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A B S T R A C T

Antioxidant phenolic compounds (PCs) are gaining popularity day by day for their health promoting
properties. Wheat is a very good source of natural antioxidant PCs. In the present study, extraction of PCs
was improved by solid-state fermentation (SSF) of wheat by Rhizopus oryzae RCK2012 which helped to
release the bound compounds from matrix. Different extraction conditions such as solvent composition
(water, methanol, 70%methanol, ethanol, 70% ethanol, acetone and 70% acetone), extraction temperature
(30–60 �C), extraction time (15–90min) and solid-to-solvent ratio (1:2.5 to 1:20, w/v) have been
optimized for the extraction of PCs from R. oryzae fermented wheat. Maximum PCs were extracted by
water at 40 �C within 45minwith solid-to-solvent ratio of 1:15 (w/v). Compositional analysis of PCs was
carried out by UPLC and TLC. Improved ABTS

�
+ [2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)]

and DPPH (2,2-diphenyl-1-picrylhydrazyl), hydroxyl radical and hydrogen peroxide scavenging
capacities, ferric reducing property and in vivo antioxidant capacity using Saccharomyces cerevisiae
were observed in case of freeze-dried water extract of fermented wheat as compared to unfermented
sample. Hence, SSF could be a promising technology to enhance the production and extraction of
phenolic compounds for the design of different functional foods and for the specific use as nutraceuticals.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

“Oxidative stress” may occur due to an imbalance between
oxidants and antioxidative defense system of human body. Under
this condition excessively produced reactive oxygen species (ROS)
and free radicals damage different biological molecules, such as
DNA, proteins, lipids as well as carbohydrates with significant
molecular and physiological damages of cells leading to numerous
diseased conditions [15]. Plant-derived different antioxidant
molecules with their reducing, free radical scavenging and metal
chelating properties can reduce oxidative stress keeping equilibri-
um between oxidants and antioxidants in human body [2].

Phenolic compounds are mostly studied diversified group of
phytochemicals synthesized from phenylalanine and tyrosine by
the enzymatic action of L-phenyloalanine ammonia-lyase, PAL (EC
4.3.1.5) in secondary metabolic pathway of plants during normal
developmental stage or in stressed conditions by ecological and
physiological pressures including infection by pathogen or insect,
wounding and UV-radiation etc. [24,33]. Over the last few decades,
they have become popular for their potential application in the

prevention of various chronic diseases, viz. cardiovascular disease,
cancer, osteoporosis, diabetes mellitus, and neurodegenerative
diseases etc. They protect cells by their antioxidant properties [21].
Over the last few years, various natural sources of different
antioxidant phenolic compounds have been explored including
fruits, vegetables, wines, coffee, tea, pulses and cereals in order to
restrict the use of health hazard synthetic antioxidants like
butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT)
and tertiary butyl hydroquinone (TBHQ), in different food
products.

Different conventional solvent extraction (liquid–liquid/solid–
liquid) strategies have been employed for the extraction of
phenolics from plantmaterials like Soxhlet extraction, maceration,
microwave-assisted extraction, ultrasound-assisted extraction,
high hydrostatic pressure extraction and supercritical fluid
extraction etc. [18]. Whole grain wheat is a very good source of
bioactive phenolic compounds. Extraction and isolation of
phenolic components of wheat are difficult because those
compounds are present as insoluble bound form conjugates with
sugars, fatty acids or amino acids. According to Adom and Liu [1]
about 90% phenolics are present as bound form in wheat. Hence,
without acid/base hydrolysis, extraction of most of the insoluble
bound phenolics is difficult by only organic solvents. Extraction of
natural phenolics by enzymatic treatment is a useful technique.

* Corresponding author. Tel.: +91 9871509870; fax: +91 11 24115270.
E-mail address: kuhad85@gmail.com (R.C. Kuhad).

http://dx.doi.org/10.1016/j.btre.2014.09.006
2215-017X/ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

Biotechnology Reports 4 (2014) 120–127

Contents lists available at ScienceDirect

Biotechnology Reports

journal homepage: www.elsevier .com/ locate /btre

http://crossmark.crossref.org/dialog/?doi=10.1016/j.btre.2014.09.006&domain=pdf
mailto:kuhad85@gmail.com
http://dx.doi.org/10.1016/j.btre.2014.09.006
http://dx.doi.org/10.1016/j.btre.2014.09.006
http://www.sciencedirect.com/science/journal/2215017X
www.elsevier.com/locate/btre


Several microorganisms are known to produce a variety of
enzymes in high titer values preferably under solid state
fermentation (SSF) process. Recently, SSF has gained a considerable
attention for the production and extraction of antioxidant
phenolics from plant materials, mainly pulses and cereals [21].
In this process, different carbohydrases like cellulases, b-glucosi-
dase, xylanase, pectinases, b-xylosidase, b-galactosidase, a-amy-
lases and esterase etc., produced by the microorganisms can
release the bound phenolics into soluble form [2].

In the present report, production and extraction of phenolics
were improved through SSF of wheat grains by Rhizopus oryzae
RCK2012. A single standardized method should not be recom-
mended for the extraction of all types of phenolic compounds.
Extraction process has to be optimized depending upon the nature
of the sample and purpose of the study [26]. In this study, different
extraction conditions such as solvent composition, extraction
temperature, solvent-to-solid ratio and extraction time have been
optimized for the extraction of phenolics from R. oryzae
RCK2012 fermented wheat grains. Furthermore, comparative
studies have been carried out between fermented and unferment-
ed wheat on the different antioxidant properties of freeze-dried
water extracts. Some studies already have been carried out for the
improvement of total phenolics and antioxidant properties of
wheat bran [22], rice [3], maize [10], wheat [2,4], buckwheat,
wheat germ, barley and rye [11], oat [6,7], oat, wheat, buckwheat
and pearl barley [30] and rice bran [27] utilizing various food
grade microorganisms. To the best of our knowledge, this is
the first report on optimization of different extraction con-
ditions of phenolic antioxidants from the R. oryzae fermented
wheat grains.

2. Materials and method

2.1. Materials

Following chemicals were procured from Sigma–Aldrich
chemicals (USA): 2,20-diphenyl-1-picryl-hydrazyl (DPPH), 2,20-
azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium
salt (ABTS), trolox, phenolic acid standards such as gallic,
protocatechuic, caffeic, 4-hydroxy benzoic acid, 4-hydroxy 3-
methoxy benzoic acid, trans-cinnamic acid and ferulic acid. All
other chemicals were analytical grade.

2.2. Organism, inoculum preparation and substrate

A new fungus was isolated locally from rotten maize and
identified as Rhizopus oryzae RCK2012 (GenBank Accession No.
JQ906263). It was cultivated and maintained on potato dextrose
agar (PDA). Inoculum was prepared from 3 days old slant by
suspending the fungal spores in sterile distilledwater and adjusted
to a concentration of 1�106 spores/ml. One batch of commercial
wheat grains were stored at room temperature and were used
throughout the experiments.

2.3. SSF of wheat

Ten gram of whole grain wheat taken in 250ml Erlenmeyer
flasks, was mixed with 10ml distilled water, autoclaved (121 �C,
15min) and subsequently cooled to ambient temperature. Fungal
spore suspensions (1�106 spores/ml) were inoculated separately
(at 10% inoculum ratio, w/v) onto the surface of the steamed
substrates, mixed properly and incubated for 3 days at 30 �C. The
unfermented wheat (control) was prepared without addition of
spore suspension.

2.4. Optimization of phenolic compounds extraction conditions

The fermentedmass was taken out of the Erlenmeyer flask after
3 days, autoclaved and dried in an oven at 60 �C for 24h. The dried
unfermented and fermented substrates were ground in an electric
grinder. All samples tested were defatted by blending the ground
material with hexane (1:5 w/v, 5min, thrice) at ambient
temperature. Defatted samples were air dried for 24h and stored
at �20 �C for further analysis. Defatted and air dried samples were
extracted with solvents [1:10 w/v] twice at 50 �C for 60min in
water bath. After filtering through Whatman No.1 filter paper, the
filtrate was used for comparative study of total phenolic content
and determination of %DPPH scavenging antioxidant property.

In order to observe the effect of different temperatures for the
extraction of phenolics, unfermented and fermented wheat were
extracted with water, methanol, 70% methanol, ethanol, 70%
ethanol, acetone and 70% acetone at different temperatures (23–
60 �C) for 60min.

Whereas, to find out the effect of alcohol concentration on
extraction of total phenolic compounds, phenolic compoundswere
extracted from fermented wheat using different methanol and
ethanol concentration, ranging from 40% (v/v) to 90% (v/v) at
optimum temperature for 60min. Moreover, effect of extraction
time (15–90min) and effect of solid-to-solvent ratio (1:2.5–1:20;
w/v) were evaluated for the maximum extraction of antioxidant
phenolic compounds from fermented wheat.

Water extract derived from unfermented wheat (UFW) and the
newly isolated strain Rhizopus oryzae RCK2012 fermented wheat
(ROFW) were freeze-dried and stored in sealed vials at 4 �C for
further analysis.

The extraction yield was calculated by the following equation:

jExtraction yield% ¼ Weight of freeze� dried extract ðgÞ
Weight of defatted sample ðgÞ j � 100

2.5. Analytical methods

2.5.1. Determination of total phenolic content (TPC)
Total phenolic content was estimated according to Emmons and

Peterson [12]. Suitablydiluted0.5mlaliquots fromphenolic extracts
were mixed with 0.5ml Folin–Ciocalteu reagent. Then 1.5ml of 20%
aqueous sodium carbonate solutionwas added, mixed properly and
incubated for15minat roomtemperature.Thesampleswerediluted
with 5ml of distilled water and absorbancewas recorded at 725nm
against a blank. Theamount of total phenolicwas calculated as gallic
acid equivalent (GAE) from the standard calibration curve of gallic
acid and expressed as mgGAEg�1 grain.

2.5.2. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay
The free radical scavenging activity of different fractions was

measured by the DPPH radical scavenging method according to
Brand-Williams et al. [5]. DPPH (Sigma–Aldrich Chemie, Steinheim,
Germany) solution of 0.1mM concentration inmethanol was added
to 0.5ml of properly diluted phenolic extracts. The change in
absorbance at 515nmwasmeasured after 30min of incubation. The
DPPH radical-scavenging activity of phenolic extract was calculated
according to the following equation.

% of DPPH radical scavenging activity ¼ ðAbC� AbSÞ
AbC

� �
� 100

where, AbC was the absorbance of the control and AbS was the
absorbance in the presence of the test compound.

A standard curve was prepared by using different concen-
trations of Trolox. The DPPH scavenging activities of phenolic
extracts were expressed as mmol Trolox equivalent (TE) g�1

grain.
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2.5.3. ABTS radical cation scavenging assay
It was determined following the improved ABTS decolorization

assaymethod of Re et al. [24]. ABTS
�
+was generated byoxidation of

ABTSwith potassium persulphate. Onemilliliter of ABTS
�
+ solution

was mixed with 10ml of water extract and the decrease of
absorbance was measured after a reaction time of 1min. Similar to
DPPH scavenging activity, ABTS

�
+ scavenging property was

expressed as mmol TE g�1 grain.

2.5.4. FRAP (ferric reducing antioxidant property) assay
It was estimated by the method of [29] with some modifica-

tions. The freeze-dried water extract (100ml) of UFWand ROFWat
different concentrations (2.5–10mg/ml) was mixed with 1.5ml of
FRAP reagent (10 parts of 300mM sodium acetate buffer at pH 3.6,
1 part of 10mM TPTZ solution and 1 part of 20mM FeCl3, 6H2O
solution) followed by incubation at 37 �C in awater bath for 30min.
Then the increase in absorbance was measured at 593nm. FRAP
values were expressed in terms of mM ascorbic acid equivalent
(AAE)/ml using L-ascorbic acid as standard.

2.5.5. Hydroxyl radical scavenging assay
The scavenging capacity for hydroxyl radical was estimated

following the method of Halliwell et al. [16]. The reaction mixture
contained 0.1ml of 1mM EDTA, 0.01ml of 10mM FeCl3, 0.1ml of
10mM H2O2, 0.36ml of 10mM deoxyribose, 1.0ml of different
concentrations (0.01–0.1mg/ml) of freeze-dried water extract of
UFW, or ROFW, 0.33ml of phosphate buffer (50mM, pH 7.4) and
0.1ml of 1mM ascorbic acid in sequence. After incubation at 37 �C
for 1h, about 1.0ml of the incubated mixture was mixed with
1.0ml of 10% TCA and 1.0ml of 0.5% TBA to develop the pink color
and the absorbance was recorded at 532nm.

%Hydroxyl radical scavenging activity ¼ AbC� AbS
AbC

� �
� 100

where, AbC =absorbance of the control andAbS= absorbance in the
presence of test sample.

2.5.6. Hydrogen peroxide scavenging activity
Method of Ruch et al. [25] was used for the estimation of H2O2

scavenging property. The freeze-dried water extract (0.4ml) of
UFWand ROFWat different concentrations (0.01–0.05mg/ml) was
mixed with 0.6ml of 40mM H2O2 prepared in 0.1M phosphate
buffer (pH 7.4). After 10min incubation the absorbance was noted
at 230nm. A separate blank sample was used for background
subtraction for each concentration.

%H2O2 scavenging activity ¼ 1� AbS
AbC

� �
� 100

Where, AbC =absorbance of the control and AbS = absorbance in
the presence of test sample.

2.6. In vivo antioxidant capacity using Saccharomyces cerevisieae

Saccharomyces cerevisieae was cultured for 24h in a 50ml
volume of MGYP media (Malt extract; 3 g/l, Glucose; 20 g/l; Yeast
extract; 3 g/l; Peptone; 5 g/l) by inoculating a single colony. This
primary culture was inoculated [1%] in five culture tubes
containing 5ml of MGYP media and incubated at 30 �C in shaking
condition at 150 rpm. After 6h of incubation, 100ml of ascorbic
acid (10mg/ml) as positive control and two freeze-dried phenolic
extracts (10mg/ml), namely, UFW and ROFW were added
separately in each tube. Then 10ml of hydrogen peroxide (H2O2)
as oxidant was added in each tube. Growth of the yeast culturewas
monitored taking absorbance at 600nm at the end of 20h. The
effect of phenolic extracts in presence of oxidants on the net
growth of yeast cells was determined according to the following
equation.

Ayeast growth ¼ Atest sample � Acontrol

Acontrol
� 100

Where Ayeast growth = net growth of H2O2 induced yeast cells after
treatment with phenolic extracts, Acontrol = absorbance of yeast
cells in presence of H2O2,Atest sample = absorbance of yeast cells in
presence of H2O2 and phenolic extracts.

2.7. Thin layer chromatography (TLC) and ultra-performance liquid
chromatography (UPLC)

Water extracts (50ml) of unfermented and fermented wheat
were extracted with ethyl acetate [1:1; v/v] for 30min in a
separating funnel. The ethyl acetate fractions were evaporated to
dryness and reconstituted in methanol. Now the phenolic extract
was filtered through 0.45mm Supor1-450 membrane disc filter
(Pall Gelman Laboratory, USA) and then thin layer chromatography
(TLC) of PCs was performed on silica gel plates using mobile phase
chloroform:methanol:formic acid [85:15:1; v/v/v] and visualized
under short wave (254nm) and longwave UV light (365nm). Same
samples (2ml) were analyzed by an ultra-performance liquid
chromatography (Waters, Milford, USA). The separation of
phenolics was performed on a BEH 300C-18 column (2.1mm�50
mm, 1.7mm). The column temperature, total run time and flow

Table 1
TPC and DPPH scavenging property of phenolics extracted at different temperatures with different solvents.

Solvents TPC (mgGAEg�1 grain)

DPPH� scavenging property (mmol TEg�1 grain)

30 �C 40 �C 50 �C 60 �C

Control Fermented Control Fermented Control Fermented Control Fermented

Water 0.44�0.12 5.46�0.20 0.62�0.02 6.78�0.15 0.77�0.03 6.70�0.30 0.98�0.06 5.82�0.22
1.24�0.05 4.95�0.26 1.29�0.10 8.85�0.05 1.29�0.01 8.50�0.19 1.70�0.08 8.44�0.17

Ethanol 0.00�0.00 1.48�0.29 0.13�0.06 2.55�0.26 0.25�0.04 2.73�0.11 0.28�0.01 2.93�0.17
0.00�0.00 1.54�0.04 0.32�0.06 2.95�0.10 0.50�0.21 2.03�0.22 0.50�0.01 4.03�0.21

70% Ethanol
methanol

0.18� .00 6.40�0.84 0.62�0.08 6.19�0.32 0.78�0.11 5.92�0.04 0.81�0.01 5.12�0.06
1.36�0.09 6.06�0.61 1.55�0.05 8.51�0.66 1.52�0.04 6.67�0.55 1.57�0.10 5.57�0.20

Methanol 0.00�0.00 3.73�0.48 0.15�0.01 4.33�0.16 0.20�0.06 4.40�0.47 0.44�0.07 4.36�0.20
0.17�0.08 5.35�0.09 0.71�0.07 6.41�0.23 0.72�0.19 6.45�0.39 1.20�0.14 6.67�0.22

70% Methanol 0.22�0.01 5.74�0.08 0.68�0.08 5.92�0.07 0.68�0.09 5.68�0.076 0.80�0.06 5.35�0.50
1.51�0.14 8.11�0.43 1.81�0.12 8.91�0.51 1.58�0.02 8.41�0.15 1.50�0.06 8.34�0.75

Acetone 0.00�0.00 1.07�0.02 0.21�0.06 1.12�0.05 0.30�0.01 1.19�0.38 0.50�0.04 1.54�0.09
0.00�0.00 1.36�0.14 0.29�0.21 1.23�0.19 0.45�0.12 1.43�0.27 0.55�0.06 2.27�0.1

70% Acetone 0.40�0.00 5.03�0.22 0.70�0.01 4.83�0.24 0.97�0.04 5.88�0.01 1.10�0.06 5.89�0.26
1.67�0.01 4.85�0.75 1.75�0.01 4.99�0.30 1.80�0.05 6.05�0.23 2.02�0.05 6.28�0.46
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rate were set at 30 �C, 5min and 0.6ml/min, respectively. Two
mobile phases consisted of water containing 0.1% TFA (solvent A)
and acetonitrile containing 0.1% TFA (solvent B) were used and
gradient elutionwas carried out using the following program: 95%
A to 90%A in 1min, 90% A to 85%A in 1min, 85% A to 75%A in 1min,
75% A to 40% A in 1min, 40% A to 0% A in 0.2min, 0% A to 0% A in
0.6min and 0% A to 95% A in 0.2min. The peaks were identified by
congruent retention times and UV spectra (280nm) and compared
with standards and quantified based on their peak’s area.

2.8. Statistical analysis

The mean values and the standard deviations were calculated
from the data obtained from experiments in triplicates. The data
were analyzed by one-way analysis of variance (ANOVA).

3. Results and discussion

3.1. Effect of extraction conditions

3.1.1. Effect of different temperatures for the extraction of phenolics
with different solvents

It is well known from literature data that extraction conditions
and characteristics of the sample can affect the efficiency of the
extraction, independently or interactively. The solvent and the

temperature are the process parameters that usually have the
greatest impact on the efficiency of extraction of bioactive
compounds from the plant material. In general, alcohol/water
solutions exert a better influence on the extractability of phenolic
compounds in comparison to the mono-component solvents. It is
noted that a solvent system for extraction is selected according to
the purpose of extraction such as preparation or analysis, the
nature of interested components, the physicochemical properties
of the matrix, the availability of reagents and equipment, cost and
safety concerns [31].

The amount of extracted phenolic compounds obtained in this
study by different solvents at different temperatures (30–60 �C) is
presented in Table 1. In case of unfermented wheat (control),
maximum TPC was attained in 70% acetone extract at 60 �C
(1.1mgGAEg�1 grain). Whereas, in case of R. oryzae fermented
wheat, maximum TPC (6.78mgGAEg�1 grain) was obtained in
water extract at 40 �C. A comparable amount of TPC was extracted
by the same solvent (6.7mgGAEg�1 grain) at 50 �C. Almost same
amount of phenolics were released from fermented wheat by 70%
methanol (5.92mgGAEg�1 grain) at 40 �C and 70% acetone at 50 �C
(5.89mgGAEg�1 grain) and 60 �C (5.89mgGAEg�1 grain). Simi-
larly, therewas no significant difference of TPC of fermentedwheat
extracted by 70% ethanol at 30 �C (6.4mgGAEg�1 grain), 40 �C
(6.19mgGAEg�1 grain) and 50 �C (5.92mgGAEg�1 grain). If we
consider the water soluble phenolics, it was clearly observed that

[(Fig._1)TD$FIG]

Fig. 1. Effect of solid-to-solvent ratio (A) and extraction time (B) for the extraction of antioxidant phenolic compounds.
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SSF by R. oryzae RCK2012 increased the TPC of wheat by�11 fold at
40 �C. Recently, Schmidt et al. [27] observed only 2 fold increment
of TPC in rice bran after SSF by R. oryzae.

Various mechanisms have been identified for the antioxidant
property of different plant extracts such as radical scavenging,
binding of transition metal ion catalysts, decomposition of
peroxides, prevention of chain reactions, prevention of continued
hydrogen abstraction etc. About 20 assay methods are already
available in literature for the estimation of antioxidant property
[23]. DPPH scavenging assay is awidely used and one of the easiest
method to evaluate the antioxidant property of a sample within a
very short time period. DPPH is a stable free radical with purple
color. Through electron transfer or hydrogen atoms donation,
antioxidant compounds neutralize the free radical character of
DPPH and thus purple color of the reaction mixture is changed to
yellow [2].

Table 1 shows the DPPH scavenging property of unfermented
and fermented wheat, extracted at different temperatures with
different solvents. Increasing the extraction temperature from
30 �C to 60 �C, TPC as well as antioxidant activity were increased in
unfermented wheat. Similar to TPC, maximum DPPH scavenging
property (2.02mmol TE g�1 grain) was observed in 70% acetone
extract of unfermented wheat at 60 �C. Similarly, Zhou et al. [20]
showed 50% acetone as a better solvent as compared to 50%
methanol, for the extraction of antioxidant compounds from
wheat.

Whereas, in case of fermented wheat, maximum %DPPH
scavenging property was attained at 40 �C with equivalent amount
of scavenging activity inwater (8.85mmolTEg�1 grain), 70%ethanol
(8.51mmolTEg�1 grain) and70%methanol (8.91mmolTEg�1 grain).
Therefore, 40 �C was selected as the optimum temperature for the
extraction of antioxidant compounds from R. oryzae fermented
wheat. Itwas alsoobserved thatDPPHscavengingpropertyofwater
soluble phenolics extract of wheat was increased by �7 fold (at
40 �C) in fermented wheat as compared to unfermented sample.
Therefore, it has been proved that SSF is a fruitful method for the
extraction/production of phenolics antioxidants from wheat.
Cordyceps militariswas used by Zhang et al. [32] for the production
of antioxidant supplements via SSF of wheat, however, with very
less amount of improvement in antioxidant properties and 70%
acetone was proved as the best extraction solvent. Comparisons in
antioxidant properties of cereals results among individual research
laboratories and groups are very difficult because different solvent
systems and extracting conditions have been employed [20]. As
fermented wheat was proved as a better source of antioxidant
phenolic components, it was used for the further study and two
other extraction conditions were optimized.

3.1.2. Effect of solid-to-solvent ratio
Solid-to-solvent ratio showed a significant effect for both TPC

and DPPH scavenging property as shown in Fig.1(A). Among all the
ratios, solid-to-solvent at 1:15 (w/v) exhibited highest amount of
DPPH scavenging property as well as TPC for water extract of R.
oryzae fermentedwheat. Zhang et al. [32] and Bhanja et al. [2] used

solid-to-solvent ratio of 1:10 (w/v) for the extraction of phenolic
antioxidants from fermented wheat. To our knowledge, there is no

Table 2
Extraction yields, TPC and IC50 of DPPH and ABTS

�
+ scavenging property and in vivo antioxidant activity of UFW and ROFW.

Sample Extraction yield % (w/w) Total phenolics content
(mgGAEg�1 extract)

IC50 of DPPH�

(mg/ml)
IC50 of ABTS+

(mg/ml)
% yeast cell growth

UFW 6.07�0.70a 5.15�0.22a 5.25�0.053a 121.44�8.65a 22.36�1.2a

ROFW 25.88�0.53b 24.55�0.74b 0.64�0.004b 34.93�0.42b 31.55�2.1b

Vit C – – 0.01�0.001c 0.24�0.01c 30.81�2.8b

Values were expressed as means� standard deviation. Values marked by the different lower-case superscript letters (from “a” to “c”) within a column denote statistically
significant differences (p<0.05).

[(Fig._2)TD$FIG]

Fig. 2. FRAP (A), hydroxyl radical (B) and H2O2 scavenging property (C) (UFW:
unfermented wheat; ROFW: Rhizopus oryzae fermented wheat).
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report available on the optimization of solid-to-solvent ratio for
the extraction of phenolics from wheat or wheat based sample.

3.1.3. Effect of extraction time
Extraction time is crucial in minimizing energy and cost of the

extraction process. Effect of extraction time is shown in Fig. 1(B).
Extraction time of 75min was chosen as the optimum extraction
time with maximum TPC of 8.33mgGAEg�1 grain and DPPH
scavenging property of 11.4mmol TE g�1 grain. Liyana-Pathirana
and Shahidi [8] optimized the conditions of phenolics extraction
from whole grain wheat through response surface methodology
(RSM) and found that the optimal condition for the total
antioxidant activity of wheat was 54% ethanol as solvent, 61 �C
as extraction temperature and 64min as extraction time. In the
present study, water was selected for the most suitable extracting
solvent because it is the cheapest solvent and water extract of
cereal grain fractions are of greatest relevance to in vivo activity as
they contain water soluble antioxidants and thus more bioacces-
sible from food matrix in the digestive tract [13].

3.2. Comparative study of UFW and ROFW freeze-dried extracts

3.2.1. Extraction yields, TPC and IC50 of DPPH and ABTS
�
+ scavenging

property and in vivo antioxidant capacity
The extraction yields and TPC of water extracts are shown in

Table 2. Significantly higher (p<0.05) extraction yield was found
with ROFW [25.88%] than the UFW [6.07%]. Extraction yield was
observed to be increased after SSF, which was mainly due to the
fact that after colonization of fungus, wheat was degraded and
morewater soluble substances like phenolics, sugars, organic acids
and pigments were released [3]. Same concentration (10mg/ml) of
each freeze-dried extract was prepared in water and TPC was
compared. TPC of the fermented wheat extract was significantly
higher (p<0.05) than UFW due to the release of more water
soluble PCs by SSF.

The IC50 value was defined as the concentration of the sample
requiredfor50%inhibition.Thevaluewascalculatedbyinterpolation
of linear regression analysis. IC50 values for DPPH scavenging
propertyofUFWandROFWwere5.25and0.64inmg/ml,respectively
(Table 2).

ABTS
�
+ scavenging assay is another method for the determina-

tion of free radical scavenging property of antioxidants. Reaction
between ABTS and potassium persulfate produces blue colored
ABTS

�
+ and decrease in the absorbance is caused by antioxidant

phenolic compounds which reduce this preformed cation radical.
In case of ABTS

�
+ scavenging property, the IC50 values of UFW and

ROFWwere 121.44mg/ml and 34.93mg/ml, respectively (Table 2).
The lower IC50 values of ROFW in both the cases presented
relatively higher radical scavenging activity.

AntioxidantpropertiesofUFWandROFWestimated invivousing
S. cerevisiae are presented in Table 2. ROFW showed strong activity
against H2O2, which was comparable with Vit C in same
concentration (10mg/ml). However, UFW showed less antioxidant
activity against H2O2.

3.2.2. FRAP, Hydroxyl radical and H2O2 scavenging property
In FRAP assay system, antioxidant components reduce ferric–

tripyridyltriazine complex to colored ferrous–tripyridyltriazine
complex [3]. Fig. 2(A) shows the reducing power of UFWand ROFW
extracts. ROFW showed higher FRAP at each concentration. The
reducing property of tested samples indicates that they are
electron donors. This result shows that SSF can improve the ferric
reducing power of the wheat.

Hydroxyl radicals (OH) generated during the very well-known
Fenton reaction degrade DNA deoxyribose with the help of Fe2+ as
an important catalyst and may cause DNA strand breakage or DNA
fragmentation [14]. The inhibition of OH mediated deoxyribose
damage was determined by hydroxyl radical scavenging assay. As
shown in Fig. 2(B), the water extract of ROFW exhibited dose-
dependence (0.01–0.1mg/ml) of hydroxyl radical scavenging
activity. The scavenging effect of fermented wheat extract was
higher than that of UFW at all the concentrations tested. In this
assay, the IC50 values of UFW and ROFW were 0.093mg/ml and
0.04mg/ml, respectively. ROFW extract had lowest value of IC50

showing the maximum hydroxyl radical scavenging property.
H2O2 itself is not an extremely reactive oxygen species but it

may give rise to OH which is a very toxic to cell. In the present
study, all the samples were capable of scavenging H2O2 in a dose-
dependent manner (Fig. 2(C)). The H2O2 scavenging effect of same
dose (0.05mg/ml) of water extracts decreased in the order of

[(Fig._3)TD$FIG]

Fig. 3. TLC profile of UFW and ROFWwhenwater extract was phase separated by ethyl acetate, dried and dissolved in methanol recorded under short wave UV (A) and long
waveUV (B) [GA: gallic acid; PCA: protocatecheuic acid; HBA: 4-hydroxybenzoic acid; HMBA: 4-hydroxy-3-methoxybenzoic acid; CA: caffeic acid; FA: ferulic acid; TCA: trans-
cinnamic acid; SU: unknown compound in short wave UV; LU: unknown compound in long wave UV].
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ROFW [59.0%] >UFW [35.8%]. The IC50 values of UFW and ROFW
were 0.08mg/ml and 0.04mg/ml, respectively. The lowest IC50

value of ROFW represents maximum H2O2 scavenging property.

3.3. Profile of phenolic compounds

TLC and UPLC profiles of phenolics extracted from unfermented
and R. oryzae RCK2012 fermentedwheat are shown in Figs. 3 and 4,
respectively. Seven standards were separated within 5min in
UPLC. In case of UFW, the main phenolic compounds detected in
UPLC as well as in TLC short wave UV were 4-hydroxy benzoic acid
(HBA; 0.26mg/g wheat) and 4-hydroxy-3-methoxybenzoic acid
(HMBA; 0.22mg/g wheat), whereas, two other unknown com-
pounds (UU1 and UU2) were detected in UPLC. According to TLC of
ROFW sample, three bands were identified in short wave UV
namely HBA, HMBA and an unknown compound (SU), while, in
longwaveUV four unknownbandswere observed (LU1-4). In UPLC

profile of ROFW, HBA (1.61mg/g wheat) and different unknown
phenolic compounds (majorly RU1-5) were detected. Those
unknown compounds might be contributing big role for the
antioxidant property of ROFW. Through UPLC analysis [17],
observed that syringic acid was the main compound (75.3–77%)
in the free phenolic extracts (80% ethanol) of wheat meal. In our
study, water was used as extracting solvent. Water extracts were
phase separated by ethyl acetate, dried, dissolved in methanol and
then they were injected in UPLC column. It is very difficult to
compare our data with literature because different methods have
been used for extraction. Moreover, antioxidant property varies
between species and varieties of grains [34].

SSF is a complex biochemical process where several hydrolyz-
ing enzymes like a-amylase, xylanase, b-glucosidase, esterases,
etc., are produced, which are predicted to be associated in the
release of water soluble and more bioavailable PC from insoluble
bound form [4]. Along with enzymatic release of PC, some other

[(Fig._4)TD$FIG]

Fig. 4. UPLC profile of standard phenolic compounds (A), UFW (B) and ROFW (C) at 280nm [1: gallic acid; 2: protocatecheuic acid; 3: 4-hydroxybenzoic acid; 4: 4-hydroxy-3-
methoxybenzoic acid; 5: caffeic acid; 6: ferulic acid; 7: trans-cinnamic acid; UU: unknown compound in UFW; RU: unknown compound in ROFW].
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unknown biochemical pathways might be involved in SSF process
to increase the TPC and antioxidant properties of wheat. Moreover,
in addition to PC, some other water soluble bioactive compounds
like small peptides, xylo-oligosaccharides etc., produced during
SSF might be contributing in the enhancement of antioxidant
properties of fermented wheat [19,9,28].

4. Conclusion

Present study demonstrates that SSF of wheat by R. oryzae
RCK2012 is a very fruitful method for the enhancement of TPC and
antioxidant potential. On the basis of the results obtained, it is
clearly indicated thatwater extract of ROFWhas strong antioxidant
property against several in vitro and an in vivo oxidative system
compared to unfermented wheat. Predominantly insoluble bound
phenolics in cereals are less bioavailable. To maximize the possible
health benefits of cereals, SSF is a great option for the improvement
of bioavailability of cereal phenolics by increasing their solubility.
In comparison to unfermented wheat, consumption of fermented
wheat might give more health protection against oxidative
damages. Moreover, fermented extract can be served as powerful
sources of natural antioxidants over the synthetic antioxidant
compounds used very often in food and pharmaceutical industry.
Additionally, along with PCs some other bioactive compounds
might be produced during SSF, which were contributing antioxi-
dant property. SSF process could be an innovative technology in
cereal science research to develop nutrition rich and more healthy
cereal products. Fermented wheat extract contains a complex
mixture of phenolics. Further study is necessary to identify the
unknown phenolic compounds.
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