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Abstract
Unique anatomical and physiological features have made hamster species desirable 
research models. Comparative genomics and phylogenetic analysis of the hamster 
family members to clarify their evolution and genetic relationship, can provide a 
genetic basis for the comprehension of the variable research results obtained using 
different hamster models. The Syrian golden hamster (Mesocricetus auratus) is the 
most widely used species. In this study, we sequenced the complete mitochondrial 
genome (mitogenome) of M. auratus, compared it with the mitogenome of other 
Cricetinae subfamily species, and defined its phylogenetic position in the Cricetidae 
family. Our results show that the mitogenome organization, gene arrangement, base 
composition, and genetic analysis of the protein coding genes (PCGs) of M. auratus 
are similar to those observed in previous reports on Cricetinae species. Nonetheless, 
our analysis clarifies some striking differences of M. auratus relative to other sub-
family members, namely distinct codon usage frequency of TAT (Tyr), AAT (Asn), 
and GAA (Glu) and the presence of the conserved sequence block 3 (CSB-3) in the 
control region of M. auratus mitogenome and other hamsters (not found in Arvico-
linae). These results suggest the particularity of amino acid codon usage bias of M. 
auratus and special regulatory signals for the heavy strand replication in Cricetinae. 
Additionally, Bayesian inference/maximum likelihood (BI/ML) tree shows that Cri-
cetinae and Arvicolinae are sister taxa sharing a common ancestor, and Neotomi-
nae split prior to the split between Cricetinae and Arvicolinae. Our results support 
taxonomy revisions in Cricetulus kamensis and Cricetulus migratorius, and further 
revision is needed within the other two subfamilies. Among the hamster research 
models, Cricetulus griseus is the species with highest sequence similarity and closer 
genetic relationship with M. auratus. Our results show mitochondrial DNA diversity 
of M. auratus and other Cricetinae species and provide genetic basis for judgement 
of different hamster models, promoting the development and usage of hamsters with 
regional characteristics.
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Introduction

Hamsters, due to several unique anatomical and physiological features, are desirable 
research models. The Syrian hamster (golden), Mesocricetus auratus; the Chinese 
hamster (striped-back), Cricetulus griseus; the Armenian (gray), Cricetulus migra-
torius; and the European hamster, Cricetus cricetus are the species majorly used as 
research models (Miedel et al. 2015). Among them, the golden hamster is the most 
widely used species (Tchitchek et al. 2014), and it was recently reported as a useful 
small animal model that can be used to evaluate the effects of vaccines, immuno-
therapy, and antiviral drugs (Chan et al. 2020; Imai et al. 2020; Kreye et al. 2020; 
Rosenke et al. 2020; Sia et al. 2020).

Due to local and regional developmental restrictions, the growth of laboratory 
animals in China is unbalanced and hamster resources are scarce and expensive. 
Contradictory results can often be observed when using different hamster models. 
To overcome this problem, comparative genomics and phylogenetic analysis can 
be used to clarify the evolution and genetic relationship between different hamster 
species, enlightening researchers on the usage of hamster resources, and improv-
ing their utilization for biomedical research and human health. The mitogenome 
has been widely used in comparative genomics research (Yang et al. 2019) and the 
detailed comparison of the mitogenome from different species helps in understand-
ing of their sequence characteristics and structural diversity. M. auratus from inbred 
strains show expected lower diversity values (YİĞİT et al. 2007) compared with the 
diversity of the outbred group, an observation that requires more attention. We thus 
aimed to analyze the complete mitogenome information of different hamster species 
to clarify the phylogenic and evolutionary relationship between them.

In the present study, the complete mitogenome of M. auratus was sequenced, and 
compared with the mitogenome of other members of the Cricetinae subfamily. Their 
phylogenetic position in the Cricetidae family was defined. The results of this study 
enlighten the evolution of and genetic relationship between several hamster spe-
cies commonly used as research models, facilitating the comprehension of research 
results obtained using different models and playing a positive role in the develop-
ment of hamster resources.

Materials and Methods

Sample Source and DNA Extraction

M. auratus, an outbred hamster, was obtained from Beijing Vital River Laboratory 
Animal Technology Co., Ltd. in China. The tail tip (1–2 cm) was cut and stored in 
absolute ethanol. SDS/Protease K was used to lyse the tissues. Total genomic DNA 
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was obtained using phenol–chloroform extraction method (Lu 1999) and analyzed 
using agarose gel electrophoresis.

Primer Design and PCR Amplification

The complete mitogenome sequences from KK mouse (EF108339), Wistar Rat 
(AC000022), Cavia porcellus (AJ222767), Taiwan voles (NC003041), Southern 
Voles (NC008064), and other hamsters were aligned using CLUSTAL X 1. 8 soft-
ware. Twenty seven pairs of primers covering the complete mitochondrial genome 
of M. auratus were designed using Oligo 6.0 software (Table S1).

Touchdown PCR program was used with the following procedure and cycle 
parameters: (1) 94 ℃ pre-denaturation for 5 min (min); (2) two cycles of 94 ℃ dena-
turation for 30 s (s), 48–45 ℃ annealing for 1 min, 72 ℃ extension for 1 min 30 s; 
(3) 30 cycles of 94 ℃ denaturation for 30 s, 44 ℃ annealing for 1 min, 72 ℃ exten-
sion for 1 min 30 s; and (4) 72 ℃ extension for 10 min. The PCR product was ana-
lyzed using 1.0% agarose gel electrophoresis.

Product Purification, Sequencing, and Sequence Splicing

The PCR products were purified with SAP enzymes, and two-way sequencing was 
performed with the ABI 3730 DNA sequence automatic analyzer (Waltham, USA). 
DNASTAR and Chromas 2.22 were used to perform sequence alignment and con-
catenation. Subsequently, the complete mitogenome of M. auratus was obtained.

Gene Identification and Genome Analysis

BLAST online service and Clustal W 1.8 were used to search the homologous 
sequence and complete the multiple sequences alignment among the mitogenomes 
of Cricetidae species. The protein coding genes (PCGs), transfer-RNA (tRNA) 
genes, ribosomal-RNA (rRNA) genes, and control region (CR, also D-loop region) 
were analyzed and their location was obtained using DNASTAR, RNAStructure 4.5, 
and tRNA-scan SE web server (Lowe and Chan 2016). The mitogenome sequence of 
M. auratus was also submitted to MITOS Web Server and annotated by referring the 
vertebrate genetic code. In addition to the confirmation of the initial annotations for 
PCGs, tRNA, rRNA and D-loop,  OL (origin for the light strand replication) was also 
annotated and the secondary structure of tRNAs was acquired. The Mtv online tool 
was used to draw the circular mitogenome chart of M. auratus (Ding et al. 2016a).

The base composition of the mitogenome was determined with MEGA 5.2.2, 
and the skewness of nucleotide composition was calculated according to the fol-
lowing formulas: AT skew = [A − T]/[A + T] and GC skew = [G − C]/[G + C] (Perna 
and Kocher 1995). Codon usage was determined with MEGA 6.0. For each of the 
PCGs from Cricetinae mitogenomes described in NCBI, the synonymous substitu-
tion rate (Ks) and the nonsynonymous substitution rate (Ka) were calculated with 
DnaSP v6.12.03 (Rozas 2017). Genetic distances of the 13 PCGs were calculated 
with MEGA 7.0 using the Kimura-2-parameter model (K2P) (Tamura et al. 2013).
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Phylogenetic Tree Construction

Heavy chain PCGs from 32 species (30 Cricetidae species including M. aura-
tus and two outgroups) were used to construct the phylogenetic tree of Cricetidae. 
Mus musculus [NC_005089] (Bayona-Bafaluy et  al. 2003) and Rattus norvegi-
cus [KF011917] were used as the outgroups. The FASTA files of 12 PCGs from 
32 species were downloaded from GenBank (Table 1). Multiple alignments of the 
complete nucleotide sequences of the 12 PCGs individually were conducted with 
MEGA 7.0. SequenceMatrix 1.8 was used to concatenate the individual gene align-
ment and create a combined sequence matrix (Li et al. 2018). Paup 4.0 was used to 
transform the file format to nex., so that it could be recognized by Bayesian. Bayes-
ian inference (BI) (Yang and Rannala 1997) and maxium likelihood (ML) methods 
(Felsenstein 1981) were used to construct the phylogenetic tree based on the con-
catenated sequence matrix. MrModeltest 2.3 (Nylander 2004) was used to deter-
mine the best-fit evolutionary model for the concatenated sequence matrix with the 
Akaike Information Criterion (AIC) (Posada and Buckley 2004). Based on the test 
results, the GTR + I + G was considered as the appropriate model for the BI and ML 
analysis. The ML analysis was performed with IQ-TREE v1.6.2, and the node sup-
port was assessed by the bootstrap values calculated after 1,000 replicates. The BI 
analysis was executed using MrBayes v3.2.6 (Ronquist et al. 2012), with the follow-
ing command program: Lset nst = 6 rates = invgamma; Prset statefreqpr = dirichlet 
(1, 1, 1, 1); mcmcp ngen = 2,000,000 printfreq = 1,000 samplefreq = 100 nchains = 4 
nruns = 2 checkfreq = 5,000; sumt burninfrac = 0.25. A good indication of conver-
gence was considered to be reached when the average standard deviation of split 
frequencies was below 0.01. FigTree v1.4.3 was used to view the phylogenetic trees.

Results and Discussion

Genome Organization and Base Composition

M. auratus mitogenome is 16,264 base-pair (bp) in length, with a typical circular 
structure (Fig.  1), including 37 genes and two non-coding regions. The 37 genes 
include 13 PCGs, 22 tRNA genes, and two rRNA genes, with nine genes located in 
light chain and the other 28 genes in heavy chain. The non-coding regions are  OL 
and CR. Both gene overlap and spacing are observed in M. auratus mitogenome, 
with the overlapped length being longer than the spacing (Table S2). Such organ-
ization is common in Cricetinae species (Nylander 2004, 1981, 2007; Ding et  al. 
2016a, 2016b). Cricetulus longicaudatus is an exception, with 13 bp of intergenic 
nucleotides, differing from the overlaps observed in the other six species (Table S3). 
Overlapping genes may compose a compact genome organization to facilitate gene 
regulation efficiency (Ho et al. 2012).

The base composition of the mitogenome of M. auratus is biased towards A and 
T (Table  S4). In all the surveyed mitogenomes, the absolute values of GC skews 
(negative) were always higher than AT skews (positive) (Table 1), underlining the 
stronger GC skew. The GC skew of M. auratus is closest to the one of C. griseus.
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PCGs

The PCGs sequence accounted for 70% of M. auratus mitogenome. We could 
observe that the shortest gene is atp8, and that nad5 is the longest one. From the 
13 PCGs of the mitogenome, 12 are located in heavy chain, and only nad6 is local-
ized in light chain. For most PCGs, ATN (N = T/G) is the start codon, and TAN 
(N = A/G) is the stop codon. As exceptions, nad1 start from GTG, which is found in 
several Cricetulus species (Partridge et al. 2007; Jiang et al. 2012; Ding et al. 2016a, 
2016b) and four PCGs stop as T–. Incomplete stop codon is common in vertebrate 
mitogenomes and is thought to regulate mRNA maturation via post-transcriptional 
modification (Ojala et al. 1981; Jiang et al. 2012).

The codon usage analysis of M. auratus mitogenome revealed that TAT (Tyr) and 
AAT (Asn) are the most frequently used codons (Fig. S1), while in other Cricetulus 
species, AUU (Ile) and CUA (Leu) are the mostly used (Ding et al. 2016a, 2016b), 
suggesting that M. auratus has a particular bias for amino acid codon usage. In M. 
auratus mitogenome, most amino acids have more than one synonymous codon, 
with the exception of Glutamate, which has only one codon, GAA; this means that 
Glutamate and its corresponding proteins are at greater mutation risk.

Fig. 1  Circular chart of M. auratus mitochondrial genome. The single-letter abbreviation of the tRNA-
carried amino acid was used to indicate the corresponding tRNA gene. The thick black lines outside the 
ring indicate that the genes are located in the heavy chain and that inside the ring indicate that the genes 
are located in the light chain. Different gene families were represented with different colors: gray for 
rRNAs, yellow for tRNAs, light green for nad (1–6), dark green for OL, cyan for atp (6 and 8), orange for 
cox (1–3), blue for cytb and pink for CR
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Figure S2 shows the genetic analysis of 13 PCGs from seven Cricetinae mitog-
enomes. The gene nad2 has the largest genetic distance (K2P) followed by atp8 and 
nad3, suggesting these genes vary largely between species, while cox1 and cox3 are 
relatively conserved genes. The rich phylogenetic information and high degree of 
conservation of cox1 allows for this gene to be used as a bar-code in species identifi-
cation of multiple taxa. The lowest Ka/Ks of cox1, when compared to other mitoge-
nome genes, suggests the weakest natural selective pressure of this gene, while atp8 
shows the opposite tendency. Ka/Ks lower than 1 indicates that the 13 PCGs are 
undergoing purification selection.

tRNA

In our analysis, we could find 22 tRNAs with variable length (Table S2) spread over 
the entire M. auratus mitogenome. They can recognize all amino acid codons and 
transfer the 20 common amino acids. Fourteen tRNAs are in heavy chain and eight 
in light strand (Fig.  1). Concerning the formation of secondary structures, trnS1 
(GCT) is the only gene that cannot be folded into the typical cloverleaf structure due 
to lack of dihydrouridine (DHU) and acceptor stems (Fig. S3). This feature is com-
mon in vertebrates (Jiang et al. 2012).

The ratio of mitochondrial tRNAs to encoded amino acids is approximately 1:1. 
If a specific mitochondrial tRNA gene has a mutation with functional consequences, 
other tRNAs are not able to compensate for it. Therefore, many diseases related 
to defects in oxidative phosphorylation are caused by mutations in mitochondrial 
tRNA genes. Sequencing of genes of experimental animals coding for mitochondrial 
tRNA will facilitate the research of mitochondrial diseases originating from tRNA 
gene mutations.

CR and OL

We also analyzed the location, size, and base composition of CR (Tables S2 and 
S4), as well as the internal organization of CR included ETAS (extended termina-
tion associated sequences), central domain, and conserved sequence blocks (CSBs) 
(Table S5). These sequences were identified through the alignment with sequences 
of dozens of mammalian species already reported, including several Cricetulus spe-
cies (Sbisà et  al. 1997; Ding et  al. 2016a, 2016b). The CSB and ETAS domains 
represent the initiation and stop region of heavy chain synthesis, respectively. CSB 
domains have been proposed to be regulatory signals of RNA primer for the heavy 
chain replication. Figure S4 shows the conservative sequences in CSB domains. 
CSB-1 is present in all the organisms considered in this study, while CSB-2 and 
CSB-3 could not be found in the mitogenome of three species of genus Microtus 
(Arvicolinae, Rodentia) (Jiang et  al. 2012). The hairpin structures formed by the 
complementary sequences in ETAS-1 and ETAS-2 may be the recognition sites for 
synthesis conclusion (Saccone et al. 1991).

OL region is located between trnN and trnC in the WANCY cluster, with expected 
length of 34 bp in M. auratus, similar to C. griseus (Partridge et al. 2007). Figure S5 
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shows its secondary structure with a stable stem-loop. This origin is highly con-
served among the conveyed seven Cricetinae species (Fig. S6). Its T-rich sequence is 
of great significance for initiating light chain synthesis (Hixson et al. 1986).

Phylogenetic Analysis

The 30 Cricetidae species used in the phylogenetic tree analysis were selected 
from the NCBI blast results, based on the similarity of their mitogenome with 
the one of M. auratus. Three subfamilies were included: Neotominae, Arvico-
linae, and Cricetinae with seven species from the most latter (Table  1). In the 
blast analysis, M. auratus mitogenome shared highest sequence similarity with 
Cricetinae species. Following traditional taxonomy, our seven Cricetinae samples 
included four Cricetulus species (Cricetulus kamensis, C. griseus, C. longicauda-
tus, C. migratorius), one Cricetus species (C. cricetus), one Mesocricetus species 
(M. auratus) and one Phodopus species (Phodopus roborovskii). Previous evolu-
tion studies at both the genes and the chromosomal levels indicated that Cricetus, 
Mesocricetus and Phodopus represented a monophyletic clade (Neumann et  al. 
2006; Romanenko et  al. 2007). However, various studies have suggested that 
Cricetulus is not monophyletic (Neumann et al. 2006; Lebedev et al. 2018; Ding 
et al. 2020), such that Lebedev et al. (2018) formally proposed a new monotypic 
genus Nothocricetulus for C. migratorius, and suggested elevating the subgenus 
Urocricetus to the rank of a full genus. Our BI/ML tree also showed that C. (Uro-
cricetus) kamensis was phylogenetically distant from Cricetulus (Fig. 2), which 
would support the taxonomic revisions proposed by Lebedev et  al. (2018) and 
indicate that names on public databases need updating.

The evolutionary time of the three Cricetidae subfamilies can be analyzed 
according to the horizontal length of different branches of the tree, i.e. the order 
of their occurrence was: Neotominae, (Arvicolinae + Cricetinae). Although, 
according to the cumulative distance of branch length and the NCBI blast analy-
sis, Neotominae species have higher sequence similarity with Cricetinae, both BI 
and ML analysis showed that Cricetinae and Arvicolinae are sister taxa. They 
share a common ancestor, and split at the same time. Neotominae split prior to 
the split between Arvicolinae and Cricetinae. These observations are consistent 
with ML analysis results by Jiang et al. (2012) and emphasizing that high simi-
larity is not equivalent to close genetic relationship. According to the horizontal 
length of Cricetinae branches, the order of occurrence of the seven Cricetinae 
species was as follows: (1) Phodopus roborovskii, (2) C. kamensis + M. auratus, 
(3) C. griseus + C. longicaudatus, and (4) C. cricetus + C. migratorius.

Among the several hamster species used as research models, C. griseus (also 
known as the Chinese hamster or the striped-back hamster) shares the highest 
sequence similarity with M. auratus. At the same time, C. griseus has specific 
characteristics that encourage its use in biomedical research: small size, short 
gestation period, polyestrous cycle, and low chromosome number. Although the 
use of this species in research is greatly overshadowed by the extensive use of 
cell lines derived from its ovarian cells (Miedel et  al. 2015), there is still room 



1890 Biochemical Genetics (2022) 60:1881–1894

1 3

for development of their use in tumor transplantation and, like the golden hamster 
(M. auratus) (Chan et al. 2020; Imai et al. 2020; Kreye et al. 2020; Rosenke et al. 
2020; Sia et al. 2020), in new coronavirus infection animal model to evaluate vac-
cines, immunotherapy, and antiviral drugs effects.

Conclusions

Although the mitogenome organization, gene arrangement, base composition, and 
genetic analysis of PCGs of M. auratus are similar to previous reports on Cricetinae 
species, in this study we could identify special characteristics for this species. In M. 
auratus mitogenome, TAT (Tyr) and AAT (Asn) were the most frequently used codons, 
while GAA (Glu) was the least used one, indicating the particularity of amino acid 
codon usage bias of this species. The CSB-3 in control region, which is not found in 

Fig. 2  A consensus tree constructed using BI and ML inferred from 12 concatenated PCGs of 30 Crice-
tidae species. The number before and after the slash were the Bayesian posterior probabilities and boot-
strap values, representing the support values of BI and ML, respectively. Muridae species (Mus musculus 
and Rattus norvegicus) were used as outgroups. GeneBank accession numbers were listed after species 
names; *Mesocricetus auratus was sequenced in the present study. Different colors represent different 
subfamilies: blue for Cricetinae, pink for Arvicolinae, green for Neotominae and black for outgroups
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Arvicolinae species, can be observed in the mitogenome of M. auratus and other ham-
sters, suggesting that the regulatory signals for the heavy chain replication is specific 
for Cricetinae species. The BI/ML tree showed that Cricetinae and Arvicolinae are sis-
ter taxa sharing a common ancestor, and Neotominae split prior to the split between 
Cricetinae and Arvicolinae. Our results support taxonomy revisions in C. kamensis and 
C. migratorius, and further revision is needed within the other two subfamilies. Among 
the hamster species used as research models, C. griseus shares the highest sequence 
similarity with M. auratus, as well as closer genetic relationship, allowing for a better 
understanding of distinct experimental results between the two models. We consider 
there is still a variety of possible approaches for the improvement of usage of these spe-
cies of hamster as research models.
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