
1633

Copyright © 2020 by Asian-Australasian Journal of Animal Sciences 
This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.www.ajas.info

Asian-Australas J Anim Sci  
Vol. 33, No. 10:1633-1641 October 2020
https://doi.org/10.5713/ajas.19.0748
pISSN 1011-2367 eISSN 1976-5517

Estimation of carcass weight of Hanwoo (Korean native cattle) as 
a function of body measurements using statistical models and a 
neural network
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Objective: The objective of this study was to develop a model for estimating the carcass 
weight of Hanwoo cattle as a function of body measurements using three different modeling 
approaches: i) multiple regression analysis, ii) partial least square regression analysis, and 
iii) a neural network.
Methods: Data from a total of 134 Hanwoo cattle were obtained from the National Institute 
of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables 
related to carcass weight and body measurements were extracted to use in multiple regression, 
partial least square regression, and an artificial neural network to estimate the cold carcass 
weight of Hanwoo cattle by any of seven body measurements significantly related to carcass 
weight or by all 19 body measurement variables. For developing and training the model, 100 
data points were used, whereas the 34 remaining data points were used to test the model 
estimation.
Results: The R2 values from testing the developed models by multiple regression, partial least 
square regression, and an artificial neural network with seven significant variables were 0.91, 
0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approxi­
mately 0.93 with all 19 body measurement variables. In addition, relative errors were within 
4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass 
weight. The neural network exhibited the highest accuracy.
Conclusion: The developed model was applicable for estimating Hanwoo cattle carcass weight 
using body measurements. Because the procedure and required variables could differ 
according to the type of model, it was necessary to select the best model suitable for the 
system with which to calculate the model.

Keywords: Body Measurement; Carcass Weight; Hanwoo; Multiple Regression; Partial Least 
Square Regression; Neural Network

INTRODUCTION

Body weight of beef cattle is one of the most important traits affecting price [1] and animal 
condition [2,3]. For this reason, accurate estimation of body weight is emphasized to establish 
adequate management and nutritional approaches for improving conditions for raising 
beef cattle and maximizing profits [4]. Because body weight is related to the body size of 
beef cattle, body size measurement is considered the main physical estimator of body weight 
[5,6]. Unlike internal traits, such as body composition and genetic characteristics [7], body 
size is easy to measure; thus, it has been used to evaluate body weight [8-10].
  Body weight of beef cattle has been estimated as a function of body measurements accord­
ing to cattle species, age, and gender. In particular, as image analysis in automated carcass 
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weight measurement has been demanded by the livestock 
industry, a simple model for predicting body weight has been 
coded as an algorithm [10]. Heinrichs et al [8] predicted the 
body weight of Holstein heifers through body measurements 
based on a large number of observations and found a greater 
than 95% R2-value. Ozkaya and Bozkurt [5] applied regression 
analysis to predict body weight from body measurements 
in Holstein, Brown Swiss, and crossbred cattle with R2 values 
of 92%, 95%, and 68%, respectively. For Holstein–Friesian 
lactating dairy cows, body size measurements were used to 
estimate live weight (78%), empty body weight (75%), and 
carcass weight (75%) but model accuracy was relatively low 
[4]. Haryoko and Suparman [11] used multiple regression 
to assess carcass weight according to rear girth, body con­
dition, and slaughter weight. Tasdemir et al [10] developed 
a regression model to estimate the body weight of Holstein 
cows by determining body measurements using digital im­
age analysis (maximum of 98% accuracy).
  Preference for Hanwoo, Korean native cattle breed, has in­
creased in South Korea because of food safety concerns and 
its unique taste [12]. Carcass yield is the factor affecting profit 
in the livestock industry and distributional policy in the gov­
ernment, along with meat quality [13,14]. Thus, carcass weight, 
which is a direct outcome from body weight and size of the 
carcass are the main variables measured. However, grading 
and measurements of Hanwoo cattle are still dependent on 
human judgment, necessitating a digital tool for assisting in 
the judgment. For this, it is critical to develop a predictive 
model that evaluates carcass weight by body measurements 
as a basic algorithm implemented in a system. There have 
been a few studies regarding Hanwoo cattle using body size 
traits to estimate beef cut yield [15,16], estimate carcass yield 
[17], and classify body type [18,19]. However, for Hanwoo 
cattle, prediction of carcass weight by body measurements 
has not been studied, although a predictive model must dif­
fer by cattle species.
  Recent applications of statistics-based machine learning 
and deep learning on agricultural data has allowed the devel­
opment of predictive models with high accuracy compared 
to traditional approaches. This suggests that this state-of-the-
art technology may be applicable to the development of a 
model for estimating body or carcass weight using variables 
that could be easily measured either by humans or a digital 
machine. This study, therefore, estimated carcass weight of 
Hanwoo cattle as a function of body measurements using 3 
different approaches, multiple regression, partial least square 
(PLS) regression, and a neural network, and compared their 
abilities to identify the optimal methodology to estimate car­
cass weight. Because a simple way to estimate carcass weight 
has been emphasized for establishing a national demand/
supply policy and for embedding an algorithm into digital 
imaging systems, we expect this study will provide the best 

predictive model for Hanwoo cattle, regarding of the afore­
mentioned necessities.

MATERIALS AND METHODS 

Animal data
The raw data were obtained from the National Institute of 
Animal Science (NIAS) in South Korea, which contained pre-
deboning and post-deboning variables for Hanwoo cattle, 
such as carcass weight, weights for primal cuts, and quality 
indices. The age of Hanwoo cattle ranged from 17 to 120 
months (mean of 41±18.6 months), and they were slaugh­
tered from 2016 to 2018 in various sites in South Korea. The 
total number of Hanwoo cattle in the data was 134, consist­
ing of 24 bulls, 49 cows, and 61 steers. 

Body measurement data
From among a total of 372 variables in the raw data, we ex­
tracted 20 variables related to body size measurement, because 
this study focused on the prediction of carcass weight accord­
ing to this type of data. These included cold carcass weight 
(CWT, kg), backfat thickness (FT, mm), eye muscle area 
(EMA, cm2), side length (L, cm), forequarter length (LF, cm), 
hindquarter length (LB, cm), cervical vertebrae length (L1, 
cm), thoracic vertebrae length (L2, cm), lumbar vertebrae 
length (L3, cm), sacral vertebrae length (L4, cm), 6th lumbar 
vertebrae-heel length (L5, cm), 7th cervical vertebrae car­
cass breadth (L6, cm), 5-6th thoracic vertebrae breadth (L7, 
cm), 4-5th lumbar vertebrae breadth (L8, cm), 5th sacral 
vertebrae breadth (L9, cm), 7-8th thoracic vertebrae girth 
(L10, cm), coxae girth (chest girth, L11, cm), 4-5th lumbar 
vertebrae thick (L12, cm), coxae thick (L13, cm), and 7-8th 
thoracic vertebrae thick (L14, cm). The definitions of body 
size measurement were taken from Kim et al [20]. All 20 
variables are summarized in Table 1.

Multiple linear regression analysis
Multiple linear regression analysis was used to develop a 
correlative model that contained more than one explanatory 
variable, with the general formula in equation 1 [21]:

  Y = β0+β1x1+β2x2+…βnxn+∈ 		  (Equation 1),

where Y is the dependent variable to be estimated, xi repre­
sents an independent (or explanatory) variable, and ∈ is a 
random error term. β0 represents the intercept, whereas βi is 
the regression coefficient.
  Because of its simplicity in model development, it has been 
applied to estimate body weight of beef cattle as a function of 
body size for other cattle breeds [9,10]. In this study, CWT 
was the dependent variable, while the other 19 variables related 
to body measurement were considered potential explanatory 
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variables. In the modeling, we firstly used all 19 variables and 
then selected the significant variables based on estimated p-
values that were <0.05. Then, the significant variables were 
used to develop a model with 100 data points, whereas the 
remaining 34 data points were used to validate the model by 
calculating relative error (Equation 2). Model accuracy was 
judged based on the R2 value of the developed model and the 
average relative error from model validation.
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Multivariate analysis: partial least square regression
The PLS regression is a generalized multiple linear regres­
sion model for handling multicollinearity among variables 
[22]. This method develops a new set of uncorrelated vari­
ables by linearly combining the original variables and reduces 
dimensionality to maximize the explained variances of the 
independent variables without considering the correlations 
among independent variables and responses [23]. Because 
of this ability, PLS regression is widely used as a basic tool in 
chemometrics to analyze spectral and imaging data from agri­
cultural and livestock products [24]. Because PLS regression 
is a statistics-based machine-learning approach, we separated 
the entire dataset into training (100 data points) and test da­
tasets (34 data points) for developing and testing the model, 
respectively. Model accuracy was determined based on the 
percent of explained variance in the dependent variable, i.e., 
CWT, and relative error calculated by Equation 2. 

Neural network
An artificial neural network (ANN) can enhance the accu­
racy in regression and classification tasks by learning data 
and mathematically mimicking the human brain structure 
of interconnected neurons [25,26]. The general layout of an 
ANN has an input layer, a hidden layer, and an output layer, 
which are functionally connected to each other. Regarding 

the regression analysis, the neural network is trained through 
supervised learning methods that update the weights between 
nodes (neurons) with labeled data consisting of input vari­
ables to desired output value pairs. The error between the 
predicted output from the ANN and the desired output, i.e., 
the cost, is used to train the model, and the weight of each 
layer is updated by the gradient descent update rule with a 
back-propagation algorithm to minimize the error. In gen­
eral, larger numbers of hidden layers generally provide higher 
training accuracy, but it is also at risk of over-fitting [27]. In 
other words, more hidden layers can train the ANN more 
appropriate to the training data while it decreases prediction 
accuracy for the test data, losing its generalization ability [26]. 
In this study, we firstly determined the number of hidden 
layers and the number of neurons in each hidden layer to con­
struct the ANN for estimation of carcass weight. The hidden 
layer has two stages, and each stage has 15 and 6 neurons, 
respectively. The ANN model was repeatedly trained and 
validated at every training iteration. The training was stopped 
earlier than the minimum validation cost to avoid over-fitting 
caused by too many trainings. The selected significant vari­
ables and the CWT were used as a pair of training data, and 
100 and 34 data points were used for network training and 
validation, respectively. The mean squared error was used as 
a cost function and weights were updated using a stochastic 
gradient descent optimizer with 0.9 momenta. The learning 
rate was set at 0.01, reducing the rate to 10% per 100 itera­
tions. 

Software
All statistical analyses were performed using the SAS software 
package (ver. 9.4, SAS Institute Inc., Cary, NC, USA). Statis­
tical significance was assumed when the p-value was less than 
0.05. For the ANN, Python programming language (ver. 3.6, 
Python Software Foundation, Beaverton, OR, USA) was used 
to implement the environment of machine learning and the 
TensorFlow python library (ver. 1.13.1, Google, CA, USA) 
was used to build the neural network and train it.

Table 1. Summary of variable statistics

Value1) CWT2) 
(kg)

FT 
(mm)

EMA 
(cm2)

L  
(cm)

LF 
(cm)

LB 
(cm)

L1 
(cm)

L2 
(cm)

L3 
(cm)

L4 
(cm)

L5 
(cm)

L6 
(cm)

L7 
(cm)

L8 
(cm)

L9 
(cm)

L10 
(cm)

L11 
(cm)

L12 
(cm)

L13 
(cm)

L14 
(cm)

AVG 429.6 15.2 90.7 257.4 112.7 146.5 44.5 79.1 41.6 34.0 104.2 78.8 78.9 42.9 47.4 173.3 131.1 24.5 21.7 20.0
STD 70.0 7.6 11.2 13.6 6.9 7.2 4.5 4.7 4.1 4.4 10.8 5.4 4.7 3.6 5.7 10.1 9.0 3.1 2.9 3.2
MAX 567.5 40.0 130.0 295.0 133.0 166.0 84.0 97.0 79.0 45.0 130.0 96.0 90.0 53.0 81.0 195.0 182.0 34.0 33.0 38.0
MIN 233.3 1.0 62.0 230.0 97.0 130.0 37.0 65.0 35.0 24.0 27.0 65.0 69.0 32.0 36.0 129.0 110.0 14.0 14.0 13.0
Q1 377.5 10.8 83.0 247.0 108.0 141.0 42.0 76.0 40.0 31.0 102.0 74.0 76.0 41.0 44.0 168.0 126.3 22.0 20.0 18.0
Q3 477.9 19.0 98.3 267.0 117.0 151.0 46.0 82.0 43.0 37.0 109.8 83.0 83.0 45.0 50.0 180.8 135.0 27.0 23.0 21.0

1) AVG, average; STD, standard deviation; MAX, maximum value; MIN, minimum value, Q1: first quartile, and Q3: third quartile.
2) CWT, cold carcass weight; FT, backfat thickness; EMA, eye muscle area; L, side length; LF, forequarter length; LB, hindquarter length; L1, cervical vertebrae length; L2, thoracic 
vertebrae length; L3, lumbar vertebrae length; L4, sacral vertebrae length; L5, 6th lumbar vertebrae-heel length; L6, 7th cervical vertebrae carcass breadth; L7, 5–6th thoracic 
vertebrae breadth; L8, 4–5th lumbar vertebrae breadth; L9, 5th sacral vertebrae breadth; L10, 7–8th thoracic vertebrae girth; L11, coxae girth; L12, 4–5th lumbar vertebrae 
thick; L13, coxae thick; L14, 7–8th thoracic vertebrae thick.
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RESULTS AND DISCUSSION 

Variable selection
To select variables for explaining the carcass weight in the 
model, we firstly investigated the correlation of CWT with 
size measurements using the Pearson correlation coefficient 
(Table 2). As expected, high correlations between variables 
were observed because weight and size are known to be re­
lated [17]. In particular, all the size measurement variables 
were significantly correlated with carcass weight, indicating 
they could be candidates for explanatory variables in the 
predictive model. In detail, L was correlated with all other 
variables, including CWT except FT (r = –0.081, p = 0.357), 
which was consistent with the results of a study on body 
length, i.e., L in our data, as an indicator of body weight in 
beef cattle [5,10]. Our analysis also showed that coxae girth 
(chest girth, L11) was correlated with all other variables, con­
sistent with the results of a study wherein it was used as the 
main determinant in estimating the body weight of beef cattle 
[9,15]. In addition, carcass weight was shown to have sig­
nificant correlations with FT, EMA, and L11 in Hanwoo 
cattle [17], suggesting that these variables could be poten­

tial explanatory variables. In our analysis, EMA exhibited a 
significant correlation with CWT, but it was not correlated 
with FT (r = –0.031, p = 0.728). Because of multicollinearity, 
the explanatory variables in the model should be independent 
[22], whereas most of variables in this study were correlated 
with each other. In this point of view, it was preferable to 
include EMA in the model as an explanatory variable. 

Estimation of carcass weight using the multiple 
regression model
As an initial attempt, we employed a multiple regression model 
without considering multicollinearity. When including all 
the variables, the R2 of the model was 0.93, but 11 variables 
(L1-L5, L7-L9, and L12-L14) were not significant, suggesting 
that we needed to remove them from the model. To develop 
a model with significant variables (L, FT, EMA, L6, L11, and 
L12) we used 100 data point, while the 34 remaining were used 
to validate the model predictions. As a result, the developed 
model exhibited an R2 of 0.91 and residuals were randomly 
distributed (p-value = 0.115 in the constant variance test), 
indicating the model prediction was reliable and linear struc­
ture of the model was adequate (Figure 1 and Equation 3). 

Table 2. Results of Pearson correlation coefficients (r) between cold carcass weight and size measurements

Value1) FT2) EMA L LF LB L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14

r 0.19 0.69 0.82 0.67 0.73 0.43 0.61 0.30 0.57 0.52 0.83 0.82 0.60 0.55 0.75 0.64 0.46 0.17 0.40
p 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
N 132 132 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134

1) r, p, and N indicates Pearson correlation coefficient, p-value, and number of samples, respectively.
2) FT, backfat thickness; EMA, eye muscle area; L, side length; LF, forequarter length; LB, hindquarter length; L1, cervical vertebrae length; L2, thoracic vertebrae length; L3, 
lumbar vertebrae length; L4, sacral vertebrae length; L5, 6th lumbar vertebrae-heel length; L6, 7th cervical vertebrae carcass breadth; L7, 5–6th thoracic vertebrae breadth; L8, 
4–5th lumbar vertebrae breadth; L9, 5th sacral vertebrae breadth; L10, 7–8th thoracic vertebrae girth; L11, coxae girth; L12, 4–5th lumbar vertebrae thick; L13, coxae thick; 
L14, 7–8th thoracic vertebrae thick.

Figure 1. Results of multiple linear regression by comparing predicted values against measured weights. (A) Model development result (R2 = 0.91) and (B) model 
validation result (R2 = 0.91).
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In addition, the significant variables in the model were similar 
to that of a previous analysis of Hanwoo cattle [17,18], and 
chest girth was the common factor in predicting body weight 
by body measurements in other species [9].

  CWT= –805.6+1.16FT+1.16EMA+1.36L 
		  +3.32L6+1.53L10+1.79L11 	 (Equation 3)

  With the 34 data points that were not used for model de­
velopment, the average relative error was calculated using 
equation 2. It was approximately 4% with minimum and maxi­
mum errors of 4% and 10%, respectively. The largest error 
was observed in a bull having the least weight among bulls 
and had relatively less FT but a higher coxae girth compared 
to cows, which had a similar carcass weight. Practically, body 
size variables are independently measured by judgement, 
suggesting the explanatory variables used in the model are 
practically independent. Thus, the model is applicable for 
estimating carcass weight of Hanwoo cattle. However, from 
a statistical point of view, this model did not consider the 
problem caused by multicollinearity because the significant 
explanatory variables used in the model were correlated with 
each other. In addition, none of the previous models consid­
ered this issue. Consequently, it is necessary to use multivariate 
analysis to produce a new set of variables, which were not 
correlated and compare models with and without consider­
ing multicollinearity.

Estimation of carcass weight using partial least square 
regression
As mentioned above, multicollinearity may cause inaccurate 
estimation of regression coefficients in the model because of 
the interdependency between explanatory variables. In our 

correlation analysis, it was shown that all the measurements, 
except FT, were correlated with each other, suggesting the ne­
cessity of considering multicollinearity. For this reason, we 
used PLS regression to avoid the multicollinearity problem 
[22,23]. As the first step, a principal component analysis (PCA) 
was used to identify the significant explanatory variables. The 
results showed that the first 4 principal components were able 
to explain approximately 65% of the variance in all explana­
tory variables and eigenvalues were greater than 1, suggesting 
these components were critical for explaining the variance 
[28]. In the first 4 principal components, FT, L, L2, L3, L4, 
L6, L7, L10, L11, L12, and L13 exhibited greater values for 
eigenvectors; thus, they could be the main components in 
the PLS model. With comprehensive consideration of the 
results of the PCA and multiple regression analysis, we se­
lected FT, EMA, L, L6, L10, and L11, which were the same 
variables in the previous regression model, for use in the PLS 
regression. In the PLS regression, we used 100 and 34 data 
points for training and test datasets, respectively. As a result, 
the developed model was able to explain 91% of the variation 
in CWT, which was similar to the model accuracy of the re­
gression model (Figure 2). The result also was not significantly 
lower than the R2 with all 19 variables (R2 = 0.92). The inter­
cept and coefficients showed very similar values compared to 
those in the multiple regression model, suggesting the appli­
cability of both models to estimate carcass weight (Equation 
4).

  CWT=–808.9+1.03FT+1.18EMA+1.26L 
		  +3.06L6+1.79L10+1.85L11	  (Equation 4)

  With the test dataset, the relative error was approximately 
4%, which was the same as that of the multiple regression 

Figure 2. Results of partial least square modeling by comparing predicted values against measured weights with (A) training data (R2 = 0.92) and (B) test data (R2 = 
0.91).
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model, and the minimum and maximum errors were 1% and 
11%, respectively. The largest error was shown in the same 
individual, which had the largest error in the multiple regres­
sion model. 

Estimation of carcass weight using a neural network
During the performance of deep learning by the constructed 
ANN to estimate CWT, two different groups of variables were 
used; six significant variables (L, FT, EMA, L6, L11, and L12) 
and all 19 variables of body measurements. The validation 
cost was evaluated for every training iteration and the weights 
with the lowest validation cost were used to predict CWT. 
When the ANN was trained with the 6 significant variables 
(L, FT, EMA, L6, L11, and L12), it stopped at 1,192 iterations 
and exhibited the lowest cost. The prediction showed an R2 
of 0.92, which was slightly higher than that of the multiple 
regression and PLS models and the relative error was approxi­
mately 4% (Figure 3A). With 19 variables, the predicted CWT 
was highly correlated with the CWT measured with the train­
ing data (R2 = 0.95), and the model predicted the CWT with 
an R2 of 0.93 using the test data with a mean relative error of 

4% (Figure 3B). Compared to the statistics-based models, R2 
was higher by 1% but the relative error was not improved. 
Furthermore, we added age and gender to the 19 variables 
of body measurements and performed the ANN with a total 
of 21 variables. When training the networks without con­
sidering validation cost, the ANN could improve the R2 up 
to 0.98 for the training data. However, the R2 for the test data 
decreased to 0.85 because of over-fitting. Considering the 
validation cost, it had the lowest value at 1,334 iterations, 
and the R2 value was 0.94 for both the training and test da­
tasets. Therefore, the ANN model with 21 variables showed 
the best performance in the estimation of CWT compared 
to the other models developed in this study. This suggested 
that the addition of the 2 variables, i.e., gender and age, could 
enhance the correlation between input and output variables 
in the ANN-based approach. Despite the high correlation 
shown above, the performance of the ANN modeling was 
dependent on initial weights of the network. The ANN could 
easily be saturated by local minima or overfitting when the 
initial weights were generated with excessive cost or bias in 
training data. In this study, the ANN models were developed 

Figure 3. Result of artificial neural network by comparing predicted value against measured weight by using (A) 6 variables and (B) all 19 variables with (left) with training 
data, and (right) with test data.
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using a total of 134 data points, which small compared to 
previous ANN-based approaches. To train the ANN to have 
a higher generalization ability without overfitting, it is effec­
tive to increase the number of training data and optimize 
the network architecture.

Discussion regarding the selection of the optimal 
model
The developed model is a useful algorithm for an automated 
machine system which rapidly measures only a few carcass 
size variables in the image [10]. Among the developed models, 
multiple regression analysis was the simplest, and it effec­
tively represented the power of a correlative model with only 
significant variables. By reducing the number of variables to 
be practically measured (only 6 variables), the multiple regres­
sion model was a simple way to estimate CWT. However, as 
previously mentioned this method had a statistical problem 
that should be avoided, i.e., multicollinearity. The PLS regres­
sion model solved the multicollinearity problem by converting 
the variables into a new set of uncorrelated variables [22]. In 
addition, modeling with the PLS regression allowed for a 
machine-learning approach by training the model based on 
training data; thus, increases in the number of Hanwoo cattle 
data may enhance the accuracy in the estimated CWT by 
body measurements. For instance, the data were updated 
with every slaughter of a Hanwoo cattle in NIAS and else­
where, and we could use them to train the developed model. 
However, compared to the multiple regression model, the 
PLS regression model was relatively complex in terms of 
model development and interpretation of the results. In other 
words, the PLS regression model was statistically adequate 
for the inter-related variables (e.g., body measurements and 
weight), but it could not improve on model accuracy. This 
suggested that multicollinearity did not affect the estima­
tion as suggested by previous studies, which used multiple 
regression analysis without considering collinearity among 
variables [8-10]. The ANN model was the most modern way 
to develop a model with advantages in the application of deep 
learning to improve model prediction. It was important to 
determine the number of layers and nodes, initial values, 
and weights through iteration, whereas the statistics-based 
models required predetermination of significant variables 
[26]. Like the PLS regression model, it had advantages in 
that it improved the model by adding newly accumulated 
data. However, the ANN model was more suitable for a non-
linear system than a linear system as shown in the R2-value, 
which was not highly increased compared to statistics-based 
model (only 1% increase in this study) [29]. Moreover, deep 
learning by the neural network required a significantly large 
number of data points; thus, benefits of deep learning by 
ANN were not been fully exploited in this study. For instance, 
the ANN would have a great advantage for analyzing images, 

which provided numerous data points for training and test­
ing of the model [30].
  In addition to model structure and accuracy, the number 
of variables was practically important in this study because 
variables were hand measured. Hence, an increase in the num­
ber of variables could increase the burden of measurement 
of the body size parameters and increase the possibility of 
errors. From this point of view, the statistics-based models 
with only significant variables would be better and the sim­
plest model was more effective than the other types of models. 
In contrast, when using machine vision, many body mea­
surements could be automatically extracted. Consequently, a 
large number of variables could be used and the number of 
data points for training the model could be obtainable. There­
fore, a model with high accuracy for estimating CWT by body 
measurements is possible.

CONCLUSION

This study estimated CWT as a function of body measure­
ments of Hanwoo cattle by using three different types of 
modeling approaches. All three modeling approaches showed 
that body measurements could be applied in the estimation 
of carcass weight of Hanwoo cattle. In addition, the results 
suggested that the selected model should be based on numer­
ous variables measured and numerous data points, which 
are determined by the system (human judgement or machine 
vision). However, this study was expected to provide a simple 
algorithm to estimate the carcass weight with reduced labor 
and time, which was applicable for developing an automated 
system for Hanwoo cattle measurement. At present, we only 
used a total of 134 Hanwoo cattle data points, but the model 
could be updated with the addition of new data. Furthermore, 
a specific model for estimating carcass weight while con­
sidering age and gender and classifying Hanwoo cattle by 
gender during the application of deep learning are studies 
to be undertaken in the future [31]. Finally, this study pro­
poses a way to apply recent modeling techniques into animal 
data analysis, which potentially suggests further applications 
of them in this field. 
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