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Abstract: Polymer flooding is used to improve the viscosity of an injectant, thereby decreasing the mo-
bility ratio and improving oil displacement efficiency in the reservoir. Thanks to their environmentally
benign nature, natural polymers are receiving prodigious attention for enhanced oil recovery. Herein,
the rheology and oil displacement properties of okra mucilage were investigated for its enhanced oil
recovery potential at a high temperature and high pressure (HTHP) in carbonate cores. The cellulosic
polysaccharide used in the study is composed of okra mucilage extracted from okra (Abelmoschus
esculentus) via a hot water extraction process. The morphological property of okra mucilage was
characterized with Fourier transform infrared (FTIR), while the thermal stability was investigated
using a thermogravimetric analyzer (TGA). The rheological property of the okra mucilage was inves-
tigated for seawater salinity and high-temperature conditions using a TA rheometer. Finally, an oil
displacement experiment of the okra mucilage was conducted in a high-temperature, high-pressure
core flooding equipment. The TGA analysis of the biopolymer reveals that the polymeric solution
was stable over a wide range of temperatures. The FTIR results depict that the mucilage is composed
of galactose and rhamnose constituents, which are essentially found in polysaccharides. The polymer
exhibited pseudoplastic behavior at varying shear rates. The viscosity of okra mucilage was slightly
reduced when aged in seawater salinity and at a high temperature. Nonetheless, the cellulosic
polysaccharide exemplified sufficiently good viscosity under high-temperature and high-salinity
(HTHS) conditions. Finally, the oil recovery results from the carbonate core plug reveal that the okra
mucilage recorded a 12.7% incremental oil recovery over waterflooding. The mechanism of its better
displacement efficiency is elucidated

Keywords: enhanced oil recovery; biopolymer; viscosity; coreflooding; rheology; cellulose

1. Introduction

The current global energy crisis has shown that the significant contribution of oil and
gas to the world energy supply is still irreplaceable. With growing calls to increase oil
production, there is a need to develop novel techniques for recovering oil from depleted
reservoirs [1]. Initial production from oil reservoirs is due to pressure depletion [2]. There-
after, waterflooding is used to increase oil production [3]. Owing to immiscibility and
density contrast, water tends to find the path of least resistance during flow in the reservoir,
thereby causing the viscous fingering phenomenon [4]. Hence, a significant amount of oil
is bypassed and left in the reservoir. To recover more oil from such reservoirs, numerous
enhanced oil recovery (EOR) methods have been proposed. These can be broadly cate-
gorized into thermal and non-thermal EOR methods [5]. Thermal EOR methods require
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a huge amount of energy and water consumption, and cause large emissions into the
environment [6]. Hence, non-thermal EOR methods are more commonly preferred [7].

Polymer flooding, a non-thermal EOR method, is adjudged to be highly effective ow-
ing to its efficiency in improving the macroscopic sweep efficiency of oil in reservoirs [8–10].
Polymeric solutions possess an inherent property of viscoelastic (viscous and elastic) ef-
fects [11]. Hence, they are used for EOR to recover bypassed oil thanks to their efficiency in
increasing the viscosity of the injectant during flow in porous media [12]. Moreover, thanks
to their viscoelasticity, polymers pull and strip oil in pore throats, thereby mobilizing oil
trapped in pore scale ganglia towards the oil bank [13]. Besides, they cause disproportion-
ate permeability reduction (DPR) by reducing the permeability of water [14]. Consequently,
the mobility ratio of the displacing fluid to displaced fluid is decreased and a higher sweep
efficiency is achieved.

The most widely used polymer for polymer flooding application is hydrolyzed poly-
acrylamide (HPAM) [9]. This is thanks to their good solubility and viscosifying property.
Nevertheless, HPAM is less preferred in high salinity and high temperature conditions.
At high salinity, the cation in the brine attacks the backbone of the polymer, which results
in significant viscosity loss [15]. The viscosity loss is more significant in the presence of
divalent ions. At a high concentration of divalent ions, precipitation of the polymer may
occur [16]. Similarly, at high temperatures, hydrolysis of the polymeric backbone occurs
and, consequently, loss of stability and viscosity of the polymeric solution is recorded [17].
Several attempts have been made to improve the viscosity of HPAM solution for harsh
reservoir conditions. This includes the incorporation of salinity and temperature-resistant
monomers and the application of nanotechnology. Nonetheless, the incorporation of the
monomers increases the cost of the polymeric injectant while uncertainty persists in the
toxicity nature of nano-additives [18]. Moreover, toxicity of synthetic polymers is a recent
cause for concern.

Natural and biopolymers are gaining significant interest for their application in chemi-
cal EOR thanks to their eco-friendly nature [19–21]. Jang et al. [22] evaluated the efficiency
of xanthan gum polymer for EOR under varying concentrations, shear rates, temperatures,
and salinity. They observed that the biopolymer exhibited non-Newtonian behavior at high
shear rates due to the alignment of the macromolecular chains along the line of flow. As
compared with hydrolyzed polyacrylamide (HPAM), which witnessed significant viscosity
reduction, xanthan polymer was found to withstand a high salinity concentration, while the
viscosity decreased marginally under the influence of temperature. Oil displacement tests
in a glass bead pack show that the application of xanthan gum for heavy oil recovery with
3 wt.% NaCl and 10 wt.% NaCl caused 28.4% and 30.1% additional oil recovery, respec-
tively, over the waterflooding process. Similarly, Gao [23] noted that the field application of
schizophyllan caused approximately 20% incremental oil recovery over the waterflooding
process. Moreover, Xu et al. [24] observed that the application of welan gum demonstrated
good rheological properties and caused a significant improvement in oil recovery com-
pared with xanthan gum. Nonetheless, welan gum is unsuitable for high salinity and high
temperature owing to anionic charges on the polymer backbone, while several complexities
remain in understanding the rheological properties of schizophyllan [17,25].

To overcome technical and toxicity concerns associated with synthetic polymers, okra
mucilage (OM) was herein explored for its EOR potential. Okra mucilage is a green
extract from okra fruits [26,27]. Okra belongs to the family of cellulosic polysaccharides
(Figure 1). The mucilage demonstrates viscoelastic properties, which are desirable for use
as a polymer injectant [28]. Several methods are used for the extraction of mucilage from
okra. This includes but is not limited to microwave-assisted extraction, hot water extraction,
ultrasonic extraction, and the pressurized water extraction process [26]. Herein, mucilage
was extracted from okra via a hot water extraction process because it is a non-destructive
technique. The extracted mucilage was characterized using Fourier infrared transform
(FTIR) and a thermogravimetric analyzer (TGA). The rheological properties of the extracted
okra mucilage (OM) were measured at varying salinities and temperatures. Finally, the
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application of OM as a polymeric solution for the tertiary recovery of oil from carbonate
cores was studied at high temperatures and high pressure.
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Figure 1. Structure of okra mucilage [29].

2. Materials and Methods
2.1. Materials

Okra pods used for the experiment were bought from the local market. Sodium
chloride (NaCl), calcium chloride (CaCl2), magnesium chloride (MgCl2), sodium sulfate
(Na2SO4), and sodium hydrogen carbonate (NaHCO3) were purchased from Sigma Aldrich.
The salts were used for preparing seawater and formation water with the composition
depicted in Table 1. Deionized (DI) water obtained from Milli-Q was used for preparing the
solution throughout the experiment. Indiana limestone carbonate cores were used with the
properties presented in Table 2. X-ray diffraction analysis of the core is depicted in Figure 2.
The SARA components and other properties of the crude oil are also presented in Table 3.

Table 1. Composition of seawater and formation water.

Salt Seawater (g/L) Formation Water (g/L)

NaCl 41.172 150.446

CaCl2·2H2O 2.387 69.841

MgCl2·6H2O 17.644 20.396

Na2SO4 6.339 0.518

NaHCO3 0.165 0.487

TDS 67.71 g/L 241.688 g/L
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Table 2. Properties of carbonate core samples.

Properties Unit

Diameter 1.5”

Length 6.03”

Porosity 18.47

Permeability 25.5 mD

Table 3. Properties of crude oil.

Properties Values

Saturates 36.2

Aromatics 50.0

Resins 11.0

Asphaltene 2.8

Density 0.862 g/cm3

Viscosity 10.9 cP
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Figure 2. X-ray diffraction analysis of the carbonate core sample.

2.2. Preparation of Okra Polysaccharide

Prior to use, the okra was thoroughly washed with DI water to remove impurities
and sliced. Thereafter, the hot water extraction process was used to obtain mucilage
from the sliced okra. The sliced okra was heated with seawater at 40 ◦C for 30 min. All
experiments were conducted using seawater because the experiment is interested in the
performance of OM polymer under high salinity conditions. The mucilage was removed
from the okra pod by decantation and subsequently filtered using a muslin cloth. Thereafter,
the obtained mucilage was centrifuged and the supernatant collected was cooled under
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ambient conditions and stored in a glass bottle under an inert atmosphere. The yield was
estimated using Equation (1).

Yield (%) =
Wce

Wt
× 100% (1)

where Wce is the weight of the cellulosic extract and Wt is the total weight of the dissolved okra.
The solubility of OM was determined via centrifugation of a known concentration of

OM at 3000 rpm for 20 min. The supernatant was removed and the settled portion was
dried on a petri dish in an oven at 100 ◦C. The solubility was determined using Equation (2).

Solubility (%) =
Ci − C f

Ci
× 100% (2)

where Ci is the initial concentration of the solution (mg) and Cf is the fraction segmented (mg).

2.3. Morphological Characterization

Fourier transform infrared (FTIR) was conducted to determine the morphological
properties of OM. The structural features were measured using the Bruker INVENIO FTIR
spectrophotometer. To determine the thermal stability, the thermogravimetric analyzer
(TGA) of the sample was measured over a wide range of temperatures from 25 to 700 ◦C
using PerkinElmer TL 8000.

2.4. Rheological Test

The rheological property of the polymers in seawater salinity at varying temperatures
was measured using a TA rheometer. The rheometer is equipped with a water bath for
adjusting the temperature of the equipment to the desired range. The steady shear of OM
was measured over the range of 0.1–1000 s−1.

2.5. Oil Displacement Test

To evaluate oil recovery after injecting polymer, an oil displacement experiment was
carried out using high-pressure, high-temperature (HPHT) core flooding equipment. Firstly,
the cores were polished and dried. Afterward, the porosity was measured using a Helium
porosimeter manufactured by Vinci technologies. Prior to loading the carbonate core
samples in the equipment, the cores were saturated. Subsequently, the permeability of the
cores was determined using a liquid permeameter manufactured by Vinci technologies.
The core flooding equipment consists of an oven for adjusting the temperature to the
desired range and four accumulators for placing the oil, seawater, formation water, and
OM polymer. The core was loaded into the core holder and the confining pressure of 2500
psi was applied. Afterward, a back pressure of 1500 psi was applied using the backpressure
regulator (BPR) to maintain the overburden pressure during core flooding. The system was
heated to 80 ◦C. Formation water was injected to saturate the core. Subsequently, oil was
injected to establish the initial water saturation (Swi). The system was left for 48 h to achieve
equilibrium. Thereafter, seawater was injected to mimic the water flooding phenomenon.
The seawater was injected at a flow rate of 0.5 cc/min and the oil recovered was recorded.
After water flooding, OM was injected to estimate oil recovery. The schematic of the oil
displacement process is shown in Figure 3.



Polymers 2022, 14, 4621 6 of 11Polymers 2022, 14, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 3. Schematic of the core flooding setup. 

3. Results and Discussion 
3.1. Extraction and Characterization of OM 

The yield of the extracted cellulosic OM polysaccharide is estimated as 9.4 w/w%. 
This agrees with previous report, which noted that the OM yield for the hot water extrac-
tion process of okra varies from 0.5 to 15% w/w [26,27]. The solubility of OM was deter-
mined to be approximately 90% at a pH of 6.2. Figure 4 illustrates the thermal stability 
analysis of the OM polymer from 25 to 700 °C. Three stages of weight loss were recorded 
over the entire temperature range measured. Firstly, weight loss was encountered at 
around 100 °C, which may be attributed to the loss of water (H2O) content of the polymeric 
sample. Afterwards, weight loss was recorded in the temperature range of 170–250 °C, 
which may be ascribed to the decomposition of the polysaccharide in the OM polymer. 
Finally, loss of carbon residue caused weight loss in the temperature range of 250–450 °C. 
Furthermore, the morphological property of OM polymer was examined using an FTIR 
spectrophotometer, and the transmittance range is shown in Figure 5. The OM consists of 
galactose, rhamnose, and galacturonic acid constituents. A peak was observed at 3335 
cm−1, which may be attributed to the hydroxyl (–OH) functional group. Moreover, a peak 
was captured at approximately 2900 cm−1, which represents the stretching vibration of the 
–C–H bond constituent of the galactose and rhamnose. Another peak was recorded at 1720 
cm−1, which may be ascribed to the –C=O bond of the galacturonic acid. 

Figure 3. Schematic of the core flooding setup.

3. Results and Discussion
3.1. Extraction and Characterization of OM

The yield of the extracted cellulosic OM polysaccharide is estimated as 9.4 w/w%. This
agrees with previous report, which noted that the OM yield for the hot water extraction
process of okra varies from 0.5 to 15% w/w [26,27]. The solubility of OM was determined
to be approximately 90% at a pH of 6.2. Figure 4 illustrates the thermal stability analysis
of the OM polymer from 25 to 700 ◦C. Three stages of weight loss were recorded over
the entire temperature range measured. Firstly, weight loss was encountered at around
100 ◦C, which may be attributed to the loss of water (H2O) content of the polymeric sample.
Afterwards, weight loss was recorded in the temperature range of 170–250 ◦C, which may
be ascribed to the decomposition of the polysaccharide in the OM polymer. Finally, loss of
carbon residue caused weight loss in the temperature range of 250–450 ◦C. Furthermore, the
morphological property of OM polymer was examined using an FTIR spectrophotometer,
and the transmittance range is shown in Figure 5. The OM consists of galactose, rhamnose,
and galacturonic acid constituents. A peak was observed at 3335 cm−1, which may be
attributed to the hydroxyl (–OH) functional group. Moreover, a peak was captured at
approximately 2900 cm−1, which represents the stretching vibration of the –C–H bond
constituent of the galactose and rhamnose. Another peak was recorded at 1720 cm−1, which
may be ascribed to the –C=O bond of the galacturonic acid.
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Figure 4. Thermal stability analysis of OM polymer via TGA [30].
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Figure 5. FTIR spectra of okra mucilage.

3.2. Rheological Behavior of OM Polymer

The rheological behavior of OM in seawater salinity as a function of temperature and
shear rate is depicted in Figure 6. OM polymer is composed of an array of cooperative non-
covalent bonds in its macromolecular structure. The polymer demonstrated pseudoplastic
behavior whereby the viscosity of the OM polymer decreases with an increase in shear rate.
At low shear rates, the viscosity of OM polymer is sufficiently high because of the ordered
structural configuration of the polysaccharide chain entanglements. On the other hand, the
polymer recorded a low viscosity at high shear rates owing to the stretching of the OM
and disruption of the polymeric chain network by the large shear forces [28]. Similarly, an
increase in the temperature of the solution reduced the viscosity of the polymer molecules.
This can be attributed to the thermal motion, which resulted in the disentanglement of the
polymeric chain [31]. To study the stability of OM polymer, the polymeric solution was
aged at different temperatures for several days and the viscosity was constantly measured.
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As illustrated in Figure 7, the thermal aging of the polymer causes a reduction in viscosity,
though quite infinitesimal. The percentage viscosity reduction for a 14-day period is
presented in Figure 8. Aging at 95 ◦C caused the most significant viscosity loss of 35%
compared with aging at an ambient temperature, which resulted in a paltry viscosity loss
of around 12%. The viscosity loss under ambient conditions and a high temperature over
the entire time can be ascribed to biodegradation of the polymeric molecules. Nonetheless,
despite the viscosity loss, OM polymeric molecules showed no sign of precipitation, which
may hinder their transport in porous media. Moreover, the viscosity recorded is sufficient
to reduce the mobility of injected waterflood and enhance the macroscopic sweep efficiency.
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3.3. Oil Displacement Test

The performance evaluation of OM as an EOR agent was conducted under HPHT
conditions of 2500 psi and 80 ◦C. Figure 9 depicts the oil recovery as a function of the pore
volume of fluids injected. The injection of waterflood recovered 55% of the original-oil-in-
place (OOIP). A significant proportion of oil is bypassed and left behind in the carbonate
cores. This can be attributed to the viscous fingering phenomenon, which causes the injected
water flood to finger through the path of least resistance of high permeability channels,
thereby leaving behind a significant proportion of the oil. Subsequently, polymer flooding
was commenced by injection of OM polymer as an EOR injectant. OM polymer caused an
incremental oil recovery of approximately 12.7% OOIP. The injection of OM polymer causes
an increase in the viscosity of the injectant, which consequently decreases the mobility of
the injectant. Decreased mobility of the injectant enables it to push bypassed oil because
of its viscoelastic property. Moreover, the OM polymer may cause a disproportionate
permeability reduction by plugging high permeability channels and diverting subsequently
injected waterflood to low permeability channels to recover more oil from the reservoir.
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4. Conclusions

This study evaluates the oil displacement behavior of OM polymer for EOR after
the conventional secondary recovery process. The FTIR result shows that OM polymer
possesses galactose, rhamnose, and galacturonic acid constituents, while the TGA result
confirms the stability of the polymer over a wide range of temperatures. OM polymer ex-
hibited shear thinning behavior when subjected to shear forces. The polymer demonstrates
relatively good stability when aged at a high temperature for 2 weeks. The waterflooding
process caused the recovery of 55% OOIP. On the other hand, the injection of OM polymer
in seawater salinity and a high temperature (80 ◦C) resulted in the recovery of an additional
12.7% OOIP. Thanks to its efficiency under high salinity and high temperature conditions,
OM polymer is proffered for use as an EOR agent in carbonate reservoirs.
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