDa) KDR com-
paredwith theWT form,with the appearance of a
novel approximately 70- to 80-kDa polypeptide
doublet in this variant as detected with FLAG
antibody (Fig 3A), which suggests that G55E
KDR is less stable than the WT protein. Cells
that expressed G539R KDR exhibited increased
pERK levels upon treatment with vascular endo-
thelial growth factor compared with the WT
form, whereas almost no pERK was detected in
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Fig 1. Tumor genomic
landscape. (A)Frequencyof
significant findings and
uncharacterized/
unreported variants of
unknown significance
(VUSs) in 4,327 point
mutations reported in 308
patient tumors, including
solid and hematologic
malignancies. (B)
Frequency of the most
commonly observed
protein classes in 905
therapeutically targetable
VUSs.
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cells that expressed G55EKDR (Figs 3A and 3C).
KDR variants and WT exhibited a similar punc-
tate distribution by immunofluorescence (Fig 3D).

VUSs G251E, V484M, and T643M of PDGFRA
and variants V258L and V316M of PDGFRB
were investigated. All variants fall in the extracel-
lular domain of their respective receptor except
T643M,whichoccurswithin thePDGFRBkinase
domain. V258L was predicted to be functionally
benign but was of interest for in vitro study be-
cause of its Ig3 location. PDGFR VUSs were
generally similar to their WT counterparts in
terms of expression, distribution of polypeptide
species on Western blots, PDGF-stimulated
pERK levels, and cellular localization (Data
Supplement), except that PDGFRAV484Mwas
significantly lower in expression and PDGF-
stimulated pERK levels than WT (Data Sup-
plement) and PDGFRB V316M was signif-
icantly lower in expression than WT (Data
Supplement).

F276C Mutant Is a New, Constitutively
Active Form of FGFR2

Although predicted in silico to be benign, FGFR2
K41E, identified in an acute myeloid leukemia,
was selected for additional study because of its
location in the extracellular Ig1 of FGFR2 and its
unknown effect on ligand binding in nearby Ig2
and Ig3 (Data Supplement). The FGFR2 F276C
mutation identified here from a cholangiocarci-
noma was also in a single cholangiocarcinoma
in the COSMIC database but has not been
characterized.11,12 F276C is located in an extra-
cellular, Ig-like C2-type 3 domain13 where ligand
binding occurs.14 A different amino acid substi-
tution at the same residue, F276V, has been re-
ported in Crouzon syndrome.15Modeling ofWT
and F276C FGFR2 showed that the extracellular
receptor of FGFR2 contains an intrinsic disulfide
bond between C278 and C342 in Ig3 (Fig 4A,
shown in gold). Residue F276 is proximal to the
disulfide bridge, which suggests that F276C dis-
rupts normal disulfide linkages. Alignment of
residue F276 is highly conserved from zebrafish
to humans, which suggests that its alteration dis-
rupts normal protein function (Fig 4B). These
data suggest that the F276C variant is functionally
altered relative to the WT form.

When FGFR2 proteins were expressed in
KMCH-1 cells, immunofluorescencemicroscopy
showed that the WT and K41E FGFR2 proteins
were localized mainly to the cell surface and
occurred on intracellular structures, likely endo-
somes and the Golgi apparatus (Fig 4C). In

contrast, the F276C variant exhibited an endo-
plasmic reticulum–like appearance and bright
Golgi-like intracellular structures in most cells,
with only a minority of cells showing an obvious
plasma membrane distribution (Fig 4C). Each
protein was expressed as an approximately 130-kDa
polypeptide as detected byWestern blot (Fig 4D).
However, the F276C variant was expressed at a
higher level and the K41E variant at a lower level
compared withWT (Fig 4D), although cells were
transfected with equal amounts of DNA for the
different FGFR2 constructs.

Functional characteristics of FGFR2 proteins
were assessed by studying pERK signaling. Be-
cause the F276C FGFR2 variant is expressed at
higher levels than WT when equal amounts of
DNAwere used, a lower ratio of F276C construct
DNA was used for transfection in the following
experiments so that resulting levels of WT and
F276C FGFR2 proteins were comparable (Figs
4E and 4F): KMCH-1 cells transfected with
FGFR2 constructs were treated for 16 hours in
serum-free media with FGF2, lysed, and analyzed
byWestern blot. In the absence of FGF2, control
transfected cells exhibited negligible levels of
pERK, and pERK was increased by FGF2 treat-
ment (Figs 4E and 4G). The expression ofWTor
K41E FGFR2 in the absence of FGF2 increased
pERK levels beyond control levels, and treatment
with FGF2 led to approximately fivefold increases
in pERKcomparedwith control for bothWTand
K41E. However, expression of F276C FGFR2
significantly increased the pERK level in the ab-
sence of FGF2 compared withWT FGFR2, with
little increase upon treatment with FGF2 (Figs 4E
and 4G). Similarly high constitutive activity of
F276C versus WT was observed in PANC1 cells
and KMBC cholangiocarcinoma cells. In sum-
mary, F276CFGFR2 has high expression, altered
cellular distribution, and increased constitutive
activity compared with WT.

Finally, the sensitivity ofWT and F276C FGFR2
activities to treatment with the FGFR inhibitor
BGJ398 were compared. KMCH-1 cells were
transfected with WT or F276C constructs and
were incubated for 16 hours the next day with
FGF2 in serum-freemedia.Cellswere then treated
for 3 hours with a range of concentrations of
BGJ398or dimethyl sulfoxide control, afterwhich
cells were lysed and analyzed for pERK levels. At
concentrations between 0 and 100 nM, ERK
phosphorylation was similarly partially inhibited
by BGJ398 in cells that expressedWT or F276C,
andbothFGFR2 formswere completely inhibited
by BGJ398 at 200 nM (Figs 5A and 5B). These

(C) Frequency of the most
commonly observed
protein classes in 522
therapeutically targetable,
potentially deleterious
VUSs.
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studies demonstrate that the F276C FGFR2 var-
iant has comparable sensitivity to BGJ398 relative
to WT.

Clinical Response to FGFR Inhibitor in a
Patient With Cholangiocarcinoma Who
Carried Somatic F276C VUS

TheFGFR2F276CVUSwas identified as a result
of targeted sequencing of a tumor from a 57-year-
old male with advanced, multifocal, intrahepatic
cholangiocarcinoma. He was originally treated

in a clinical trial with gemcitabine, cisplatin, and
silmitasertib, which resulted in a partial response.
He remained on this treatment of 10 months, at
which time his disease progressed and he was
switched to capecitabine and oxaliplatin. Two
months later, the disease became refractory to
that regimen. Consequently, a 600-gene next-
generation sequencing panel was obtained for
the patient’s tumor (CarisMolecular Intelligence,
Phoenix, AZ). The FGFR2 F276C VUS was
reported and confirmed to be a somatic event
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evaluation of FGFR4
variants of unknown
significance (VUSs). (A)
PyMOL modeling of wild-
type (WT; left) and R78H
(right) FGFR4. KMCH-1
cells were transfected to
express FLAG-tagged WT
and R78H FGFR4, or
vector only (control). After
1 day, the cells were
incubated at 37°C with and
without FGF2 in 0.1%
bovine serum albumin/
DMEM overnight. Right
panel: After 1 day, the cells
were incubated with and
without 20 ng/mLFGF2 in
0.1% bovine serum
albumin/DMEM for 16
hours at 37°C. (B) Cell
sampleswere then lysedand
subjected to Western blot
analysis. Total ERK and
vinculin are shown as
loading controls. (C)
Quantitation of FGFR4 in
Western blots (n = 5).
Values are mean 6 SE
normalized to WT
(2FGF2) levels. (D)
Quantitation of phospho-
ERK (pERK) in Western
blots (n = 5). Values are
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Bracket indicates groups
within treatment types
(2FGF or +FGF) among
FGFR4-transfected
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significantly different (P ,
.05) fromeachother in two-
tailed t tests. (E)HuCCT-1
cells were transfected with
FLAG-tagged WT and
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and then processed for
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antibody. DAPI, 49,6-
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Ig1, immunoglobulin-like
domain 1.

ascopubs.org/journal/po JCO™ Precision Oncology 5

http://ascopubs.org/journal/po


(data not shown). On the basis of this finding, the
patient started on BGJ398 (ClinicalTrials.gov
identifier: NCT02150967), achieved a partial re-
sponse to therapyafter2months (Figs5Cand5D),
and maintained the response for an additional
4 months, at which time new lesions developed
that led to discontinuation of BGJ398. As a result
of our in vitro studies of F276C, a mechanism of
action has now been correlated with this observed
clinical response of the tumor to BGJ398.

DISCUSSION

The volume of new data from individual and
group sequencing efforts (eg, The Cancer

Genome Atlas) has rapidly expanded the under-
standing of the incidence and frequency of muta-
tions in disparate cancers. The translation of these
data to affect treatment choices and patient care
remains a significant challenge. Few mutations
have extensive preclinical and clinical evidence
that support the effectiveness of targeted thera-
pies, and genomic testing often reveals that
tumors have numerous VUSs, including variant
sequences for which no functional data are available.
Mutations that have not been functionally char-
acterized present a significant and growing chal-
lenge to the treating physician. In the absence of
clinical trial or even preclinical data, the question
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of pERK levels inWestern blots as in (E).Values aremean6SE from three experiments normalized toWT(+FGF2) levels. Brackets indicate groupswithin
treatment types (2FGFor +FGF) amongFGFR2-expressing samples thatwere significantlydifferent (P, .05) fromone another in two-tailed t tests. In (G),
pERK levels from all FGFR2-transfected groups were significantly different from each control group.
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becomes how to quickly assess the potentially
deleterious effect of VUSs that occur in therapeu-
tically targetable genes. In vitro functional studies
can be conducted but often require weeks for
return of results compared with the hours or days
preferred in the clinical setting. With multiple
uncharacterized/unreported mutations returned
for each patient, a method of prioritizing which
variants to study in depth is necessary.

We addressed this problem by developing an
approach that uses an in silico filtering process
to prioritize mutations of the highest biologic and
clinical interest. From3,833VUSs, a subset of 522
was generated that encoded potentially targetable
proteins likely tobe functionally altered, including
numerous kinases. From this list, 10 RTK VUSs
were selected for further characterization. Of
these 10 variants, seven were found to be altered
in expression or activity relative to the WT pro-
tein, and three of these (FGFR2 F276C, FGFR4
R78H, and KDR G539R) demonstrated greater
activity than their WT counterparts (Table 1),
which suggests that these mutations play a role in
promoting oncogenesis. In contrast, four VUSs
(FGFR4 K41E, KDR G55E, PDGFRA V484M,
andPDGFRBV316M) exhibited reduced expres-
sion compared with their WT counterparts, and
thuswereunlikely to be involved inoncogenesis in
the tumors where they occurred. These findings

not only support the strength of our in silico
analysis in predictingwhetherVUSs are function-
ally altered but also point to the inability to dis-
tinguish among activating, deactivating, and
destabilizing mutations.

Optimization of appropriate cellular models is
important inmethods development for functional
evaluation of VUSs. This work was largely con-
ducted by using KMCH-1 cholangiocarcinoma
cells because of these cells’ high transfectability
and extremely low basal pERK levels. Readouts
for functional alterations were based on expres-
sion levels of the VUS and effects on pERK
signaling, which enabled rapid assessment. For
more understanding of the functional significance
of VUSs, these studies should be followed by
experiments that use cell types that match the
VUS tumor of origin and evaluate end points such
as cell growth and viability.

FGFR2 F276C was identified as a VUS of poten-
tial interest because of the presence of several
factors, includingpredictionof a deleterious effect
by two algorithms, 3D modeling that suggests an
increase in activity on thebasis of its location in the
ligand-binding Ig3, and proximity to a key disul-
fide bond. Germline mutations of residues to and
fromcysteine in this regionofFGFR2 (eg,Y328C,
C278F) have been reported to allow the formation
of aberrant disulfide bonds and to induce
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Fig 5. Response of
F276C FGFR2 to BGJ398
treatment. (A) KMCH-1
cells were transfected with
F276C and wild type (WT)
by using a 3.5/5DNA ratio,
respectively, to normalize
expression levels. After 1
day, cells were incubated
with serum-free medium
with 20 ng FGF2 for 16
hours. Cells were then
treated with BGJ398 (0 to
200 nM) or vehicle
(dimethyl sulfoxide) at
37°C for 3 hours. Cell
lysates were then analyzed
by Western blot for
FGFR2-FLAG and
phospho-ERK (pERK). (B)
Quantitation of dose
response to BGJ398 for
experiments as shown in
(A); n = 3 for each BGJ398
concentration. Values are
mean 6 SE and expressed
as percent inhibition of
pERK signal compared
with cells with no BGJ398.
Response of FGFR2
F276C–containing tumor
to BGJ398 in (C)
September 2015
(pretreatment, with
magnetic resonance
imaging showing a 30.1-
mm tumor diameter [red
line]) and (D)October 2015
(postinitiation of
treatment, with pan-FGFR
inhibitor BGJ398 magnetic
resonance imaging
showing tumor shrinkage
to an 18.2-mm diameter
[red line]).
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constitutive receptor dimerization and activation,
which lead to a variety of skeletal and craniosy-
nostosis disorders (eg, Crouzon and Pfeiffer
syndromes).16-18 Our molecular modeling com-
binedwith the demonstration that F276CFGFR2
is more highly expressed and constitutively active
than theWT receptor suggests that this mutation
alters disulfide bonds, which alters receptor di-
merization and activity similarly to the FGFR2
mutations seen in craniosynostosis syndromes. By
using in vitro studies, we show that the F276C
FGFR2 variant is sensitive to BGJ398, a pan-
FGFR inhibitor, which was also reflected clini-
cally in the response of a patient’s tumor when
treated with BGJ398 as part of a clinical trial (Fig
5). These data suggest that F276C is a therapeu-
tically targetable mutation. However, additional
studies, such as the testingofBGJ398effectiveness
in impeding growth of organoids or xenografts
that express WT versus F276C, are needed to
confirm that FGFR2 F276C is actionable.

The ability to identify potentially actionable
VUSs from numerous VUSs for each patient
tumor would simplify therapeutic choices. In sil-
ico analysis requires only hours to conduct and as
demonstratedhere, canyield a subset ofVUSs that
encode therapeutically targetable proteins likely
to be altered in function by their variant sequence.
In vitro functional studies are more time consum-
ing and may not fit practically within a patient’s
progression timeline, but they may yield more-
definitive findings. Ideally, attempts should be
made to develop publically available databases
of anonymized patient VUS profiles and re-
sponses to targeted therapies as well as VUS
databases with information on in vitro character-
ization of functional alterations and responses to
targeted pharmaceuticals.8,19 Oncologists and
their patients with cancers that are a challenge
to treat could greatly benefit from these resources.
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