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As an input method of signal language, the handmovement classifcation technology has developed into one of the ways of natural
human-computer interaction.Te surface electromyogram (sEMG) signal contains abundant humanmovement information and
has signifcant advantages as the input signal of human-computer interaction. However, how to efectively extract components
from sEMG signals to improve the accuracy of hand motion classifcation is a difcult problem. Terefore, this work proposes a
novel method based on wavelet packet transform (WPT) and principal component analysis (PCA) to classify six kinds of hand
motions. Te method applies WPT to decompose the sEMG signal into multiple sub-band signals. To efciently extract the
intrinsic components of the sEMG signal, the classifcation performance of diferent wavelet packet basis functions is evaluated.
Te PCA algorithm is used to reduce the dimension of the feature space composed of the features refecting hand motions
extracted from each sub-band signal. Besides, to ensure higher classifcation performance while reducing the dimension of the
feature space by the PCA algorithm, the classifcation performance of diferent dimensions of the feature space is compared. In
addition, the efects of the variability of the sEMG signal and the size of the window on the proposed method are further analyzed.
Te proposed method was tested on the sEMG for Basic Hand Movements Data Set and achieved an average accuracy of 96.03%.
Compared with the existing research, the proposedmethod has better classifcation performance, which indicates that the research
results can be applied to the felds of exoskeleton robot, rehabilitation training, and intelligent prosthesis.

1. Introduction

Hand movements are the most meaningful and elementary
form of human daily communication and represent the
intentions expressed by people [1, 2]. As a signal language
input method, hand movement classifcation has important
theoretical research signifcance and practical application
value in the feld of human-computer interaction [3]. As a
result, hand movement classifcation technology that allows
humans to communicate with computers more efciently,
conveniently, and naturally has developed into an important
part of the feld of artifcial intelligence [4, 5]. Many studies
have classifed hand movements in terms of computer vision
and wearable sensors [6–8]. Compared with computer vi-
sion, sEMG signals collected by wearable sensors are an ideal

source for hand motion classifcation [9, 10]. Although there
are many studies using sEMG signals for hand motion
classifcation, how to extract the efective components of
sEMG signals to achieve accurate hand motion classifcation
is still a challenging problem.

According to the method of collecting data, hand
movements classifcation can be divided into two categories:
hand movement classifcation based on computer vision and
handmovement classifcation based on wearable sensors [2].
Based on computer vision hand movement classifcation,
handmovement images are captured by the camera and then
the feature is obtained through image processing technology
to classify the hand movements [6]. Sharma et al. [7] used a
convolutional neural network to recognize images of Indian
sign language gestures collected with an RGB camera.
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Kumar et al. [11] proposed two viewpoint-set-up gesture
classifcation methods. Teir experimental results show that
compared with a single-camera system, this method has high
classifcation accuracy even when simple classifers such as
nearest neighbors and decision trees are used. However, the
performance of hand movement classifcation based on
computer vision is often afected by factors such as light
intensity, shooting distance, shooting angle, and occlusion of
sight [12]. Hand movement classifcation based on wearable
sensors overcomes the above-mentioned problems by
detecting signals generated by hand movements. Jiang et al.
[13] designed a real-time gesture classifcation wristband
based on the sensor fusion of sEMG and inertial mea-
surement unit. Teir initial experimental results show that
the classifcation accuracy of air and surface gestures is
92.6% and 88.8%, respectively. Wearable sensors for hand
movement classifcation include accelerators, inertial mea-
surement units, gyroscopes, and sEMG signal sensors
[14–17]. Compared with the signals recorded by other
wearable sensors, the sEMG signal refects the human body’s
electrophysiological response to various activities and has
inherent advantages in predicting actions and distinguishing
between passive and active activities [18]. Te sEMG signal
has become the primary research approach in the felds of
hand movement classifcation, activity recognition, and gait
analysis [19–21].

Te sEMG signal is the superposition of action potentials
of many motor units in time and space, which refects the
body’s movement intention [22, 23]. Te sEMG signal is an
unstable bioelectric signal with diferent frequency com-
ponents at diferent moments [24]. Te representative time-
frequency analysis methods of the sEMG signal include fast
Fourier transform (FFT) [25], short-term Fourier transform
(STFT) [26, 27], Wigner–Ville distribution (WVD) [28, 29]
and Hilbert–Huang transform (HHT) [30], and wavelet
transform (WT) [18, 31, 32]. Te prerequisite for FFT and
STFT to efectively analyze the signal is that the signal is
stable [33]. It is obvious that they cannot efectively refect
the time-frequency characteristics of nonlinear and non-
stationary sEMG signals. Compared with STFT, WVD can
interpret the signals better [34]. However, WVD may have
cross-terms that carry important information about the
relationship between signal components to mask the original
signal, making it difcult to interpret the time-frequency
information of the signal [35, 36]. Te time-frequency
analysis of the signal by the HHT method consists of two
steps, namely, empirical mode decomposition and the
Hilbert transform. Te HHT method is suitable for non-
linear and nonstationary signal analysis, but the computa-
tional cost is higher than that of WTand other methods [24].
Te WT analyzes the local characteristics of the signal at
diferent time periods and in diferent ranges by calculating
the convolution of the signal and the wavelet basis function
[37]. Te WPT is an important extension of the WT, which
can efectively analyze the frequency components of the
signal [38]. Existing research has shown that WPT with
many resolution levels can efectively extract the compo-
nents in the signal to obtain better classifcation results
[31, 39].

Feature extraction plays a vital role in the classifcation of
hand movements based on sEMG signals [40]. Feature
extraction is to convert the sEMG signal into a compact and
information-rich feature space. Te sEMG signal feature
extraction methods are generally divided into time-domain
(TD) features and frequency-domain (FD) features [41]. Te
TD feature is the TD statistics obtained by directly per-
forming statistical analysis on the signal amplitude [42].
Common TD features include root mean square (RMS),
variance (VAR), mean absolute value (MAV), waveform
length (WL), and zero crossing (ZC) [43–45]. Arief et al. [46]
evaluated fve TD features to fnd the best way to minimize
the complexity of implementation and reduce the cost of
information processing. Te FD features are extracted from
the frequency spectrum of the sEMG signal [47]. According
to the research of hand movement classifcation based on
sEMG signals, the FD features extracted from sEMG signals
mainly include median frequency (MDF), mean frequency
(MNF), andmean power (MNP) [41]. Phinyomark et al. [48]
proposed two modifed FD features for robust feature
extraction.

To improve the classifcation performance of hand
movements based on sEMG signals, we propose a novel
method for hand movement classifcation. In this method,
the sEMG signal is decomposed into multiple sub-band
signals by WPT; the TD and FD features are extracted from
the frequency band signals; the PCA is used to eliminate
redundant features; and machine learning is used as a
predictive model to achieve the purpose of accurately
classifying hand movements. Te method proposed in this
work is of great signifcance to the development of human-
computer interaction, clinical medicine, and prosthetic
control. Te fow chart of this work is shown in Figure 1.

Based on the above analysis, the motivation of this re-
search is to achieve a high-accuracy hand movement rec-
ognition method that can accurately extract efective
information from sEMG signals. In this work, we adopt
WPTto decompose the sEMG signal into multiple frequency
band components to represent the most important infor-
mation in the sEMG signal. To select a suitable wavelet basis
function, we evaluated the classifcation accuracy of diferent
wavelet packet functions for hand movements. MAV, RMS,
MNF, and MDF were extracted from sub-band signals
obtained by the WPT decomposition of sEMG signals. Te
extracted features are projected into a low-dimensional
space by PCA to remove unimportant features. Machine
learning classifers are used to recognize hand movements
and compare the corresponding recognition performance.

Te rest of the work is structured as follows: Section 2
describes the database and methods used in this work in
detail. Section 3 shows the results. Section 4 discusses the
proposed method. Section 5 presents the conclusion.

2. Related Works

Te sEMG signal data set used in this work is obtained from
the publicly available sites. Te sEMG signal contains
abundant information on body movements and has great
potential for hand motion classifcation [49]. However, the
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analysis of sEMG signals is a challenging problem due to the
fact that the acquisition of sEMG signals is afected by
electrode displacement, muscle structure diferences, and
muscle contraction strength [50]. Based on this challenging
problem, many scholars have conducted in-depth research
on the classifcation of hand movements based on sEMG
signals [14, 32].

Nishad et al. [8] apply tunable-Q wavelet transform-
based flter-bank (TQWT-FB) for decomposition of cross
covariance of sEMG signals. Kraskov entropy features are
extracted from each sub-band signal. RELIEFF is used for
feature ranking. Features with signifcant diferences are
selected and input into the k-NN classifer for hand motion
classifcation. Sapsanis et al. [10] utilized empirical mode
decomposition to decompose sEMG signals into intrinsic
mode functions (IMFs). Eight features (IEMG, ZC, VAR,
SSC, WL, WAMP, kurtosis, and skewness) are extracted
from IMFs and raw sEMG signals. A simple linear classifer
was used to achieve the classifcation of the six hand
movements. Ruangpaisarn et al. [51] proposed a method
based on singular value decomposition and SMO to classify
six basic hand movements. Te authors propose the V2M-
SVDmethod for feature extraction of sEMG signals, and the
SMO classifer is used for the classifcation of six hand
movements. Yavuz et al. [52] proposed a method based on
cepstral analysis to classify basic hand movements from
sEMG signals. By calculating the mel-frequency cepstral
coefcients (MFCCs), the cepstral analysis technique is used
to extract the TD features of the sEMG signals.Te extracted
feature vectors are composed of MFCCs, and then, a gen-
eralized regression neural network (GRNN) is used to
classify basic hand movements. Fatimah et al. [53] proposed
an automatic recognition algorithm for hand movements
based on the Fourier decomposition method (FDM). Te
method adopts FDM to decompose the sEMG signal into
Fourier intrinsic band functions (FIBFs). Te kurtosis, en-
tropy, and L1 norm of each FIBF are extracted as features
and fed into a machine learning classifer to classify hand
motion.

According to the research mentioned above, it is a
challenging problem to efectively extract intrinsic com-
ponents from sEMG signals to achieve accurate handmotion

classifcation. Terefore, this work proposes a novel ap-
proach to improve the classifcation performance of hand
motions. Te contributions of this work are presented as
follows:

(i) Te hand motion classifcation performance of
WPT based on diferent wavelet basis functions is
evaluated

(ii) Te classifcation performance of the proposed
method based on diferent feature space dimensions
is compared

(iii) Te robustness of the proposed method is analyzed
(iv) Te classifcation performance of the proposed

method with diferent window sizes is tested

3. Materials and Methods

3.1. Data Set. Te sEMG signal data set used in this work is
obtained from the following publicly available accessible
URL: https://archive.ics.uci.edu/ml/datasets/
sEMG+for+Basic+Hand+movements [10]. Te signals
were taken from two diferential sEMG sensors, and the
signals were transmitted to a 2-channel sEMG system by
Delsys Bagnoliâ handheld sEMG systems. Tere were two
forearm sEMG electrodes (fexor capri ulnaris and extensor
capri radialis, longus and brevis) held in place by elastic
bands and the reference electrode in the middle, in order to
gather information about the muscle activation. Te sEMG
signal data set was collected from 5 healthy subjects (2 males
and 3 females; age: 20-22 years). Te sampling frequency of
the sEMG signal is 500Hz. Te signals were band-pass
fltered using a Butterworth Band Pass flter with low and
high cutofs at 15Hz and 500Hz, respectively, and a notch
flter at 50Hz to eliminate line interference artifacts. Te
subjects were asked to perform repeatedly the following six
diferent hand movements: cylindrical (CY), tip (TI), hook
(HO), palmar (PA), spherical (SP), and lateral (LA). Te
force and speed of each hand movement are determined by
the subject’s willingness, and the recording time of the
sEMG signal is 6 seconds. Figure 1 shows the six hand
movements used in this work. Each subject repeats these
hand movements 30 times. More details of the data set are
introduced in the research [53–55]. Figure 2 shows the
sEMG signal samples analyzed in this work.

3.2. Methods. To improve the classifcation performance of
hand movements based on sEMG signals, we propose a
novel method for hand movement classifcation. In this
method, the sEMG signal is decomposed into multiple sub-
band signals by WPT; the TD and FD features are extracted
from the frequency band signals; the PCA is used to
eliminate redundant features; and machine learning is used
as a predictive model to achieve the purpose of accurately
classifying hand movements. Te method proposed in this
work is of great signifcance to the development of human-
computer interaction, clinical medicine, and prosthetic
control. Te fow chart of this work is shown in Figure 3.

CYRINDARICAL GRASP TIP

HOOK or SNAP

PALMAR SPHERICAL LATERAL

Figure 1: Te six corresponding hand movements.

Computational Intelligence and Neuroscience 3

https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements
https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements


-5

0

5

A
m

pl
itu

de
 

20001000 30000
Number of samples 

(a)

-2

-1

0

1

A
m

pl
itu

de
 

2000 30000 1000
Number of samples 

(b)

-1
-0.5

0
0.5

1
1.5

A
m

pl
itu

de
 

1000 2000 30000
Number of samples 

(c)

1000 2000 30000
Number of samples 

-0.5

0

0.5

1

A
m

pl
itu

de
 

(d)

-6
-4
-2
0
2
4

A
m

pl
itu

de
 

1000 2000 30000
Number of samples 

(e)

1000 2000 30000
Number of samples 

-2

0

2

4

A
m

pl
itu

de
 

(f )

1000 2000 30000
Number of samples 

-1
-0.5

0
0.5

1
1.5

A
m

pl
itu

de
 

(g)

1000 2000 30000
Number of samples 

-0.2

0

0.2

0.4

A
m

pl
itu

de
 

(h)

1000 2000 30000
Number of samples 

-10

-5

0

5

A
m

pl
itu

de
 

(i)

-2

-1

0

1

2

A
m

pl
itu

de
 

1000 2000 30000
Number of samples 

(j)

-0.5

0

0.5

1

1.5

A
m

pl
itu

de
 

1000 2000 30000
Number of samples 

(k)

1000 2000 30000
Number of samples 

-0.2

0

0.2

0.4

0.6

A
m

pl
itu

de
 

(l)

Figure 2:Te sEMG signal recorded from female_1: (a) CY hand movement from electrode 1; (b) CY hand movement from electrode 2; (c)
TI hand movement from electrode 1; (d) TI hand movement from electrode 2; (e) HO hand movement from electrode 1; (f ) HO hand
movement from electrode 2; (g) PA handmovement from electrode 1; (h) PA handmovement from electrode 2; (i) SP handmovement from
electrode 1; (j) SP hand movement from electrode 2; (k) LA hand movement from electrode 1; (l) LA hand movement from electrode 2.
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Feature extraction Dimension reduction Classifcation Hand movements

Figure 3: Te framework of hand movement classifcation proposed in this work.
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3.2.1. Wavelet Packet Transform. TeWPTis a sophisticated
decomposition algorithm that can subdivide the high-fre-
quency and low-frequency components of a signal [39, 56].
Te defnition of WPT is as follows.

Assuming that the orthogonal scaling function φ(t) and
the wavelet function ψ(t) have a two-scale relationship,

φ(t) �
�
2

√
􏽘
k

h(k)φ(2t − k),

ψ(t) �
�
2

√
􏽘
k

g(k)φ(2t − k),
(1)

where h(k) and g(k) represent the flter coefcient in
multiresolution analysis.

Defne the recursive function sequence:

w2n �
�
2

√
􏽘
k∈Z

h(k)wn(2t − k),

w2n+1 �
�
2

√
􏽘
k∈Z

g(k)wn(2t − k).
(2)

When n � 0,w0(t) � φ(t) andw1(t) � ψ(t).Te wavelet
packet wn(t)􏼈 􏼉n∈Z is determined by w0(t) � φ(t).

Each sub-band signal obtained byWPTwill be decomposed
into two sub-band signals of high and low frequency by two
flters of high frequency and low frequency.Terefore, when the
number of decomposition layers is the nth layer, the number of
sub-band signals is 2n. Each layer of sub-band signal contains
the entire frequency range of the original signal, which also
refects that WPT is a sophisticated signal analysis method.

3.2.2. Feature Extraction. Te feature extraction of sEMG
signals is a key step in the classifcation of hand movements
based on sEMG signals [40]. In this work, four features are
extracted from the sub-band signals obtained by decom-
posing the sEMG signal byWPTto classify hand movements
[41, 42].Tese features were selected on the basis of previous
studies that showed their usefulness in distinguishing hand
movements based on sEMG signals [2, 43]. Te details of the
four features are as follows.

Te MAV feature is the average value of the absolute
value of the sEMG signal amplitude of the segment, which
represents the energy of the sEMG signal [23]. Te ex-
pression of the MAV is as follows:

MAV �
1
N

􏽘

N

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (3)

where N is the window length of the sEMG signal and i is the
ith sample point.

Te RMS is a measure of the amplitude of the sEMG
signal [23]. RMS is defned as

RMS �

�������

1
N

􏽘

N

i�1
x
2
i

􏽶
􏽴

. (4)

Te MNF is the sum of the product of the sEMG power
spectrum and the frequency divided by the total sum of the
spectrum intensity [23]. Te expression of MNF is

MNF �
􏽐

M
j�1 fjPj

􏽐
M
j�1 Pj

, (5)

where fj is the frequency of the spectrum at frequency bin j,
Pj is the sEMG power spectrum at frequency bin j, and M is
the length of the frequency bin.

Te MDF is a frequency that divides the frequency
spectrum into two regions with equal amplitude [23]. Te
expression of MDF is

􏽘

MDF

j�1
Pj � 􏽘

M

j�MDF
Pj �

1
2

􏽘

M

j�1
Pj. (6)

3.2.3. Feature Dimension Reduction. Te PCA is a multi-
variate statistical method that can map high-dimensional
space data to low-dimensional space and reduce the
redundancy of high-dimensional space data [57]. Te
core idea of PCA is to analyze the input data and project
it in the direction with the least information loss and the
greatest variance [49]. Te process of PCA dimension-
ality reduction is as follows: calculate the covariance
matrix of the decentralized sample data
X � x1, x2, . . . , xn􏼈 􏼉, where n is the dimension of the
sample data:

C �
1
n

X
T
X. (7)

Calculate the eigenvalues of C and the corresponding
eigenvectors. Arrange the eigenvectors according to the size
of the corresponding eigenvalues, and take the eigenvectors
corresponding to the frst k larger eigenvalues to form a
matrix P.

Reconstruct the reduced dimensionality data space:

Y � PX. (8)

Te reduced dimensionality data space P contains most
of the information of the original sample data X, which
efectively simplifes the modal classifcation problem.

3.2.4. Classifcation. In this work, three classifers, namely,
K-nearest neighbor (KNN), support vector machine (SVM),
and bagging, are used to classify hand movements. Te
details of these classifers are as follows.

(1) KNN. Te principle of the KNN classifer is to fnd the K
data points closest to a specifc sample point in the training
set based on a certain distance measurement for a given data
set, and then, the label with the most categories in the K
samples is used as the label of the fnal prediction sample
[58, 59]. Te KNN classifer is a supervised learning algo-
rithm and has excellent performance in various biomedical
signal processing applications. In this work, the parameters
of the KNN classifer include that the distance metric is Euler
distance and the method to determine the label of the sample
to be tested is the majority voting method.
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(2) SVM. Te SVM is a supervised learning algorithm based
on interval maximization and has the advantages of high
computational efciency and strong generalization ability
[48, 60, 49]. Te purpose of the SVM is to fnd the optimal
hyperplane to maximize the sample interval of diferent
classes of the hyperplane. For linear inseparable data, the
kernel function technology is needed to map the linear
inseparable feature vector to the high-dimensional linear
separable feature space. In this work, the Gaussian kernel
function was selected as the SVM kernel function to classify
hand movements.

(3) Bagging. Bagging is implemented based on the bootstrap
sampling method; that is, random sampling with replace-
ment is performed on a given training set and the obtainedm
subsets of the same size are used as the new training set
[53, 61]. Train the basic classifcation algorithm on these m
training sets to getmmodels. Te classifcation results of the
models are voted on, and the category with the most votes is
used as the classifcation result. Bagging can reduce the
variance of the basic classifer to obtain a more stable and
accurate classifcation performance. In this work, the de-
cision tree is selected as the basic classifer of bagging to
classify hand movements.

3.2.5. Performance Evaluation. In this work, accuracy, re-
call, precision, and F1-score (F1) are selected to evaluate the
classifcation performance of diferent classifcation models
[55]. Te equations for these four indicators are given as
follows:

accuracy �
TP + TN

TP + TN + FN + FP
,

recall �
TP

TP + FN
,

precision �
TP

TP + FP
,

F1 �
2 × recall × precision
recall + precision

,

(9)

where true positive (TP) represents that the classifcation
category of the model and the actual category of the sample
are both positive, true negative (TN) represents that the
classifcation category of the model and the actual category
of the sample are both negative; false negative (FN) repre-
sents that the classifcation category of the model is negative
but the actual category of the sample is positive; and false
positive (FP) represents that the classifcation category of the
model is positive but the actual category of the sample is
negative.

4. Results

4.1. Decomposition Performance of WPT. Te amplitude of
the sEMG signal generated by diferent hand movements of
the same muscle is diferent. In order to accurately extract

the features of the sEMG signal from diferent hand
movements, WPT is used to decompose the sEMG signal. As
shown in Figure 4, the sEMG signal is decomposed by the
three-layer WPT to obtain the frequency band signal. Fig-
ure 4 shows that the waveforms of signals in diferent fre-
quency bands have unique properties and efectively refect
the intention of hand movements.Terefore, each frequency
band signal contains rich features required for hand
movement classifcation.

4.2. Wavelet Packet Basis Function Selection. As shown in
Table 1, the efect of fve diferent wavelet packet basis functions
on the accuracy of hand action classifcation is evaluated.
Combining the classifcation accuracy of the three classifers,
the classifcation accuracy of hand movements based on the
wavelet packet basis function of dmey is the highest and the
classifcation accuracy of hand movements based on the
wavelet packet basis function of sym3 is the lowest. Te
comprehensive classifcation accuracy of fve diferent wavelet
packet basis functions fromhigh to low is dmey, fk8, coif2, db4,
and sym3 (dmey> fk8> coif2>db4> sym3). Te combination
of dmey wavelet packet basis function and KNN classifer
achieves the highest classifcation accuracy of 97.01%, and the
combination of db4 wavelet packet basis function and SVM
classifer achieves the lowest classifcation accuracy of 90.91%.
Table 1 shows that the classifcation accuracy of hand move-
ments based on the dmey wavelet packet basis function is
obviously better than other wavelet packet basis functions, and
the highest classifcation accuracy is 97.01%.

4.3. Evaluation of sEMG Signal Classifcation Performance.
In order to ensure that PCA reduces the dimensionality of the
feature space while ensuring high classifcation accuracy of hand
movements, the classifcation accuracy of hand movements in
fve diferent low-dimensional feature spaces (the extracted
feature space is reduced from 64 features to 10, 20, 30, 40, and 50
features) is evaluated. Table 2 shows theKNNclassifer, the SVM
classifer, and the bagging classifer achieved 96.03%, 94.50%,
and 90.08% classifcation accuracy in the 30-dimensional feature
space, respectively, which is better than the accuracy of the
corresponding other-dimensional feature spaces. A compre-
hensive comparison of the classifcation accuracy of hand
movements in fve diferent low-dimensional feature spaces
shows that the 30-dimensional feature space achieves the best
classifcation performance and, combined with the KNN clas-
sifer, has the highest classifcation accuracy of 96.03%.

We also perform statistical analysis of the Krus-
kal–Wallis test on feature space with dimension 30 (P< 0.05
indicates the statistical diference between features) [53]. As
shown in Table 3, there is a statistical diference between the
30-dimensional features obtained by PCA dimensionality
reduction.

Te accuracy, recall, precision, and F1 of each hand
movement are calculated to evaluate the classifcation
performance of the proposed method. Table 4 shows the
accuracy, recall, precision, and F1 of each hand movement
based on the KNN classifer. Te hand movements of TI
are classifed with the highest accuracy, recall, precision,
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and F1, the hand movements of CY are classifed with the
lowest accuracy, recall, and F1, and the hand movements
of PA are classifed with the lowest precision. Table 5
presents the classifcation performance of each hand
movement based on the SVM classifer. Te hand
movements of TI are detected with the highest accuracy,
precision, and F1, and the hand movements of HO are
detected with the highest recall. On the contrary, the hand
movements of HO are detected with the lowest accuracy,
precision, and F1, the hand movements of LA are detected
with the lowest recall. As shown in Table 6, the hand
movements of TI are classifed by the bagging classifer
with the highest accuracy, recall, precision, and F1, the
hand movements of CY are classifed by the bagging
classifer with the lowest accuracy, precision, and F1, and
the hand movements of PA classifed by the bagging
classifer have the lowest recall. Tables 3–5 show that the
classifer has the best classifcation performance for hand
movements of TI and the worst classifcation performance
for hand movements of CY.
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Figure 4: An example of a sEMG signal decomposed by WPT. (a) original sEMG signal; (b∼i) the eight sub-band signals obtained by
decomposing the sEMG signal by WPT.

Table 1: Average classifcation accuracy of hand movements based
on diferent wavelet basis functions.

Classifer
Wavelet basis function

sym3 (%) fk8 (%) dmey (%) db4 (%) coif2 (%)
KNN 95.91 96.00 97.01 95.94 96.11
SVM 91.08 91.36 92.52 90.91 90.97
Bagging 93.21 94.21 94.89 93.68 93.81

Table 2: Average classifcation accuracy of fve diferent dimen-
sional feature spaces (by using PCA).

Classifer
Te dimension of the feature space

10 (%) 20 (%) 30 (%) 40 (%) 50 (%)
KNN 90.58 92.72 96.03 94.88 95.95
SVM 92.78 92.01 94.50 88.51 84.38
Bagging 86.66 88.36 90.08 89.34 89.69
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5. Discussion

In this work, we use WPT to decompose the sEMG signal
into multiple sub-band signals to further analyze the in-
tention of hand movements. However, the performance of
WPT to decompose the sEMG signal is afected by the
wavelet basis function. Terefore, it is necessary to select a
suitable wavelet basis function to provide the best classif-
cation performance of hand movements. As shown in Ta-
ble 1, we evaluated the classifcation accuracy of hand
movements of fve diferent wavelet packet basis functions
(dmey, fk8, coif2, db4, and sym3). Compared with the
wavelet packet basis functions of fk8, coif2, db4, and sym3,
the wavelet packet basis functions of dmey have advantages
in the classifcation of hand movement intentions. Tis can
be explained by the research of Shi et al. [56]; that is, the
waveform of the dmey wavelet is similar to the sEMG signal,
and it has strong compactness and fast attenuation per-
formance. For this reason, the dmey wavelet is capable of
analyzing the small change information in the sEMG signal,
which is benefcial in improving the classifcation perfor-
mance of hand movements.

Te MAV, RMS, MNF, and MDF were extracted from
sub-band signals obtained from the three-level WPT de-
composition sEMG signal. Terefore, the feature space
extracted in this work contains 64 features. In order to
reduce the dimension of the feature space, the PCA is ap-
plied. As shown in Table 2, the accuracy of the feature space
of fve diferent dimensions is evaluated. When the feature
dimension is 10, the classifcation accuracy of hand
movements is the lowest, which may be caused by the low-
dimensional feature space failing to efectively refect the
intention of hand movements [43]. As the dimension of
feature space increases, the information of hand movements
contained in feature space also increases, which leads to the
improvement of the classifcation accuracy of hand move-
ments [49]. When the dimension of feature space is 30, the
classifcation accuracy of hand movements reaches its
highest. However, when the dimension of the feature space
exceeds 30, the classifcation accuracy of hand movements
decreases, which can be explained by the reduced classif-
cation accuracy caused by the redundancy among features of
the feature space with higher dimensions [43]. When the

Table 3: P values of 30-dimensional features.

Feature P value
F1 <0.001
F2 <0.001
F3 <0.001
F4 <0.001
F5 <0.001
F6 <0.001
F7 <0.001
F8 <0.001
F9 <0.001
F10 <0.001
F11 <0.001
F12 <0.001
F13 <0.001
F14 <0.001
F15 <0.001
F16 <0.001
F17 <0.001
F18 <0.001
F19 <0.001
F20 <0.001
F21 <0.001
F22 <0.001
F23 <0.001
F24 <0.001
F25 <0.001
F26 <0.001
F27 <0.001
F28 <0.001
F29 <0.001
F30 <0.001

Table 4: Te classifcation performance of hand movements ob-
tained by the KNN classifer.

Hand
movements Accuracy (%) Recall (%) Precision (%) F1

CY 98.40 95.23 95.18 0.95
HO 98.73 95.46 96.88 0.96
LA 98.60 95.92 95.70 0.96
PA 98.54 96.46 94.86 0.96
SP 98.695 96.08 96.05 0.96
TI 99.11 97.05 97.58 0.97

Table 5: Te classifcation performance of hand movements ob-
tained by the SVM classifer.

Hand
movements Accuracy (%) Recall (%) Precision (%) F1

CY 98.10 93.51 95.02 0.94
HO 96.81 98.87 84.58 0.91
LA 98.27 92.51 96.94 0.95
PA 98.41 92.85 97.50 0.95
SP 98.38 92.82 97.36 0.95
TI 99.03 96.44 97.71 0.97

Table 6: Te classifcation performance of hand movements ob-
tained by the bagging classifer.

Hand
movements Accuracy (%) Recall (%) Precision (%) F1

CY 95.17 89.62 82.82 0.86
HO 97.42 92.72 91.89 0.92
LA 96.42 85.67 92.29 0.89
PA 96.68 90.41 89.74 0.90
SP 96.83 88.59 92.08 0.90
TI 97.63 93.46 92.42 0.93
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dimension of feature space exceeds 50, the classifcation
accuracy of hand movements may be improved, but the
computational complexity also increases. Terefore, a fea-
ture space with a dimension of 30 was selected to classify
hand movements in this work. In addition, the statistical
analysis results in Table 3 also fully prove that the feature
space selected with dimension 30 can reduce redundancy
among features and retain most information of hand
movement intention.

To evaluate the efect of the variability of the sEMG
signal on the performance of the proposed model, a
robustness analysis is performed on the proposed model.
Specifcally, diferent levels of noise are added to the
original sEMG signal, and then, the data with noise is
processed according to the proposed model in this re-
search. Next, the perturbed data is input into the trained
classifer, and the recognition accuracy of hand move-
ments is obtained. Given that the magnitude level of the
raw input data is 10− 2, the corresponding noise level is set
to 1 × 10− 2, 1 × 10− 1, 3 × 10− 1, 5 × 10− 1, and 8 × 10− 1.
Table 7 shows the robustness results for diferent noise
levels. In Table 7, the proposed method achieves the best
hand motion classifcation performance when the noise
level is 1 × 10− 2 and the hand motion classifcation
performance decreases slightly with the increase of the
noise level, which demonstrates that the method pro-
posed in this research has strong robustness. Te strong
robustness of the proposed method may beneft from the
ability of WPT to analyze the intrinsic components of
sEMG signals. In addition, Table 7 also shows that the
KNN classifer has the best robustness, followed by the
SVM classifer and the bagging classifer. Te KNN
classifer has the strongest robustness, mainly because of
the advantage of the KNN algorithm being insensitive to
outliers. According to the above robustness analysis, it is
concluded that the method proposed in this research has
good generalization ability, can accept a wider range of
data, and is suitable for real-life applications in the case
of unavoidable data disturbances such as electrode dis-
placement and muscle fatigue.

To test the classifcation accuracy of the proposed
method with diferent window sizes, fve tests were
performed: 200, 250, 300, 350, and 400 samples. Te
average classifcation accuracy of hand movements for
diferent window sizes is shown in Table 8. It can be seen
that larger window sizes have better average classifcation
accuracy. Tis may be attributed to the fact that the larger
window size contains more hand motion information.
Table 8 shows that the classifer achieves the highest
classifcation accuracy in the case of 400 samples. Al-
though a larger window size may achieve better classi-
fcation performance, the computational cost of the
proposed method is also higher. Considering the clas-
sifcation performance and computational cost, this re-
search analyzes the proposed method based on the
window length of 400 samples.

As shown in Table 9, the classifcation performance of
the methods proposed in this work is compared with that of
studies performed on the same data set. Akben et al. [14]

applied fltering and histogram calculation to the energy
values of sEMG signals, and then, the correlation between
histogram values was calculated by the consistent correlation
method as the features. Teir experimental results show that
the cascaded-structure classifer achieves the best average
classifcation accuracy of 94.72%. Iqbal et al. [17] proposed a
method to classify hand movements from sEMG signals
based on singular value decomposition and PCA. Tey
applied singular value decomposition to sEMG signals to
extract singular values and the mean and variance of the frst
fve principal components to classify hand movements with
an accuracy of 86.71%. Too et al. [32] evaluated the hand
movement classifcation accuracy of sixteen features that
were extracted from sEMG signals via discrete wavelet
transform.Teir results showed that the combination ofWL,
MAV, enhanced WL, and enhanced MAV achieved an
average accuracy of 94.22%. Bergil et al. [57] used the four-
level symmetric WT to decompose sEMG signals and cal-
culated the energy, mean value, standard deviation, and
entropy of wavelet components as features. Te PCA was
applied to feature space dimensionality reduction, and the
KNN classifer achieved 94.96% average accuracy of hand
movement classifcation. Compared with the existing
studies, the proposed method achieves an average classif-
cation accuracy of 96.03%, which proves the superiority of
the proposed method in the feld of hand movement
classifcation.

Inevitably, there are several limitations to this work.
First, this work only considers WPT as a sEMG signal de-
composition method. In future work, we will apply other
popular methods such as empirical mode decomposition
and variational mode decomposition to the processing of
sEMG signals. Second, this work only classifes six com-
monly used hand movements, and future work can extend
this method to more hand movements. Finally, in the future,
we will work on improving the accuracy by improving the
proposed method, focusing on tuning and testing for ap-
plications in upper limb amputees.

Table 7: Robustness results for diferent noise levels.

Classifer
Noise level

1e− 2
(%) 1e− 1 (%) 3e− 1 (%) 5e− 1 (%) 8ee− 1 (%)

KNN 94.58 94.15 86.61 80.66 76.43
SVM 94.28 93.07 83.65 75.12 69.98
Bagging 89.57 88.41 80.63 73.84 63.92

Table 8: Average classifcation accuracy of hand movements for
diferent window sizes.

Classifer
Window size (samples)

200 (%) 250 (%) 300 (%) 350 (%) 400 (%)
KNN 76.58 83.25 88.53 92.14 96.03
SVM 76.34 82.66 87.16 91.28 94.50
Bagging 74.81 79.38 83.60 86.67 90.08
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 . Conclusions

In this work, we propose a novel method for hand move-
ment classifcation based on WPT. We also evaluate the
efect of WPT based on diferent wavelet basis functions on
hand movement classifcation, and the experimental results
show that the dmey wavelet basis function has the highest
classifcation accuracy. In addition, PCA is used to reduce
the dimension of the feature space composed of MAV, RMS,
MNF, and MDF to 30 dimensions to achieve high classif-
cation accuracy. Te KNN classifer was used to classify six
kinds of hand movements and achieved an average classi-
fcation accuracy of 96.03%. Compared with the classifca-
tion performance of existing research, the proposed method
has obvious advantages in classifcation accuracy. Te re-
search results can be applied to exoskeleton robots, reha-
bilitation training, and intelligent prosthetics [62–65].
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