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Abstract
Objectives  Pulmonary perfusion abnormalities are prevalent in patients with chronic obstructive pulmonary disease (COPD), 
are potentially reversible, and may be associated with emphysema development. Therefore, we aimed to evaluate the clinical 
meaningfulness of perfusion defects in percent (QDP) using DCE-MRI.
Methods  We investigated a subset of baseline DCE-MRIs, paired inspiratory/expiratory CTs, and pulmonary function testing (PFT) of 
83 subjects (age = 65.7 ± 9.0 years, patients-at-risk, and all GOLD groups) from one center of the “COSYCONET” COPD cohort. QDP 
was computed from DCE-MRI using an in-house developed quantification pipeline, including four different approaches: Otsu’s method, 
k-means clustering, texture analysis, and 80th percentile threshold. QDP was compared with visual MRI perfusion scoring, CT parametric 
response mapping (PRM) indices of emphysema (PRMEmph) and functional small airway disease (PRMfSAD), and FEV1/FVC from PFT.
Results  All QDP approaches showed high correlations with the MRI perfusion score (r = 0.67 to 0.72, p < 0.001), with the high-
est association based on Otsu’s method (r = 0.72, p < 0.001). QDP correlated significantly with all PRM indices (p < 0.001), with 
the strongest correlations with PRMEmph (r = 0.70 to 0.75, p < 0.001). QDP was distinctly higher than PRMEmph (mean differ-
ence = 35.85 to 40.40) and PRMfSAD (mean difference = 15.12 to 19.68), but in close agreement when combining both PRM indices 
(mean difference = 1.47 to 6.03) for all QDP approaches. QDP correlated moderately with FEV1/FVC (r = − 0.54 to − 0.41, p < 0.001).
Conclusion  QDP is associated with established markers of disease severity and the extent corresponds to the CT-derived com-
bined extent of PRMEmph and PRMfSAD. We propose to use QDP based on Otsu’s method for future clinical studies in COPD.
Key Points 
• QDP quantified from DCE-MRI is associated with visual MRI perfusion score, CT PRM indices, and PFT.
• The extent of QDP from DCE-MRI corresponds to the combined extent of PRMEmph and PRMfSAD from CT.
• Assessing pulmonary perfusion abnormalities using DCE-MRI with QDP improved the correlations with CT PRM indices  
   and PFT compared to the quantification of pulmonary blood flow and volume.
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Abbreviations
AIF	� Arterial input function
ANOVA	� One-way analysis of variance
CA	� Contrast agent
CCA​	� Cross-correlation analysis
COPD	� Chronic obstructive pulmonary disease
DCE-MRI	� Dynamic contrast-enhanced magnetic 

resonance imaging
FD	� Fourier decomposition
FEV1%predicted	� Forced expiratory volume in 1 s per-

cent predicted
FEV1/FVC	� Ratio between forced expiratory vol-

ume in 1 s and forced vital capacity
fSAD	� Functional small airways disease
HPV	� Hypoxic pulmonary vasoconstriction
PBF	� Pulmonary blood flow
PBV	� Pulmonary blood volume
PFT	� Pulmonary function testing
PRM	� Parametric response mapping
QDP	� Perfusion defects in percent
Rmax map	� Residue function map at the time point 

of maximum contrast enhancement
R(t) map	� Time-resolved residue function map

Introduction

COPD is characterized by progressive airflow limitation 
caused by airway obstruction and emphysematous lung 
destruction. The resulting regional alveolar hypoxia leads 
to hypoxic pulmonary vasoconstriction (HPV), reducing 
pulmonary perfusion regionally. Moreover, the alveolar-cap-
illary bed and pulmonary vessels are obliterated by emphy-
sematous destruction. Both processes, HPV and the loss of 
lung capillaries, become apparent on functional imaging as 
regional perfusion abnormalities. DCE-MRI is an estab-
lished technique to assess regional perfusion abnormalities 
by exploiting the contrast enhancement in lung parenchyma 
during the first pass of an i.v. injected contrast agent (CA) 
bolus. In clinical studies, perfusion abnormalities using 
DCE-MRI are assessed either by visual scoring systems or 
by computational methods for quantitative evaluation [1, 
2]. The use of semi-quantitative scoring systems to monitor 
treatment effects on pulmonary perfusion might be challeng-
ing in early clinical studies designed to test treatments that 
slow emphysema progression. Due to the relatively slow dis-
ease progression in COPD and the short follow-up-intervals 
(up to 3 months) in early clinical studies, only relatively sub-
tle changes in pulmonary perfusion are expected in such set-
tings, which may remain undetected by scoring systems [3].

In previous studies, pulmonary blood flow (PBF) and 
pulmonary blood volume (PBV) were used to quantify pul-
monary perfusion from DCE-MRI [1, 4, 5]. Particularly 
interesting for clinical studies, the quantification by com-
puter algorithms limits human interaction and generates 
potentially more objective results than visual assessments. 
However, DCE-MRI in the lung is adversely affected by low 
contrast-to-noise ratios, non-linearities of the CA-signal 
relationship [6, 7], and pronounced image artefacts, which 
impair the reproducibility and robustness of PBF and PBV 
[8, 9]. The introduction of unsupervised image clustering 
algorithms on Fourier decomposition (FD), hyperpolar-
ized helium, and xenon MRI enabled the quantification of 
the extent of perfusion or ventilation abnormalities relative 
to the lung volume (“defect-percent”) [10–13]. It has been 
shown that “defect-percent” is a sensitive marker for disease 
severity based on the observed correlations with spirometry, 
multiple breath washout, and morphological abnormalities 
[14–16]. However, different “defect-percent” quantification 
approaches were used and studies using DCE-MRI or their 
application in sizeable datasets are mostly missing.

The aims of this work were to (a) develop a robust algo-
rithm to quantify QDP using DCE-MRI by comparing differ-
ent approaches and (b) investigate the clinical meaningfulness 
of QDP by comparing it with a visual MRI perfusion score, 
quantitative CT PRM indices of emphysema, and functional 
small airways disease (fSAD), and PFT. Furthermore, we  
compared the performance of QDP with that of PBF and PBV.

Materials and methods

Study design and study population

The study is based on data from a prospective longitudinal 
multicenter imaging sub-study of the COPD cohort “Impact 
of Systemic Manifestations/Comorbidities on Clinical State, 
Prognosis, Utilisation of Health Care Resources in Patients 
with COPD”-trial (COSYCONET (NCT01245933); substudy 
“Image-Based Structural and Functional Phenotyping of the 
COSYCONET Cohort Using MRI and CT” (MR-COPD, 
NCT02629432)). The inclusion and exclusion criteria of  
COSYCONET can be found elsewhere [17]. In addition to  
subjects of the GOLD 1–4 categories [18], smokers and for- 
mer smokers with no assignable GOLD category including the 
former GOLD 0 and subjects at risk for COPD were enrolled. 
The “former GOLD 0” group includes subjects with normal 
PFT in terms of FEV1/FVC (ratio between forced expiratory 
volume in 1 s and forced vital capacity) but with COPD-spe- 
cific symptoms and the “at risk for COPD” group includes 
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subjects not classifiable within GOLD, with normal PFT in 
terms of FEV1/FVC and without COPD-specific symptoms. 
Institutional ethics committee approval was obtained, and all 
subjects gave their written informed consent.

For this work, a subset of 103 subjects examined at the 
same center was selected and only baseline data were used.

MRI acquisition

All subjects underwent MRI using the same 1.5 T scanner 
(Magnetom Aera, Siemens Healthineers) using a standard-
ized chest MRI protocol (Supplementary table  1) [3, 19, 
20], validated by a phantom study [21]. For the DCE-MRI  
perfusion imaging, a time-resolved T1-weighted 3D keyhole  
pulse sequence (time-resolved angiography with interleaved 
stochastic trajectories [TWIST]) with a fixed dose of 2 ml 
gadolinium-based CA (Gadobutrol, Bayer Vital GmbH)  
was injected i.v. at 4 ml/s followed by a saline chaser [22, 
23]. The DCE-MRI (~ 33 s, temporal resolution ~ 1.6 s) was 
acquired in inspiratory breath-hold.

MRI perfusion score

Visual scoring of DCE-MRI was performed by an experi- 
enced radiologist using a validated MRI perfusion score 
[2, 3, 20, 24]. The extent of perfusion abnormalities was  
assessed on lobe level as follows: 0  =  no abnormality,  
1 = < 50% of the lobe involved, and 2 = ≥ 50% of the  
lobe involved and summed for the whole lung, resulting in  
a maximum range between zero and twelve.

MRI quantification pipeline

The in-house developed MRI analysis pipeline was written 
in MATLAB (R2019a, The MathWorks, Inc.). All image 
process steps were performed fully automatically unless oth-
erwise specified. Further details are provided in the Sup-
plementary materials.

Image pre‑processing

Time-resolved subtraction images of the DCE-MRI were  
generated by subtracting the mean of the two first pre-contrast 
images. Arterial input functions (AIFs) were calculated in the 
pulmonary artery [25]. Time-resolved residue function maps 
(R(t) map) were computed by deconvolving voxel-by-voxel 
the AIF with each voxel of the subtraction image using trun-
cated singular value decomposition [26]. The model used for 
the R(t) map calculation is based on the principles of tracer 
kinetics for non-diffusible tracers [27, 28]. Minor respiratory 
motion artefacts, usually occurring near the diaphragm, were 
excluded using cross-correlation analysis.

Quantification of pulmonary perfusion abnormalities

The lungs were automatically segmented from coronal 
T1-weighted images [29], registered to DCE-MRI images, 
and reviewed individually by an investigator. For comparison 
with the visual perfusion score, an approximate division of 
each lung into lobes was performed (Supplementary Fig. 1).

Pulmonary perfusion abnormalities in DCE-MRI are char-
acterized by absent or delayed contrast enhancement. QDP was 
quantified from R(t) maps at the time point of maximum con-
trast enhancement (Rmax map) using four different approaches 
based on unsupervised image clustering algorithms: Otsu’s 
method, k-means clustering, texture analysis and percentile-
threshold. It was calculated in percent representing the extent 
of perfusion abnormalities relative to the segmented lung vol-
ume, with a theoretical range between 0 and 100%. Details 
about the four different calculation approaches are outlined in 
Fig. 1 and in the Supplementary materials.

For the comparison between QDP and the MRI perfusion 
score by lobe, QDP was converted into discrete values at 
lobe level (Supplementary table 2) [30]. The quantification 
of the pulmonary perfusion metrics PBF and PBV was based 
on the R(t) map as described elsewhere [4].

CT parametric response mapping

All subjects underwent standardized phantom-controlled 
(Catphan600, The Phantom Laboratory) same-day non-
enhanced low-dose CT (Somatom 64, Siemens Healthineers) 
with paired scans in inspiratory and expiratory breath-hold  
at 120 kV and 35 mAs. Images were reconstructed at 1.0 mm 
slice thickness with a 0.5-mm interval using a soft filtered 
back-projection convolution kernel (B30f). CT scans were 
post-processed using the in-house software YACTA as 
described previously (version 2.8.7) [31, 32]. PRM classified 
the lung in normal (PRMNormal), emphysematous (PRMEmph), 
or fSAD (PRMfSAD) [33]. PRM was calculated in percent  
relative to the segmented lung volume. PRMAbnormal was  
computed to describe the proportion of non-normal lung  
tissue as PRMAbnormal = PRMEmph + PRMfSAD.

Pulmonary function testing

PFT was performed according to the American Thoracic 
Society and European Respiratory Society recommendations 
[34]. In this study, forced expiratory volume in 1 s percent 
predicted (FEV1%predicted) and FEV1/FVC were used.

Statistical analysis

Statistical analyses were performed using R (R 3.3.2, Foun-
dation for Statistical Computing). Data are presented as 
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mean ± standard deviation. Bland–Altman analysis, linear 
regression, Spearman correlation, Cohen’s k, percent agree-
ment, Wilcoxon signed-rank test, Pearson and Filon’s z, 

one-way analysis of variance (ANOVA), and scatterplots were 
used. A p value < 0.05 was considered statistically significant. 
Further details are provided in the Supplementary materials.

Fig. 1   Flowchart describing the four different approaches to calcu-
late perfusion defects in percent (QDP) using residue function map 
at the time point of maximum contrast enhancement (Rmax map). 
Otsu’s method was used to find two thresholds from the histogram 
containing the intensity values of all voxels within the lung mask of 
the Rmax map and zeros in the same amount as the lung mask's size, 
resulting in three classes (color map clustering: green  =  perfusion 
defects, orange = well perfused, red = vessels). K-means clustering 
was applied to the entire Rmax map to separate the voxels’ intensities 
into three classes (color map clustering: green  =  perfusion defects, 
orange = well perfused, red = vessels). The texture analysis utilized 

the co-occurrence matrix of the entire Rmax map to separate the voxels 
into 32 classes (color map clustering: each class with a different color 
from blue (perfusion defects) to red (vessels)). The 80th percentile 
of all voxels' intensity inside the lung mask multiplied with 0.5 was 
used as a threshold between well- and poorly-perfused lung voxels, 
resulting in 2 classes (color map clustering: red = perfusion defects 
and green = well perfused). In all approaches, the class with the low-
est mean signal intensity from the Rmax map was defined as perfusion 
defect (= QDP). Corresponding QDP maps show resulting perfusion 
defects in dark blue. Further information about the different QDP cal-
culation approaches can be found in the Supplementary materials

Table 1   Patient demographics and baseline pulmonary function

Information about pack-years was available for 45 patients only, BMI data were available for 80 patients only. Data are presented as 
mean ± standard deviation. BMI body mass index, COPD chronic obstructive pulmonary disease, FEV1%predicted forced expiratory volume in 
1 s percent predicted, FEV1/FVC ratio between forced expiratory volume in 1 s and forced vital capacity

Total At risk for COPD Former GOLD 0 GOLD 1 GOLD 2 GOLD 3 GOLD 4 ANOVA
p value

Demographics
  n 83 5 11 4 29 24 10
  Age (y) 65.7 ± 9.0 65.6 ± 6.8 69.5 ± 7.2 62.8 ± 9.5 66.4 ± 9.5 64.7 ± 10.2 62.7 ± 6.6
  Sex 44 f / 39 m 2 f / 3 m 7 f / 4 m 1 f / 3 m 15 f / 14 m 14 f / 10 m 5 f / 5 m
  Pack years 36.9 ± 28.8 32.2 ± 19.2 12.8 ± 13.0 23.0 ± 4.3 34.2 ± 24.2 39.6 ± 33.9 74.4 ± 22.5
  BMI (kg/m2) 26.2 ± 4.6 27.2 ± 6.5 29.5 ± 4.2 27.0 ± 4.9 25.8 ± 4.5 25.6 ± 4.7 23.9 ± 3.1

Pulmonary function
  FEV1%predicted 55.9 ± 19.4 81.5 ± 10.2 78.2 ± 9.8 85.2 ± 2.4 61.1 ± 8.4 41.3 ± 5.2 26.3 ± 3.8  < 0.001
  FEV1/FVC 0.56 ± 0.13 0.74 ± 0.03 0.76 ± 0.04 0.64 ± 0.03 0.58 ± 0.06 0.47 ± 0.08 0.37 ± 0.04  < 0.001
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Results

Patient population and technical feasibility

The final cohort compromised 83 out of 103 subjects with 
evaluable baseline DCE-MRI (Table  1). Subjects were 

excluded before processing the MRI data, with 6 subjects 
due to missing MRI sequences, 11 subjects due to substantial 
respiratory artefacts, and 3 subjects due to failed CA applica-
tion or other substantial artefacts. In 41 subjects, the DCE-
MRI series were refined by manually removing acquisitions 
of time points with respiratory artefacts before or after the 

Fig. 2   Representative 
DCE-MRI and CT of a 
51 years old female patient 
with COPD GOLD2 with 
FEV1%predicted = 53.26%, 
FEV1/FVC = 0.53, and MRI 
perfusion score = 10. a Resi-
due function map at the time 
point of maximum contrast-
enhancement (Rmax map), (b) 
corresponding map of perfusion 
defects in percent (QDP map, 
blue) calculated with Otsu’s 
method (QDP = 72.94%), 
(c) corresponding map of 
the pulmonary blood flow 
(PBF = 30.19 ml/100 ml/min), 
(d) corresponding map of 
the pulmonary blood volume 
(PBV = 2.34 ml/100 ml), (e) 
coronal CT and (f) correspond-
ing parametric response map 
(PRM map) are presented. PRM 
classifies the voxels of the lung 
into normal lung tissue (28.23%, 
green), functional small airway 
disease (fSAD = 34.96%, yel-
low), and emphysema (36.13%, 
red)
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CA bolus passage through the lung, whereby on average 2.6 
time points were removed. Lung segmentation masks were 
generated automatically in all cases. Representative MRI and 
CT images from a COPD patient with corresponding color-
coded QDP, PBF, PBV, and PRM maps are given in Fig. 2.

Comparison between quantitative perfusion 
abnormalities and MRI perfusion score

Mean values for the MRI perfusion parameters per subject 
group are given in Table 2. All MRI perfusion parameters 
increased (MRI perfusion score, QDP) or decreased (PBF  

and PBV) as expected with increasing GOLD severity  
(GOLD 1–4) (Table 2). The value range of QDP for the  
whole lung using Otsu’s method, k-means clustering, and 
texture analysis covered approximately 90% of the maximum 
theoretical range from 0 to 100%, whereas a smaller value 
range coverage was observed for the 80th percentile thresh- 
old of approximately 53%. The correlation of QDP with the 
MRI perfusion score for the whole lung was moderate to  
strong (r = 0.68 to 0.72, p < 0.001) and the correlations of 
PBF and PBV with the MRI perfusion score were moderate 
(r = − 0.49 and r = − 0.54, p < 0.001). (Table 3, Fig. 3). Of note,  

Table 2   Imaging results per subject group

CT parametric response mapping data were only available for 76 patients, Data are presented as mean ± standard deviation. COPD chronic obstructive 
pulmonary disease, Emph emphysema, fSAD functional small airways disease, PBF pulmonary blood flow, PBV pulmonary blood volume, QDP perfusion 
defects in percent, PRM parametric response mapping

Total At risk for COPD Former GOLD 0 GOLD 1 GOLD 2 GOLD 3 GOLD 4 ANOVA
p value

MRI visual scoring
  MRI perfusion score 9.1 ± 2.9 8.4 ± 2.3 7.3 ± 3.0 7.2 ± 2.5 9.2 ± 3.1 9.5 ± 2.7 11.2 ± 1.7  < 0.01

Quantitative DCE-MRI parameters
  QDP - Otsu’s method 54.6 ± 17.8 42.0 ± 15.0 39.0 ± 10.3 32.4 ± 23.5 57.3 ± 16.2 60.4 ± 14.4 65.5 ± 16.8  < 0.001
  QDP - k-means cluster-

ing
52.7 ± 17.7 40.0 ± 14.7 36.7 ± 11.4 30.7 ± 21.7 55.2 ± 15.6 58.5 ± 14.2 64.6 ± 17.2  < 0.001

  QDP -  texture analysis 49.9 ± 22.6 36.8 ± 18.2 30.6 ± 17.8 24.7 ± 21.1 54.5 ± 22.2 55.1 ± 19.0 61.9 ± 19.9  < 0.001
  QDP - 80th percentile 51.7 ± 9.3 44.9 ± 9.1 43.7 ± 7.4 38.9 ± 17.2 52.7 ± 7.6 55.3 ± 7.1 57.7 ± 5.3  < 0.001
  PBF (ml/100 ml/min) 50.6 ± 24.8 63.9 ± 27.1 65.9 ± 26.1 66.9 ± 23.4 44.5 ± 21.3 48.5 ± 27.0 42.8 ± 18.9  < 0.01
  PBV (ml/100 ml) 3.8 ± 1.7 4.6 ± 1.7 5.2 ± 1.7 5.5 ± 3.2 3.5 ± 1.2 3.5 ± 1.7 3.0 ± 1.3  < 0.001

CT parametric response mapping
  PRMNormal (%) 51.4 ± 21.4 80.1 ± 9.6 77.1 ± 21.4 63.2 ± 12.5 51.2 ± 17.0 40.2 ± 11.0 27.0 ± 7.3  < 0.001
  PRMEmph (%) 13.7 ± 11.7 5.0 ± 4.6 5.1 ± 8.4 5.9 ± 6.4 12.2 ± 10.3 16.4 ± 10.1 31.0 ± 7.8  < 0.001
  PRMfSAD (%) 34.4 ± 13.7 14.6 ± 5.6 17.3 ± 13.5 30.1 ± 6.2 35.8 ± 10.8 42.9 ± 9.1 41.6 ± 6.5  < 0.001
  PRMAbnormal (%) 48.6 ± 21.4 19.9 ± 9.6 22.9 ± 21.4 36.8 ± 12.5 48.8 ± 17.0 59.8 ± 11.0 73.0 ± 7.3  < 0.001

Table 3   Comparison of quantitative DCE-MRI perfusion parameters with the MRI perfusion score

For the mean difference analysis in the whole lung, the quantitative values (QDP, PBF, PBV) were normalized to a maximum of 12 for sta-
tistical reasons. For comparison by lobe, QDP were converted into discrete values of 0, 1, and 2 at lobe level analogous to the visual scoring-
system (Supplement Table E2) [30]. PBF and PBV could not be transferred to discrete values per lobe. p values smaller than 0.05 in the 
Wilcoxon signed rank test to evaluate the symmetry of the differences are considered to indicate a non-symmetrical distribution of the dif-
ferences. 95% CI 95% of confidence intervals, Mean diff mean difference ± standard deviation, PBF pulmonary blood flow, PBV pulmonary 
blood volume, QDP perfusion defects in percent, %Agreement percent agreement. *p < 0.05, **p < 0.01, and ***p < 0.001

QDP PBF
(ml/100 ml/
min)

PBV
(ml/100 ml)

Otsu´s method K-means clustering Texture analysis 80th percentile

MRI perfusion score whole lung
  r 0.72*** 0.71*** 0.68*** 0.67***  − 0.49***  − 0.54***
  |95% CI| 0.54, 0.78 0.55, 0.78 0.52, 0.77 0.48, 0.75 0.27, 0.61 0.31, 0.64
  Mean diff  − 2.31 ± 2.13  − 2.50 ± 2.13  − 2.76 ± 2.38  − 0.13 ± 2.25  − 5.02 ± 4.22  − 4.52 ± 4.28

MRI perfusion score lobe-based
  Cohen´s kappa (k) 0.48 0.47 0.46 0.39
  %Agreement (%) 73.29 72.69 70.28 68.67
  Wilcoxon signed-rank test 0.06 0.27  < 0.05 0.38



1885European Radiology (2022) 32:1879–1890	

1 3

QDP correlated significantly higher (Pearson and Filon’s z) with 
the MRI perfusion score than PBF and PBV (p < 0.001–0.05).

In a lobe-based comparison between QDP, using con-
verted discrete values, and MRI perfusion score Cohen’s k 
revealed moderate agreements, ranging between 0.39 for the 
80th percentile threshold and 0.48 for Otsu’s method. A bias 
in the symmetrical distribution in the differences between 
QDP and MRI perfusion score was evaluated with the Wil-
coxon signed-rank test. A bias was observed for QDP quanti-
fied with texture analysis (Table 3).

Comparison between MRI perfusion and CT 
parametric response mapping

CT PRM abnormalities increased with increasing GOLD 
severity (GOLD 1–4) (Table 2). All QDP quantification 
methods correlated strongly with PRMEmph (r = 0.75 to 0.70, 
p < 0.001) and moderately with PRMAbnormal (r = 0.65 to 
0.61, p < 0.001), but only weakly with PRMfSAD (r = 0.34 to 
0.37, p < 0.01). In comparison, PBF and PBV were moder-
ately correlated with PRMEmph (r = − 0.51 and r = − 0.64, 

Fig. 3   Association between 
perfusion defects in percent 
(QDP), pulmonary blood flow 
(PBF), and pulmonary blood 
volume (PBV) with MRI perfu-
sion score. QDP calculated (a) 
based on Otsu’s method showed 
a range of values between 
5.09 and 95.89%, (b) based on 
k-means clustering between 
4.91 and 95.23%, (c) based on 
texture analysis between 1.28 
and 93.73%, and (d) based on 
the 80th percentile threshold 
between 15.17 and 68.82%, the 
latter being compression of the 
observed value range compared 
to the other QDP quantification 
methods. e PBF showed a range 
of observed values between 
7.30 and 147.03 ml/min/100 ml 
and (f) PBV between 1.37 and 
9.96 ml/100 ml. Respective 
linear regression lines, Spear-
man correlation coefficients, 
and corresponding p values are 
given in the plots
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p  <  0.001, respectively) and PRMAbnormal (r  =  −  0.51 
and r = − 0.63, p < 0.001, respectively), but weakly with 
PRMfSAD (r = − 0.38 and r = − 0.40, p < 0.001, respec-
tively) (Table 4). Of note, QDP based on Otsu’s method and 
k-means clustering correlated significantly higher (Pearson 
and Filon’s z) with PRMEmph and PRMAbnormal than the MRI 
perfusion score, PBF, and PBV.

In Bland–Altman analyses, QDP was distinctly 
higher than PRMEmphysema (mean difference QDP-
PRMEmph = 35.85 ± 17.85 to 40.4 ± 13.28) and PRMfSAD 
(mean difference QDP-PRMfSAD = 15.12  ±  21.56 to 
19.68  ±  17.67). When considering emphysema and 
fSAD together (PRMAbnormal), the mean difference was 
reduced and close to zero (mean difference QDP-PRM-
Abnormal = 1.47 ± 19.30 to 6.03 ± 16.94) (Table 4, Fig. 4, 
and Supplementary Fig. 2).

Comparison between MRI perfusion and pulmonary 
function testing

QDP and the MRI perfusion score correlated moderately  
with FEV1/FVC (r = − 0.41 to − 0.54, p < 0.001). Only  
a weak correlation of r = 0.28 (p < 0.05) and a moderate  
correlation of r = 0.40 (p < 0.001) were found for PBF and 
PBV, respectively (Table 4).

No statistically significant differences were observed 
between the correlation coefficients of QDP and the MRI 
perfusion score with PFT. However, QDP correlated sig-
nificantly higher with FEV1/FVC than PBF (except for QDP 
based on 80th percentile). QDP based on k-means clustering 
correlated significantly higher with FEV1/FVC than PBV.

Discussion

We developed new methods to quantify QDP using DCE-
MRI, which combine the advantages of unsupervised image 
clustering algorithms and mathematical models of tracer 
kinetics. Our results showed that (a) QDP based on Otsu’s 
method showed the highest consistency with the MRI per-
fusion score and (b) QDP is clinically meaningful due to 
its significant associations with the MRI perfusion score, 
CT PRM indices of emphysema and fSAD, and PFT. Fur-
thermore, assessing pulmonary perfusion abnormalities as 
“defect-percent” showed advantages over the assessment of 
PBF and PBV, as we observed higher correlations with CT 
PRM indices and PFT for QDP.

The quantification of the conventional perfusion metrics 
PBF and PBV is based on R(t) map of the lung, which is 
often subject to high variability due to limited temporal 

Table 4   Comparison of DCE-MRI perfusion parameters with CT parametric response mapping and pulmonary function parameters

Only for 76 patients CT parametric response mapping data were available. Emph emphysema, FEV1%predicted forced expiratory volume in 1 s 
percent predicted, FEV1/FVC ratio between forced expiratory volume in 1 s and forced vital capacity, fSAD functional small airways disease, 
Mean diff mean difference ± standard deviation, PBF pulmonary blood flow, PBV pulmonary blood volume, QDP perfusion defects in percent, 
PFT pulmonary function testing, PRM parametric response mapping. *p < 0.05, **p < 0.01, and ***p < 0.001

MRI perfusion 
score

QDP PBF
(ml/100 ml/min)

PBV
(ml/100 ml)

Otsu’s method K-means clustering Texture analysis 80th percentile

PRMAbnormal (%)
  r 0.50*** 0.63*** 0.65*** 0.62*** 0.61***  − 0.51***  − 0.63***
  |95  % CI| 0.30, 0.65 0.48, 0.76 0.49, 0.78 0.46, 0.75 0.42, 0.74 0.32, 0.66 0.48, 0.75

Mean diff - 6.03 ± 16.94 4.15 ± 16.39 1.47 ± 19.30 3.23 ± 17.08 - -
PRMEmph (%)

  R 0.56*** 0.74*** 0.75*** 0.70*** 0.70***  − 0.51***  − 0.64***
  |95% CI| 0.38, 0.69 0.62, 0.83 0.62, 0.84 0.55, 0.81 0.56, 0.80 0.32, 0.66 0.50, 0.77
  Mean diff - 40.4 ± 13.28 38.53 ± 12.91 35.85 ± 17.85 37.61 ± 9.17 - -

PRMfSAD (%)
  r 0.29** 0.35** 0.37** 0.37** 0.34**  − 0.38***  − 0.40***
  |95% CI| 0.07, 0.46 0.12, 0.55 0.15, 0.55 0.14, 0.55 0.11, 0.55 0.16, 0.55 0.19, 0.58
  Mean diff - 19.68 ± 17.67 17.81 ± 17.28 15.12 ± 21.56 16.88 ± 12.79 - -

FEV1%predicted
  r  − 0.39***  − 0.43***  − 0.44***  − 0.37***  − 0.49*** 0.26* 0.38***
  |95% CI| 0.18, 0.56 0.22, 0.59 0.25, 0.61 0.15, 0.54 0.32, 0.64 0.04, 0.45 0.19, 0.54

FEV1/FVC
  r  − 0.45***  − 0.50***  − 0.51***  − 0.41***  − 0.54*** 0.28** 0.40***
  |95% CI| 0.26, 0.62 0.31, 0.65 0.32, 0.65 0.21, 0.58 0.37, 0.68 0.07, 0.47 0.20, 0.57



1887European Radiology (2022) 32:1879–1890	

1 3

resolution [35], non-linearity of the CA concentration to 
signal relationship [6, 7], overall low contrast-to-noise-ratio 
in the lung parenchyma, and respiratory motion artefacts. 
Consequently, this leads to physiologically undesirable and 
unreliable values in the R(t) map, which, in turn, increases 
the variability of PBF and PBV [8]. QDP uses the same 
R(t)map as a basis for the calculation and thus exploits the 
advantages of mathematical models based on the principles 
of tracer kinetics for non-diffusible tracers. However, QDP 
does not use the individual voxel values such as PBF and 
PBV as the next step, but instead uses unsupervised image 
clustering algorithms to identify poorly-perfused voxels. 
Hence, the influence of certain challenges of DCE-MRI 
sequences in the lungs is reduced, and thus, the calculation 
should be more robust. Overall, we observed higher cor-
relations of QDP with the MRI perfusion score, CT PRM 
indices, and PFT compared to PBF and PBV.

Since QDP is determined using an automated computer 
algorithm, the calculation is time-efficient and allows for a 
more detailed assessment of perfusion abnormalities com-
pared to visual MRI perfusion scoring. Furthermore, it is 
user-independent and eliminates potential intra- and inter-
reader variabilities [2, 19]. In this study, QDP was compa-
rable to the MRI perfusion score and showed even higher 
correlations with CT PRM indices and PFT.

We compared four different QDP quantification 
approaches to assess the strengths and weaknesses of each 
approach. We not only mainly developed and optimized 
QDP to reflect the MRI perfusion score, but also compared 
the different QDP methods for method development pur-
poses with CT PRM and PFT parameters, since perfusion 
abnormalities are associated with both airflow limitations 
and the destruction of lung parenchyma. We propose to use 
QDP based on Otsu’s method for future clinical studies, 
because it showed overall the highest level of agreement 
with the MRI perfusion score and high correlations with CT 
PRM and PFT parameters. However, it must be mentioned 
that all presented clustering approaches require a predefined 

number of classes, which implies that the methods must find 
perfusion defects and well-perfused tissue. Consequently, 
clustering approaches may potentially overestimate mild 
disease and underestimate very severe disease. Minor per-
fusion defects under 7.5% should be rejected as no perfu-
sion defects, similar to what was done in the lobe-based 
comparison [30]. In previous studies, percentile thresholds 
were used to quantify pulmonary perfusion defects using 
DCE-MRI [12, 36]. We noticed a compression of the range 
of observed values for the percentile method compared to 
the other methods, which is caused by its underlying calcu-
lation method, regardless of the used percentile and factor. 
This compressed value range affects the comparability with 
the MRI perfusion score. The percentile and factor used here 
were empirically determined in a previous study [36] and 
may not be transferable to data of other MRI acquisition 
techniques or scanner types. The use of texture analysis or 
other more advanced analysis methods might be challeng-
ing due to the low contrast-to-noise ratio and pronounced 
artefacts in DCE-MRI of the lungs.

The general concept of describing functional lung abnor-
malities as “defect-percent” appears to be clinically meaning-
ful as ventilation defects in percent quantified from hyperpo-
larized gas MRI have already been used to monitor treatment 
response in CF [37, 38]. Initial studies on the quantification 
of pulmonary perfusion as “defect-percent” using DCE-MRI 
and FD-MRI also indicate its potential, but further evaluation 
was missing to date [12, 30]. The quantification of perfusion 
defects may provide complementary or overlapping informa-
tion to ventilation defects, because pulmonary perfusion and 
ventilation are related through the HPV. However, studies are 
indicating that the ventilation-perfusion match in COPD dete-
riorates with an increasing level of emphysema [39]. Here 
the ability to block the HPV in inflamed lung regions seems 
to be suspended in emphysema-susceptible patients and may 
therefore contribute to emphysema development [40]. In addi-
tion, studies in COPD could already demonstrate that fSAD 
precedes the development of emphysema using CT [41, 42]. 

Fig. 4   Bland–Altman plot between perfusion defects in percent 
(QDP) based on Otsu’s method using DCE-MRI and CT parametric 
response mapping (PRM) indices. Solid lines represent mean differ-
ences and dashed lines represent limits of agreements (+  -1.96SD) 
between QDP calculated with Otsu’s method and the PRM indi-
ces abnormal lung (PRMAbnormal), functional small airways disease 

(PRMfSAD), and emphysema (PRMEmph). Please note that the mean 
difference between QDP and PRMAbnormal is close to zero. For the 
other three QDP calculation approaches, i.e., k-means clustering, tex-
ture analysis, and 80th percentile threshold, the Bland–Altman plots 
are depicted in Supplementary Fig. 2
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Consequently, the comparison of perfusion abnormalities with 
PRMfSAD can confirm the hypothesis that perfusion abnor-
malities may serve as a prognostic biomarker for emphysema 
progression in COPD. Moreover, it was speculated whether 
impaired pulmonary perfusion is a reversible component 
of the COPD pathogenesis [1], which was already demon-
strated in patients with CF [20] and COPD [43]. In a pre-
vious study, no association between PBF using DCE-MRI 
and small airways disease using CT was observed [1]. We 
observed significant correlations between QDP and the PRM 
parameters PRMEmph, PRMfSAD, and PRMAbnormal. In addition, 
the extent of perfusions defects from MRI corresponds to the 
CT-derived extent of abnormal lung (emphysema and fSAD). 
Considered separately, more perfusion defects were observed 
than emphysema or fSAD. This indicates that QDP represents 
the entire parenchymal abnormalities detected by PRM.

We found moderate correlations between QDP and 
FEV1%predicted or FEV1/FVC, indicating a relationship 
between perfusion abnormalities and airflow limitation. This 
is consistent with previous studies [12, 44] and in agreement 
with the understanding that a reduction in FEV1%predicted 
is mainly driven by large airway obstruction, whereas pul-
monary perfusion abnormalities probably reflect also small 
airway pathologies [1, 20].

One technical limitation of this study is the use of data 
from one single scanner. Other QDP quantification methods, 
or PBF and PBV, could be superior in future studies with dif-
ferent patient populations and/or other DCE-MRI sequences 
with better image quality. The DCE-MRI quality issues in 
the lung are primarily caused by the measurement technique 
to achieve the necessary temporal resolution, together with 
the low proton density and pronounced susceptibility arte-
facts in the lungs. These issues even get worse with disease 
severity in COPD. Furthermore, the long acquisition time 
in inspiratory breath-hold is challenging for many COPD 
patients. The acquisition time is pre-defined as individual 
circulation times of the CA through the lungs are unknown. 
However, only the time points of the first CA-bolus passage 
through the lungs are required for the perfusion quantifi-
cation. The removal of time points affected by respiratory 
motion could influence the PBF and PBV quantification 
(absolute flow and volume values), but distinctly less the 
QDP calculation (relative values due to the intrinsic nor-
malization of the clustering algorithms). Attempts to cor-
rect respiratory motion with image registration have not 
succeeded so far. Since cross-sectional correlations do not 
prove causality, the relevance of perfusion abnormalities for 
the development of emphysema must be further investigated 
in large longitudinal studies, ideally with a regional com-
parison between quantitative CT and quantitative MRI. In 
addition, interventional studies are prerequisites before QDP 
can be used in clinical drug development and the robustness 

and repeatability of the quantitative perfusion parameters 
must be assessed in further method validation studies.

This study demonstrates QDP quantified using DCE-MRI 
is associated with established markers of disease severity in 
COPD. It corresponds to the extent of emphysema and fSAD 
in percent quantified using CT, indicating that pulmonary 
perfusion abnormalities themselves may contribute to or at 
least precede the development of irreversible emphysema. 
QDP showed considerable advantages over PBF and PBV, 
which were used in previous COPD studies. We conclude 
that QDP based on Otsu’s method from DCE-MRI is a prom-
ising novel biomarker for clinical trials in COPD.
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