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Abstract

Human immunity influences the evolution and impact of influenza strains. Because individu-

als are infected with multiple influenza strains during their lifetime, and each virus can gener-

ate a cross-reactive antibody response, it is challenging to quantify the processes that

shape observed immune responses or to reliably detect recent infection from serological

samples. Using a Bayesian model of antibody dynamics at multiple timescales, we explain

complex cross-reactive antibody landscapes by inferring participants’ histories of infection

with serological data from cross-sectional and longitudinal studies of influenza A/H3N2 in

southern China and Vietnam. We find that individual-level influenza antibody profiles can

be explained by a short-lived, broadly cross-reactive response that decays within a year

to leave a smaller long-term response acting against a narrower range of strains. We also

demonstrate that accounting for dynamic immune responses alongside infection history can

provide a more accurate alternative to traditional definitions of seroconversion for the esti-

mation of infection attack rates. Our work provides a general model for quantifying aspects

of influenza immunity acting at multiple timescales based on contemporary serological data

and suggests a two-armed immune response to influenza infection consistent with competi-

tive dynamics between B cell populations. This approach to analysing multiple timescales

for antigenic responses could also be applied to other multistrain pathogens such as dengue

and related flaviviruses.

Author summary

It is challenging to determine the true extent of influenza infection and immunity within

a population, because a person’s immune response to a specific influenza strain depends

both on past infections with that strain as well as immunity generated by related influenza

strains. To untangle these processes, we developed a mathematical model that considered

individual histories of influenza infection and immune dynamics acting at multiple time-

scales. We combined this model with surveys of antibody levels in different individuals,
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showing how antibody dynamics are influenced by a short-lived, broadly cross-reactive

response against a wide range of strains that wanes over time to leave a long-term

response against a narrower collection of strains. By accounting for such short- and long-

term responses, we also found that it was possible to obtain better estimates of the fre-

quency of influenza infection. These methods could help to guide the design of studies to

estimate key aspects of influenza immune dynamics or to estimate historical infection

rates and would also be applicable to other pathogens with multiple strains.

Introduction

Immunity against influenza A can influence the severity of disease [1, 2], the effectiveness

of vaccination strategies [3], and the emergence of novel strains [4, 5]. Understanding the

accumulation of immunity and infection has proven challenging because observed human

antibody responses—typically measured by haemagglutination inhibition (HI) assays or

microneutralisation titres [6]—reflect a combination of past infections to specific strains and

the potentially cross-reactive responses generated by these infections [7].

Several aspects of influenza antibody dynamics have been well described through measure-

ment of individual antibody repertoires. In particular, there is evidence of long-lived, strain-

specific antibody responses directed against epitopes in the haemagglutinin (HA) glycoprotein

head domain [8, 9], as well as weaker, cross-reactive responses directed at conserved epitopes

in the HA stalk [7]. There is also evidence that influenza infection leads to ‘back-boosting’,

generating a transient, broadly cross-reactive response against historical strains [10–12]. In

addition, it has been suggested that influenza responses are influenced by antigenic seniority,

with strains seen earlier in life shaping subsequent antibody responses [13]. This is a refine-

ment on the earlier concept of ‘original antigenic sin’, whereby the largest antibody response is

maintained against the first infection of a lifetime [14].

Although there are established techniques for the analysis of single-strain immunising path-

ogens such as measles [15], potential cross-reactivity between different influenza A strains

means serological analysis must account for the dynamics of antibody responses across multi-

ple infections [16]. The concept of an antibody landscape has been put forward as one way to

represent the immune response developed as a result of a sequence of processes such as infec-

tion, antibody boosting, antibody waning, and cross-reactivity [10]. Previous work has also

used cross-sectional data to explore the life course of immunity by explicitly modelling both

the processes of infection and immunity [17]. However, such analysis could not quantitatively

estimate the contribution of different antibody mechanisms operating at multiple timescales.

These cross-reactive dynamics, combined with measurement error in available assays, have

made it challenging to uncover an individual’s exposure history from serological responses. It

has been shown that measurement error in HI assays can lead to uncertainty in the estimation

of serological status [18], and cross-reactive antibody dynamics can make it difficult to esti-

mate the true extent of influenza infection during an epidemic [2]. Accurate estimation of

attack rates is crucial for estimating influenza burden and hence the design and evaluation of

vaccination campaigns [19].

To quantify antibody kinetics over time and estimate historical infections with influenza A/

H3N2, we used a dynamic model of immune responses that generated expected titres against

specific strains [17] by combining infection history—which was specific for each individual—

with an antibody response process that was universal across individuals. We assumed that the

response included both a short-term and long-term component (S1 Fig). The short-term

Influenza A/H3N2 antibody timescales
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component consisted of a boost in log titre following infection, which decayed over time, as

well as a rise in log titre as a result of cross-reaction with antigenically variable strains. The

long-term response featured a boost in log titre, which did not decay, and a separate cross-

reaction process that led to increased titres against other strains. Titres were also influenced by

antigenic seniority, with later infections generating lower levels of homologous boosting than

that generated against strains encountered earlier in life (see Materials and methods). Histori-

cal strains were assumed to follow a smooth path through a two-dimensional antigenic space

over time [20] (S2 Fig). We fitted this model to 2 publicly available serological datasets in

which participants were tested against a panel of A/H3N2 strains. The first contained cross-

sectional HI and microneutralisation data for individuals living in the Guangdong province in

southern China, collected in 2009 [13, 21, 22]; the second included longitudinal HI data from

Ha Nam in Vietnam [23], with sera collected between 2007 and 2012 [10, 24].

Results

Using our serological model, we jointly estimated influenza infection history for each study

participant, as well as subsequent antibody response processes and assay measurement vari-

ability. Although the contributions of short- and long-term processes to antibody responses

cannot be robustly estimated from cross-sectional data [17], simulation studies showed that

both timescales were identifiable using a simulated dataset similar to that of the Vietnam sam-

ples (S3 and S4 Figs). We therefore included the short-term dynamic antibody processes in the

model when fitting longitudinal data but not when fitting to cross-sectional data. The fitted

model could reproduce both cross-sectional and longitudinal observed titres for each partici-

pant (Fig 1, Table 1), and it was possible to identify specific years with a high probability of

infection and the corresponding antibody profile this infection history had generated (S5 and

S6 Figs). Using the longitudinal Vietnam data, we could identify specific years in which indi-

viduals had a high probability of infection, particularly during the period of testing (Fig 1A–

1I). There was more variability in estimates from the cross-sectional HI China data, although

time periods with a high probability of infection could still be identified (Fig 1J–1L).

The model fits to longitudinal data described an antibody response to influenza that is ini-

tially dominated by a broadly cross-reactive response, which rapidly decays, leaving a long-

term response that cross-reacts only with antigenically similar viruses (Table 2, S7–S9 Figs).

We estimated that primary infection generated a short-lived boost of an average of 2.69 (95%

credibility interval [CrI]: 2.50–2.88) units of log titre against the infecting virus (a 4-fold

rise would be equivalent to a 2-unit rise in log titre) and a long-term boost of 2.02 log-titre

units (95% CrI: 1.96–2.08). The short-term response decayed quickly: we estimated that the

response had reached its final equilibrium level after 1.27 years (95% CrI: 1.19–1.35). The time-

scale of this short-term response is consistent with previous qualitative estimates based on lab-

oratory-confirmed infections, which suggested there was a negligible change in titre more than

1 year post infection [10, 11, 25].

For the long-term response inferred from longitudinal data, we estimated that cross-reactiv-

ity between infecting strain and tested strain dropped off at a rate of 0.26 units of log titre (95%

CrI: 0.25–0.27) per unit of antigenic distance between them. The estimated drop was larger than

that inferred with the cross-sectional China HI data: log titres decreased by 0.096 (0.07–0.12)

with each antigenic unit. This suggests the cross-sectional model may be capturing some of the

broadly cross-reactive response, which was explicitly included in the model fitted to longitudinal

data. As a sensitivity analysis, we also fitted the cross-sectional model independently to micro-

neutralisation assay titres for the same individuals and test strains in the China study (Table 2).

A previous study of these data found high correspondence between HI and microneutralisation

Influenza A/H3N2 antibody timescales
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Fig 1. Representative individual-level HI titres against influenza in Vietnam (A–I) and southern China (J–L). (A–C) Example participant from Vietnam

dataset. Strong evidence of infection in 2009, leading to rise in titres and back boost from broad short-term cross-reaction, then decay in following year. Red

points show observed titre. Titres correspond to strains isolated in each year, based on antigenic path shown in S1 Fig. Blue lines show median titre in fitted

model, with blue regions showing 50% and 95% MCMC credibility intervals. Black lines show samples from the posterior distribution of individual infection

histories, with opacity indicating the probability of infection (i.e., proportion of MCMC samples that estimated infection in that year). The (C) inset shows

Influenza A/H3N2 antibody timescales
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titres [22]. Applying our model to these microneutralisation data, we estimated that cross-reac-

tive log titres decreased by 0.18 (0.12–0.23) with each antigenic unit. The specific parameter esti-

mates for boosting and cross-reactivity were different between the HI and microneutralisation

assays, but the distribution of estimated number of infections in the population was similar,

with a median of 15 infections (95% CrI: 4–30) using the HI data and 14 (2–29) using the micro-

neutralisation data (S10 Fig). Moreover, the estimates for antigenic seniority and observation

error were not significantly different between the two assays (Table 2). The estimated error

structure of the two assays suggests that for a log titre mid-way between two integer cutoffs

(e.g., 1.5), there was a 0.26 (0.25–0.28) probability that the microneutralisation test would return

the correct log-titre measurement (i.e., 1) and a 0.23 (0.22–0.25) probability of a correct observa-

tion in the HI assay. For the broader short-term response, the model fitted to longitudinal HI

data suggested cross-reactive titres decreased by 0.082 (95% CrI: 0.067–0.098) with each unit of

antigenic distance. This result suggests that short-term titres are influenced by antigenic dis-

tance, albeit weakly, and hence provides quantitative support for previous suggestions that the

observed broad short-lived boost is part of a memory B cell response [10].

To illustrate the inferred short- and long-term antibody dynamics against A/H3N2, we

used our infection history model to simulate antibody responses following 2 sequential infec-

tions, the first in 1968 and the second in 1988 (Fig 2). Following primary infection, individuals

would be expected to have raised titres to strains in nearby regions of antigenic space, but

these titres would quickly decay to leave a more localised long-term response (S11 Fig). Upon

secondary infection, a similar boost in titres would be observed, which would not be present in

tests conducted in subsequent years. This highlights the importance of accounting for multiple

timescales when analysing immune assay data: in simulations, serology taken in 1988 indicated

a rise in titre to the first infecting strain compared to serology between 1969 and 1987 and

showed detectable titres against all strains in the region of antigenic space between the two

infecting strains (Fig 2F). However, serology taken 1 year later only displayed localised

responses against the infecting strains (Fig 2H). Depending on time of sampling, our results

suggest it would be possible to observe either longitudinal increases or decreases in log titres

against previously seen strains or stable log titres [7].

As well as examining antibody dynamics, we reconstructed historical annual attack rates. In

simulation studies, the model could accurately recover attack rates from Vietnam-like serolog-

ical data, particularly for recent years (Fig 3A). The reduced accuracy of estimation in earlier

years reflected the limited coverage of test strains during this period (Fig 3A, inset). Estimates

distribution of estimated total infections. (D–F) Second Vietnam participant. No estimated infections between 2008 and 2010, so titres are at equilibrium. (G–I)

Third Vietnam participant. Infection in 2009 leading to broad boost, with titres generally highest against recent strains (H) then decline to equilibrium, with

lower mean titres against recent strains as a result of antigenic seniority (I). (J–L) Cross-sectional results from southern China, indicating (J) evidence of

multiple recent infections for participant aged 15 years; (K) decline in titres as a result of antigenic seniority (participant aged 41 years); (L) evidence of

infections early and late in life (participant aged 57 years). MCMC, Markov chain Monte Carlo.

https://doi.org/10.1371/journal.pbio.2004974.g001

Table 1. Proportion of titres with model residuals less than 1, 2, and 3. Residuals are calculated as the absolute difference between median log titre estimated in the

model and observed log titre, across all individuals and test strains.

Dataset Residuals� 1 Residuals� 2 Residuals� 3

China 2009 (microneut) 0.78 0.96 0.99

China 2009 (HI) 0.79 0.96 1.00

Vietnam 2007–2012 (HI) 0.72 0.90 0.97

Abbreviation: HI, haemagglutination inhibition.

https://doi.org/10.1371/journal.pbio.2004974.t001

Influenza A/H3N2 antibody timescales
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of attack rates based on the traditional gold standard of a 4-fold rise in titre underestimated

the actual simulated values (Fig 3B), and an overestimate was obtained if a 2-fold rise in titre

was considered instead [18]. This suggests that commonly used metrics could substantially

bias estimates of population-level attack rates and hence conclusions about the potential extent

of herd immunity and required vaccination coverage. In contrast, estimates from our joint

inference framework consistently recovered the true simulated infection dynamics during the

period of sampling (Fig 3B, inset). Applying our inference framework to real data from Viet-

nam to estimate annual attack rates (Fig 3C), we found that estimates were consistent with

observed epidemiological dynamics in Vietnam between 2008 and 2012, as measured by the

number of influenza A/H3N2 isolates during the testing period (Fig 3D). The correlation

between model estimates and observed values was ρ = 0.996 (p< 0.001), with a weaker associa-

tion when a 2-fold rise (ρ = 0.862, p = 0.14) or 4-fold rise (ρ = 0.799, p = 0.20) was used to

estimate attack rates. The model-estimated attack rate for 2002 was significantly larger than

surrounding years (Fig 3C). However, this is consistent with the larger clinical attack rates for

H3N2 that coincided with the emergence of A/Fujian/411/2002(H3N2)-like influenza strains

[26], and an attack rate of 70% would suggest a reproduction number of around 1.8, using a

simple epidemic model [27]. Most of the uncertainty in attack rate estimates resulted from

individuals with multiple estimated infections; there was little variation in estimated number

of infections when individuals had fewer than around 8 median infections (S12 Fig). Based on

the median numbers of estimated infections and years at risk, we estimated a median annual

risk of infection of around 20% during the period 1968–2012.

Discussion

Our analysis shows that detailed mechanistic insights can be gained from longitudinal data by

jointly considering individual infection histories and antibody dynamics acting at multiple

timescales. Building on previous analyses [13,17,28,29], we estimated that nonprimary influ-

enza exposures generate a large, short-lived broad humoural response and a smaller persistent

narrow response, with each accumulating and degrading to different degrees over the course

of a human lifetime. As well as quantifying processes that shape the antibody response against

different influenza strains, our results suggest that accounting for such dynamics leads to

improved estimation of population attack rates.

The short-lived broad response, which we estimated makes the largest contribution to titres

following infection, is likely to influence selection pressure imposed on the virus as a result of

population immunity; it has been suggested that such short-term nonspecific immunity could

explain the constrained genetic diversity of circulating influenza viruses [4]. Measuring this

Table 2. Parameter estimates for models fitted to HI and microneutralisation data from southern China and Vietnam. Median estimates are shown, with 95% credi-

ble intervals in parentheses.

Parameter Vietnam 2007–2012 (HI) China 2009 (HI) China 2009 (microneut)

Long-term boost (μ1) 2.02 (1.96–2.08) 0.97 (0.85–1.13) 1.38 (1.14–1.66)

Short-term boost (μ2) 2.69 (2.50–2.88) – –

Long-term cross-reaction (σ1) 0.130 (0.128–0.132) 0.099 (0.084–0.114) 0.130 (0.106–0.146)

Short-term cross-reaction (σ2) 0.031 (0.026–0.035) – –

Observation error (ε) 1.29 (1.27–1.31) 1.50 (1.41–1.59) 1.69 (1.56–1.82)

Antigenic seniority (τ) 0.039 (0.035–0.042) 0.016 (0.012–0.021) 0.020 (0.015–0.027)

Waning (ω) 0.79 (0.74–0.84) – –

Abbreviation: HI, haemagglutination inhibition.

https://doi.org/10.1371/journal.pbio.2004974.t002
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‘dynamic herd immunity’ would have implications for use of serology to investigate the evolu-

tionary dynamics of influenza and hence identify potential vaccine strain candidates [28, 30,

31]. Because we could infer broadly cross-reactive memory responses from HI titres, such

responses likely target the influenza HA head domain [32] rather than conserved epitopes in

Fig 2. Expected titres against strains at different points in antigenic space for a given infection sequence. (A) Simulated log titres against different strains in

antigenic space following a single infection in 1968, with test conducted in 1968. Parameters are drawn from the maximum a posteriori model estimate. Red

vertical dashed line shows antigenic location of infecting strain. Black points at the base show location of strains isolated up to this year; grey points show location

of strain isolates in subsequent years; black dashed line shows antigenic summary path used to fit model (S1 Fig). (B) Estimated titres along the antigenic summary

path (dashed black line in (A)). Red line shows year of infection. (C) Simulated log titres following on single infection in 1968, with test conducted in 1969. (D)

Estimated titres along antigenic summary path in 1969. (E) Simulated log titres following infections in 1968 and 1988, with test conducted in 1988. (F) Estimated

titres along antigenic summary path in 1988. (G) Simulated log titres following infections in 1968 and 1988, with test conducted in 1989. (H) Estimated titres

along antigenic summary path in 1989.

https://doi.org/10.1371/journal.pbio.2004974.g002

Influenza A/H3N2 antibody timescales

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004974 August 20, 2018 7 / 19

https://doi.org/10.1371/journal.pbio.2004974.g002
https://doi.org/10.1371/journal.pbio.2004974


Fig 3. Estimation of influenza A/H3N2 attack rates. (A) Inference of attack rates using simulated data for 69

participants, with same strains as tested in the Ha Nam data. Main plot: Blue lines show the estimated attack rate with

binomial confidence interval; red lines show the attack rates in years when samples were taken; black circles show the

true attack rate in the original simulation. Inset: year of circulation for the 57 test strains used, which included repeats

in some years. (B) Main: accuracy of attack rate estimates in (A) was high for years in which serological samples were

collected (shown as red dots). Hollow black points show the attack rate based on a 2-fold rise in titre against strain in

that year (points shown for years 2008–2011, which had sufficient test strains or samples to perform this calculation);

solid points show the attack rate based on a 4-fold rise. Inset: distribution of differences between estimated and actual

attack rates in same years across 12 simulation studies. Red line indicates estimates from model; dashed black line

shows estimates based on a 2-fold rise in titre; solid black line shows estimates based on a 4-fold rise. (C) Proportion of

the Vietnam study population estimated to have been infected in each year, based on real data. Blue lines show the

estimated attack rate with binomial confidence interval; red lines show attack rates in years when samples were taken.

(D) Accuracy of attack rate estimates using different methods. Plot shows model estimates of attack rates in 2008–2012

(red points in (C)) and number of positive H3 isolates reported in Vietnam during the same intervals as the samples

were taken. Hollow black points show the attack rate based on a 2-fold rise in titre against strain in that year (point not

shown for 2012, as no test strains for this year were available, so a rise could not be calculated); solid points show the

attack rate based on a 4-fold rise.

https://doi.org/10.1371/journal.pbio.2004974.g003

Influenza A/H3N2 antibody timescales
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the stalk [7, 33]. This is consistent with studies that have identified such conserved epitopes in

the HA head [34, 35]. If a large proportion of a population had recently experienced infection,

they may exhibit a short-term antibody response against such epitopes. If these responses pro-

vided protective immunity, it would reduce the transmission potential of strains occupying a

large region of antigenic space. However, these strains may become more transmissible as the

short-term response wanes to leave a more specific long-term response.

Additional insight into the temporal antibody dynamics described in Fig 2 could be gener-

ated directly using modern methods of sorting and sequencing individual B cells [36]. During

nonprimary infections, existing memory B cells generated during prior infections, which are

genetically diverged from germline B cells, are rapidly stimulated (S13 Fig). These B cells may

reach high peripheral frequencies rapidly but, on average, have lower avidity against the cur-

rent strain than they would have had against that host’s previous infections [37]. If a serum

sample were tested at this point, it may therefore exhibit a large, broadly cross-reactive

response similar to that observed in Fig 2E. However, there will be competing demands on

these cell lines to produce antibodies and possibly to differentiate further to increase their avid-

ity. In addition to these memory cells, there is also the potential for the stimulation of germline

B cells, which may take longer to achieve functional peripheral frequencies but have higher

avidity [38]. When observed early in the infection, these new lineages would be much more

similar to germline B cells and would form fewer phylogenetic clades per sorted cell than the

rapid response. Later during infection, cells making up the persistent response would be at

higher frequencies and be more differentiated but still form only few clades. Antigenic senior-

ity [13] may arise because novel lineages during later life infections have to compete with exist-

ing lineages for antigenic stimulation [39, 40]. After infection, the memory frequency of the B

cells making up the broad response likely returns to preinfection levels, and the new B cells

establish new subordinate memory populations that are less broadly cross-reactive. The aggre-

gate effect of these mechanisms that would be observed in serological samples is consistent

conceptually with the results we have presented (S13 Fig).

There are some limitations to our analysis. First, we assumed that the antigenic evolution

of influenza results in a sequence of strains that follow a smooth path in a two-dimensional

antigenic space (S1 Fig). However, it has been suggested that the multiple epitopes of the influ-

enza HA mean that the antigenic relationship between strains may not be necessarily explained

by a gradual accumulation of antigenic distance over time [34, 35, 41]. As we are analysing

serological samples taken from individuals without a fully known exposure history, it would

be challenging to infer antigenic relationships between historical strains without any a priori

assumptions about antigenic space [28]. If we were to try and estimate the antigenic locations

of circulating A/H3N2 strains from 1968 to 2008 in a two-dimensional space—rather than

assume their locations as we did—it would add 40 × 2 = 80 parameters to the model, which

would not be identifiable from the data we used in this study. If we imposed no constrains on

the dimension of antigenic space, we would have to estimate up to 40 × 40 = 1,600 pairwise dis-

tances between strains. One aim for future research would be to design a cohort study with suf-

ficient information on prior influenza exposures to infer antigenic distances between specific

historical strains; the model presented here could then be used to compare the relative explan-

atory power of different assumptions about the path of antigenic evolution.

Second, we analysed data from 2 types of assay. HI and microneutralisation tests capture 2

different aspects of the antibody response—namely, anti-haemagglutination activity and neu-

tralising effects—and hence, measured titres are not directly comparable [6]. Although there

was a high correlation between HI and microneutralisation titres observed in the China data

we analysed [22], we fitted models independently to each dataset, meaning that any differences

in assay characteristics would be reflected as differences in our parameter estimates (Table 2).

Influenza A/H3N2 antibody timescales

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004974 August 20, 2018 9 / 19

https://doi.org/10.1371/journal.pbio.2004974


With a larger number of repeat serological samples tested using both assays, it would be possi-

ble to compare specific aspects of the assay dynamics in more detail.

The modelling approaches we have described could also be employed in evaluating the effec-

tiveness of influenza vaccination strategies, which depends on an ability to reliably infer popula-

tion attack rates. For example, metrics that systematically overestimate influenza attack rates

could result in underpowered studies. Moreover, the broader concept of multiple timescales of

antibody response would have potential implications for the design of innovative vaccines, such

as highly valent vaccines [10]. If broad responses have shorter durations than narrow responses,

then the trade-off between current vaccines and other proposed candidates may be time depen-

dent. Participants in trials of novel influenza vaccines should therefore be followed up over mul-

tiple seasons so that the dynamics of their immune response to both vaccination and natural

infection can be assessed. At best, such vaccination against influenza A/H3N2 may stimulate a

similar response to natural infection. However, there is evidence that vaccine-mediated immu-

nity wanes quickly [42], that vaccine effectiveness declines after multiple immunisations [43],

and that broad response against a novel subtype fades after repeated vaccination [44]. With

appropriate data on serology and vaccination history, the differences in dynamics between the

two processes could be elucidated using the model structure we have presented.

As well as examining differences in vaccination-mediated immunity and antibody response

following natural infection, future empirical studies could refine our estimate of the short-

term response by collecting serological samples at intervals of less than 1 year. Alternatively, or

additionally, having information on timing of confirmed influenza infection between sample

collections would make it possible to constrain possible infection events and hence improve

estimates of short-term dynamics. In our model, we also accounted for individual-level hetero-

geneity in titres by including normally distributed error in our observation model. Our results

suggest that this error parameter is well identified (S1 Table), but it would be challenging to

examine other potential heterogeneity in antibody responses—such as age-specific biases—in

more detail with the data available without making strong assumptions about the nature of

such heterogeneity.

Our inference approach could be used in the future to guide the design of studies to infer

key aspects of antibody dynamics or to estimate historical attack rates. Joint analysis of infec-

tion history and antibody dynamics could provide more accurate information about infection

rates, particularly in the years preceding sample collection, and inform studies that rely on

robust attack rate estimates. As a result, such methods could help ensure that serological stud-

ies to examine influenza immunity profiles have adequate statistical power to test hypotheses

and identify key mechanistic processes. Our approach is also likely to be applicable to other

cross-reactive pathogens, such as dengue fever and Zika viruses [45].

Materials and methods

Serological data

We used 2 publicly available datasets in our analysis. In the southern China data, cross-sec-

tional serology was taken in 2009 from 151 participants in the Guangdong province in south-

ern China and tested using HI and microneutralisation assays against a panel of 9 strains: 6

vaccine strains (A/Hong Kong/1/1968, A/Victoria/3/1975, A/Bangkok/1/1979, A/ Beijing/353/

1989, A/Wuhan/359/1995, and A/Fujian/411/2002) and 3 strains that circulated in southern

China in recent years preceding the study (A/Shantou/90/2003, A/Shantou/806/2005, and

A/Shantou/904/2008) [13, 21]. The Vietnam data included longitudinal serology collected

between 2007 and 2012 from 69 participants in Ha Nam [23], with sera tested using HI assays

against a panel of up to 57 A/H3N2 strains isolated between 1968 and 2008 [10]. All of the
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Vietnam participants were unvaccinated against influenza, and 19% of the southern China

participants reported prior influenza vaccination. In analysis of both datasets, we represented

antibody responses by log titre. For a titre dilution of 10� D� 1,280, log titre was defined

as log
2

D
10

� �
þ 1. The minimum detectable titre in both datasets was 10, so a dilution <10 was

defined to have a log titre of 0. The maximum observable titre in both datasets was 1,280,

which corresponded to a log titre of 8. There were 9 possible observable log titres in our analy-

sis, ranging from 0 to 8. The antigenic summary path used to represent strains in our analysis

was generated by fitting a two-dimensional smoothing spline through 81 points representing

the published estimated locations of strains in ‘antigenic space’ [10] (S1 Fig). The positions of

strains in such a space depends on the distance between influenza antigens and reference anti-

sera as measured by titre in an HI assay [20]. In the model, we assumed that strains circulating

between 1968 and 2012 were uniformly distributed along this summary path.

Model of expected titre given infection history

We expanded and refined a previous modelling framework designed for cross-sectional data

[17] to include short- and long-term dynamics. For an individual who had previously been

infected with strains in the set X, the expected log titre against strain j depended on 5 specific

antibody processes:

1. Long-term boosting from infection with homologous strain. If an individual had been

infected with only one strain, they would exhibit a fixed log titre against that strain, con-

trolled by a single parameter, μ1.

2. Antigenic seniority acting via suppression of subsequent responses as a result of prior

immunity. The titre against a particular strain was scaled by a factor s(X, m) = max{0,1 −
τ(Nm − 1)}, where Nm is the number of the strain in the infection history (i.e., the first strain

is 1, the second is 2, etc.), |X| is the total number of infections, and τ was a parameter to be

fitted.

3. Cross-reactivity from antigenically similar strains. As titres were on a log scale, we assumed

the level of cross-reaction between a test strain j and infecting strain m 2 X decreased line-

arly with antigenic distance. This was controlled by d1(j, m) = max{0,1 − σ1δmj}, where δmj

was the two-dimensional euclidean antigenic distance between strains j and m (S1 Fig), and

σ1 was a parameter to be fitted.

4. Short-term boosting, which waned over time. For an infecting strain m, this process was

controlled by μ2w(m) = μ2max{0,1 − ωtm}, where μ2 was a boosting parameter, ω was a wan-

ing parameter to be fitted, and tm was the number of years since infection with strain m. We

constrained ω� 1 when fitting the model to ensure identifiability, as ω = 1 or ω> 1 implies

that w(m) = 0 for all tm > 0.

5. Cross-reactivity for the short-term response. The level of cross-reaction between a test

strain j and infecting strain m was given by d2(j, m) = max{0,1 − σ2δmj}, where δmj was the

antigenic distance between strains j and m, and σ2 was a parameter to be fitted.

To combine the 5 processes in the model, we assumed that the expected log titre individual

i had against a strain j was a linear combination of the responses from each prior infection:

lij ¼
X

m2X

sðX;mÞ½m1d1ðj;mÞ þ m2wðmÞd2ðj;mÞ�: ð1Þ
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Depending on parameter values, our model could incorporate several specific mechanistic

features, including long-term response only (μ2 = 0), waning response only (μ1 = 0), or long-

term/short-term boosting independent of a cross-reactive memory response (σ1, σ2 = 0).

Observation model and likelihood function

For an individual i who was infected with strains in the set X, we assumed their true titre

against strain j titre followed a normal distribution with mean λij, standard deviation ε, and

cumulative distribution function f(x). The observed distribution of titres was censored to

account for integer-valued cutoffs. The likelihood of observing titre k 2 {0,. . .,8} given history

X and parameter set θ was therefore as follows:

Lðkjy;XÞ ¼

f ðx < 1Þ ifk ¼ 0;

f ðk � x < kþ 1Þ if1 � k < 8:

f ðx � 8Þ ifk � 8;

8
><

>:
ð2Þ

Note that there are several key differences between the model framework presented here

and the one we described previously [17]. These changes were designed to increase model flex-

ibility and biological detail: infections occur annually, rather than within antigenic epochs; we

assume waning and cross-reaction decays linearly with log titre, rather than exponentially; the

observation model explicitly accounts for censoring, rather than using a discrete observation

distribution; and strains are explicitly located in an antigenic space, rather than distance repre-

sented temporally. It is therefore not possible to directly compare parameter estimates from

this model with the previous framework, because the values need to be interpreted in the con-

text of the specific assumptions in the underlying models.

Parameter estimation and model comparison

We fitted the model independently to each serological dataset using Markov chain Monte

Carlo (MCMC). Using the likelihood function in Eq 2, we jointly estimated θ across all indi-

viduals and estimated X for each individual via a Metropolis-Hastings algorithm. We used uni-

form positive priors for all θ parameters, with ω constrained to be in the interval [0,1), as it

would not be identifiable on timescales of less than a year, given annual sample collection. If

individual sera were collected in more than 1 year, parameters were jointly estimated across all

test years. We used a data augmentation approach to estimate individual infection histories.

Every second iteration, we resampled model parameters, which were shared across all individ-

uals, and performed a single Metropolis-Hastings acceptance step. On the other iterations, we

resampled infection histories for a randomly selected 50% of individuals. These histories were

independent across individuals, so we performed a Metropolis-Hastings acceptance step for

each individual separately.

To ensure the Markov chain was irreducible, resampling at each step involved one of the

following: addition of infection in some year, removal of infection in some year, or moving an

infection from some year to another [46]. We also used adaptive MCMC to improve the effi-

ciency of mixing: at each iteration, we adjusted the magnitude of the covariance matrix used to

resample θ to obtain an acceptance rate of 0.234 [47]. As we had data on participants’ individ-

ual ages in the southern China data, we constrained potential infections in the model to years

in which participants would have been alive. To estimate the median and 95% credible interval

for attack rates, we sampled from the posterior distribution of infection histories and calcu-

lated the total participants who were estimated to have been infected in each year at each itera-

tion. The resulting attack rates were therefore implicitly binomially distributed. The model

Influenza A/H3N2 antibody timescales
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was implemented in R version 3.3.1 and C and used the Rcpp and doMC packages. Source

code and data are available at https://github.com/adamkucharski/flu-model/.

Correlation plots indicated that all parameters in the full model were identifiable (S14 Fig),

with ESS above 200 (S1 Table). We included both short- and long-term dynamics when fitting

to longitudinal data, because the model that included short-term antibody dynamics per-

formed substantially better than the model with long-term dynamics only. As the model with

long-term-only dynamics was a nested version of the model with both short-term and long-

term dynamics (i.e., with μ2 = 0), we used the Savage-Dickey density ratio (SDDR) to approxi-

mate the Bayes factor [48]. The prior for μ2 was flat, and the posterior density for μ2 did not

include 0 (S9 Fig), which meant the SDDR was 0. This indicated overwhelming support for the

more complex model. The more complex model also required a lower variance in the observa-

tion model distribution to fit the data: the estimated error term, ε, was 1.29 (95% CrI: 1.27–

1.31) when the model with short-term dynamics was fitted to longitudinal data and 1.39

(1.37–1.41) when short-term dynamics were omitted (S9 and S15 Figs). We also compared

model performance using a training/test approach. We fitted the models with and without

short-term dynamics to the same training dataset, constructed by randomly selecting 90% of

the titre results available for each participant in the Vietnam dataset. We then used these fitted

models to predict titres in a test dataset, which consisted of the remaining 10% of titres. The

mean absolute error between observed and median predicted titres in the test dataset was 1.18

for the model with short-term response and 1.23 for the model without; the root-mean-square

error (RMSE) was 1.54 for the short-term response model and 1.61 for the simpler model.

However, it is worth noting that inclusion of a short-term response would not have been

expected to improve predictions for all participants and strains: short-term dynamics only

influence titres for participants who have evidence of infection shortly prior to sample collec-

tion, and titres against recently isolated strains will be more influenced by the short-term

response than titres against older strains.

Simulation study

In our simulation study, we first generated simulated influenza attack rates between 1969 and

2012 using a lognormal distribution with mean 0.15 and standard deviation 0.5. For 1968, we

used a lognormal distribution with mean 0.5 to reflect higher incidence in the pandemic year

[49]. Using these simulated attack rates, we generated individual infection histories for 69 par-

ticipants using a binomial distribution and then generated observed individual-level titres

against the same strains as in the Vietnam dataset using our titre model. Simulated samples

were tested each year between 2007 and 2012. Based on the parameters estimated using real

data, we assumed μ1 = μ2 = 2, τ = 0.05, ω = 0.75, σ1 = 0.2, σ2 = 0.1, and ε = 1 in simulations.

Finally, we used the model to reestimate infection history and attack rates. For Fig 3B inset, we

simulated 12 independent sets of observed titres and then inferred the proportion of the popu-

lation infected in the 4 years between 2008 and 2011 inclusive. The resulting distribution of

model residuals (i.e., estimated minus actual simulated value) for these 48 data points was plot-

ted as kernel density plots.

Epidemiological data

Reported influenza A/H3N2 activity in Vietnam was obtained from the WHO FluNet database

[50] (S16 Fig). We aggregated reports into temporal windows based on dates of serological

sample collection [10] and used the cumulative number of isolates in each period to compare

observed activity with model estimates. To calculate attack rates from the model outputs, we

scaled the posterior distribution of total number of infections across all participants for each

Influenza A/H3N2 antibody timescales
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year between 1968 and 2012 by the proportion of participants who were alive in that year,

which we calculated based on the age distribution of participants. This produced the estimates

in Fig 3C and 3D.

Supporting information

S1 Fig. Schematic of model. (A) Following infection, individuals have a short- and long-term

boost in log titre against a homologous strain. (B) The short-term response wanes to leave a

long-term persistent boost in log titre. (C) Following infection, individuals also have a short-

and long-term boost in log titre against strains that are nearby in antigenic space (S2 Fig).

The breadth of cross-reaction may be different for the short- and long-term response. (D)

Subsequent infections may generate lower levels of boosting than generated against strains

encountered earlier in life, as a result of antigenic seniority. (E) Annotated version of model, as

specified in Eq 1 of the Materials and methods.

(TIFF)

S2 Fig. Assumed antigenic locations of historical strains in model between 1968 and 2012.

These locations were generated by using a spline to estimate a ‘summary path’ of influenza anti-

genic drift (blue line) from the antigenic locations of strains isolated during this period (shown

as grey dots), following from previous work [10]. Assumed locations shown as blue dots.

(TIFF)

S3 Fig. Simulation study posterior results. Inference performed using simulated data for 69

participants, with same strains as tested in the Ha Nam data (57 in total, including repeats in

some years). (A) Convergence plots for 4 MCMC runs are shown. Note that each run used a

different simulation dataset, so the likelihoods are not directly comparable. (B) Comparison of

simulated and true attack rates for one of the chains. Blue lines show estimated attack rate with

binomial confidence interval; red lines show attack rates in years when samples were taken.

Similar results were obtained for all 4 chains. (C) The accuracy of attack rate estimates was bet-

ter for recent years (shown as red dots), which were more densely sampled in the serological

data. MCMC, Markov chain Monte Carlo.

(TIFF)

S4 Fig. Selection of 15 individual estimated histories for simulated data. Red points show

observed titre. Blue lines show median titre in fitted model, with blue regions showing 50%

and 95% MCMC credibility intervals. Black lines show samples from the posterior distribution

of individual infection histories, with opacity indicating the probability of infection (i.e., pro-

portion of MCMC samples that estimated infection in that year). Green lines show true years

of infection in simulation. Final column shows distribution of total estimated infections |X|,

with simulated value shown by green line. MCMC, Markov chain Monte Carlo.

(TIFF)

S5 Fig. Selection of 50 individual estimated histories for A/H3N2 FluScape HI data. For

each participant, distribution of total estimated infections |X| is also shown. HI, haemag-

glutination inhibition.

(TIFF)

S6 Fig. Selection of 25 individual estimated histories for A/H3N2 Vietnam HI data. Final

column shows distribution of total estimated infections |X|. HI, haemagglutination inhibi-

tion.

(TIFF)
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S7 Fig. MCMC diagnostics for 4 chains fitted to A/H3N2 FluScape microneutralisation

data. Dashed line shows burn-in period. MCMC, Markov chain Monte Carlo.

(TIFF)

S8 Fig. MCMC diagnostics for 4 chains fitted to A/H3N2 FluScape HI data. Dashed line

shows burn-in period. HI, haemagglutination inhibition; MCMC, Markov chain Monte Carlo.

(TIFF)

S9 Fig. MCMC diagnostics for 4 chains fitted to A/H3N2 Vietnam HI data. Dashed line

shows burn-in period. HI, haemagglutination inhibition; MCMC, Markov chain Monte

Carlo.

(TIFF)

S10 Fig. Distribution of estimated number of infections across all individuals using differ-

ent assays performed on the A/H3N2 China serology. Blue bars, HI data; red bars, micro-

neutralisation data. HI, haemagglutination inhibition.

(TIFF)

S11 Fig. Schematic of antibody response following infection. (A) Predicted log titre against

a homologous virus following infection, based on 10,000 bootstrap samples from the fitted

model, including observation error. Solid line, median; dark shaded region, 50% CrI; light

shaded region, 95% CrI. (B) Predicted log titre against a strain located a distance of 5 antigenic

units from the infecting virus. (C) Predicted log titre against a strain located a distance of 10

antigenic units from the infecting virus. CrI, credibility interval.

(TIFF)

S12 Fig. Distribution of infections and age in the A/H3N2 Vietnam HI dataset. (A) Distri-

bution of estimated number of infections for each participant, with median and 95% credible

interval shown. (B) Cumulative distribution of estimated infections for study participants,

with median and 95% CrI shown. Values calculated by sampling from the posterior cumulative

distribution of total infections for participants. (C) Cumulative distribution of number of

years at risk for A/H3N2 infection for study participants (i.e., number of years alive in the

period post 1968). HI, haemagglutination inhibition.

(TIFF)

S13 Fig. Schematic of 2-armed immune response against sequential influenza viruses. (A)

In this simple illustration, each virus has 3 epitopes that can be targeted by monoclonal anti-

bodies. The first infection, with virus A, stimulates distinct populations of memory B cells

within the host that produce (B) antibodies with high avidity to epitope 1 and (C–D) antibod-

ies with lower avidity to epitopes 2 and 3. After clearance of virus, these B cell populations

decline to an equilibrium level. A serological sample tested at this point (Test 1) would exhibit

a long-term response specific to virus A only. Upon secondary infection with virus B—which

has epitopes 2 and 3 but with a new epitope 4 in place of epitope 1—the lower-avidity B cell

populations are activated, along with (E) a newly stimulated B cell population that has high

avidity to epitope 4. However, the virus population is neutralised before these B cells reach the

level of earlier B cell populations, which produce the ‘antigenic seniority’ effect. Following the

secondary infection, the host would exhibit raised levels of antibodies against epitopes 2 and 3

and hence produce a response even against viruses with only one of these epitopes. This results

in a short-lived, broadly cross-reactive serological response (Test 2), which wanes to leave a

narrower long-term response (Test 3).

(TIFF)
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S14 Fig. Correlation plots for parameter estimates using A/H3N2 Vietnam HI data. Pair-

wise plots show 1,000 MCMC samples from the full joint posterior distribution. HI, haemag-

glutination inhibition; MCMC, Markov chain Monte Carlo.

(TIFF)

S15 Fig. MCMC diagnostics for 4 chains fitted to A/H3N2 Vietnam HI data, using a model

without short-term dynamics. Dashed line shows burn-in period. HI, haemagglutination

inhibition; MCMC, Markov chain Monte Carlo.

(TIFF)

S16 Fig. Vietnam weekly influenza isolates. (A) All influenza isolates reported [50]. (B) A/

H3N2 isolates. Red lines show times of serological sampling. (C) Cumulative isolates in each

period.

(TIFF)

S1 Table. Parameter estimates for models fitted to data from southern China and Viet-

nam. Median estimate shown, with 95% credible interval in parentheses. ESS for each parame-

ter is also shown, to indicate the extent of autocorrelation in MCMC sampling. ESS, effective

sample size; MCMC, Markov chain Monte Carlo.

(PDF)
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