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Abstract

Rotator cuff tears are common, especially in the fifth and sixth decades of life, but can also

occur in the competitive athlete. Genetic differences may contribute to overall injury risk.

Identifying genetic loci associated with rotator cuff injury could shed light on the etiology of

this injury. We performed a genome-wide association screen using publically available data

from the Research Program in Genes, Environment and Health including 8,357 cases of

rotator cuff injury and 94,622 controls. We found rs71404070 to show a genome-wide signif-

icant association with rotator cuff injury with p = 2.31x10-8 and an odds ratio of 1.25 per

allele. This SNP is located next to cadherin8, which encodes a protein involved in cell adhe-

sion. We also attempted to validate previous gene association studies that had reported a

total of 18 SNPs showing a significant association with rotator cuff injury. However, none of

the 18 SNPs were validated in our dataset. rs71404070 may be informative in explaining

why some individuals are more susceptible to rotator cuff injury than others.

Introduction

Rotator cuff injuries are a common cause of shoulder pain throughout life. The prevalence of

rotator cuff tears in the general population is approximately 20%; increasing from 10% in the

sixth decade of life to 50% in the ninth decade of life[1]. While the aetiology of rotator cuff

tears is poorly understood, the literature supports an age-related progression, primarily affect-

ing middle-aged and older patients. In addition to aging, other risk factors for degenerative

tears include smoking, hypercholesterolemia, genetic predisposition and shoulder use[2].

40% of overhead throwing athletes were found to have rotator cuff tears in their dominant

arm[3]. Athletes participating in overhead sports place substantial demands on the shoulder–

from elite swimmers ranging their shoulders through approximately 2 million strokes per year
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to professional baseball pitchers generating ball speeds of up to 165 km/hr with associated

peak internal rotation velocities of up to 6940 degrees per second[4]. Given these high

demands, rotator cuff injury can have devastating consequences on an athlete’s performance,

require substantial recovery and rehabilitation time, or even prematurely end an athlete’s

career[5,6].

Multiple lines of evidence suggest that genetic differences explain part of the predisposition

for rotator cuff injury. First, siblings and other close relatives have an elevated risk of rotator

cuff tears and show a faster rate of progression of tear size compared to non-related controls

[7,8]. Second, genetic association studies have previously identified 18 single nucleotide poly-

morphisms (SNPs) associated with rotator cuff tears[9–14]. From a cohort with 335 cases,

Tashjian et al. identified two genome-wide significant SNPs that showed an association with

full thickness rotator cuff tears[12]. Moreover, several candidate gene studies have been per-

formed to identify 16 additional SNPs associated with rotator cuff tears[9–11,13,14]. For rota-

tor cuff injury, none of these 18 SNPs have yet been validated in an independent study. One

SNP in the ESRRB gene remained associated with rotator cuff injury when the cohort was

expanded from 175 to 335 cases[12,13].

A better understanding of the genetic loci involved in rotator cuff injury could shed light

on the poorly understood molecular basis of tendon injury and repair. Although an individu-

al’s genotype is fixed, knowledge of this risk could prompt dedicated preventative measures to

potentially decrease the risk of injury.

The purpose of this genome-wide association study (GWAS) was to identify SNPs associ-

ated with rotator cuff injury using available data from a cohort of 102,979 patients that

included 8,357 cases with rotator cuff injury.

Materials and methods

A genome-wide association screen was performed for rotator cuff injury using data from the

Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. The data genera-

tion and data analysis pipeline have been previously described in Jorgenson et al 2015[15].

Supplemental Methods contains full information about the methods used.

Phenotype definition

Rotator cuff injury cases were identified in the GERA cohort based on clinical diagnoses and

surgical procedures captured in the Kaiser Permanente Northern California (KPNC) Elec-

tronic Health Record system. The Electronic Health Record includes reported injuries over the

entire lifetime of the patients, including those that occurred prior to enrollment in KPNC. It

also includes injuries that occurred after the genotyping analysis was performed if reported by

the patient and recorded by the physician, until the data were accessed on July 22, 2015. Nine

total codes, including International Classification of Disease, Ninth Revision (ICD-9) and

Common Procedure Terminology, Fourth Edition (CPT-4) codes, were included (Table 1).

Cases were defined as individuals with at least one ICD-9 code (727.61, 840.3, 840.4, 840.5,

840.6) or CPT4 code (23410, 23412, 23420, 29827). The definitions of each injury code are

listed in Table 1. Phenotypes were defined as: full rupture (individuals with ICD727_61),

partial/full rupture (individuals with ICD727_61, CPT23410, CPT23412 or CPT29827), and

rotator cuff injury (any code). There were 904 cases of full rupture, 2241 cases of partial/full

rupture and 8357 cases of rotator cuff injury from the cohort of 102,979 individuals. Partici-

pants were categorized as cases if they contained any of the injury codes listed in Table 1; oth-

erwise, they were categorized as controls.
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Genome-wide association and meta-analysis

Genome-wide association analyses of the GERA cohort genomic data were conducted using

PLINK v1.90(b3.34) (https://www.cog-genomics.org/plink2)[16,17]. SNP associations were

tested with rotator cuff injury codes with a logistic regression model using allele counts for

typed and imputed SNPs in an additive genetic model for each of the five race/ethnic popula-

tions. The model was adjusted for genetic sex, age at enrollment into the RPGEH cohort, race/

ethnicity using principal components, and variations in genotyping protocol. The final num-

ber of SNPs that were analyzed was 9,870,147 for European (EUR); 11,158,335 for Latin Amer-

ican (LAT); 8,951,026 for East Asian (EAS); 17,224,907 for African American (AFR); and

25,874 for Southeast Asian (SAS) populations. Results from each population were combined

by inverse-variance, fixed-effects meta-analysis. The final number of SNPs that was analyzed

in the fixed-effects meta-analysis was 10,582,947.

We examined the level of heterogeneity using two measures: 1) the I2 statistic, which mea-

sures the percentage of variability across studies that is due to heterogeneity, where a lower

value indicates more consistent results across studies, and 2) Cochran’s Q statistic, which mea-

sures whether observed differences in study results are due to chance alone, where a low asso-

ciated p-value indicates heterogeneity[18,19]. Locus plots showing regional association signals

were generated in LocusZoom (http://locuszoom.sph.umich.edu/locuszoom)[20].

Replication analysis of previously reported SNPs

A literature search was conducted to compile a list of candidate genes previously tested for

association with rotator cuff injuries. We searched the public databases PubMed/MEDLINE

(http://www.ncbi.nlm.nih.gov/pubmed) and Scopus (http://www.scopus.com/) for previously

published studies on the genetics of rotator cuff injury. Inclusion criteria for filtering results

were: research papers with original data, English language, full-text article available (or abstract

with enough data), genetic association studies with human subjects, cases with rotator cuff

phenotypes, and gene or SNP associations reported. Articles were included regardless of

Table 1. Rotator cuff injury phenotypes classified by ICD and/or CPT codes used in genome-wide

association analyses.

Description Codea N (%)b

Complete rupture of rotator cuff ICD727_61 904 (7.4)

Infraspinatus sprain ICD840_3 73 (0.6)

Rotator cuff sprain ICD840_4 7808 (63.6)

Subscapularis sprain ICD840_5 210 (1.7)

Supraspinatus sprain ICD840_6 709 (5.8)

Repair of ruptured rotator cuff (acute) CPT23410 324 (2.6)

Repair of ruptured rotator cuff (chronic) CPT23412 420 (3.4)

Reconstruction of complete rotator cuff avulsion CPT23420 244 (2.0)

Shoulder arthroscopy with rotator cuff repair CPT29827 1587 (12.9)

Total 12279 (100)

a International Statistical Classification of Diseases and Related Health Problems (ICD-9) and Current

Procedural Terminology (CPT-4) codes extracted from KPNC electronic health records (EHR) of GERA

cohort subjects.
b Number of instances of each specific code in the EHR, with percent of the total number of codes in

parentheses. The total number of codes (n = 12279) exceeds the total number of cases (n = 8357) since

many individuals (n = 2395) have multiple codes in their health records.

https://doi.org/10.1371/journal.pone.0189317.t001
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whether or not the associations were significant and regardless of the size of the study popula-

tion. Furthermore, the references from each publication were used to find other articles not

captured in the initial search. The final searches were conducted on June 1, 2016. Overall, six

total publications were identified reporting significant associations for 18 SNPs in 10 genes.

Additional information regarding the literature search can be found in the Supplemental

Methods. In the replication analysis, we searched our GWAS and meta-analysis results for

these SNPs and used the Benjamini-Hochberg method to set the false discovery rate to 5% to

account for multiple testing [21].

Summary statistics for all SNPs from the fixed-effects meta-analysis are available at NIH

GRASP: https://grasp.nhlbi.nih.gov/FullResults.aspx.

Ethical considerations

This study analyzed stored data from RPGEH subjects who consented to genomic testing and

use of their genomic data, as well as health data from the KPNC Electronic Health Record, for

future research studies. The health and genotype data for the subjects were de-identified. All

study procedures were approved by the Kaiser Permanente Research Institute Institutional

Review Board.

Results

Study population and genotype information

The Genes, Environment and Health cohort includes genotype and medical data from 102,979

individuals in the Kaiser-Permanente Northern California system. Demographic data for the

cohort are presented in Table 2. The electronic health records were interrogated for individuals

that had incurred a rotator cuff injury (Table 1)(Methods).

Table 2. Demographic factors of the GERA study population used in genome-wide association analyses of rotator cuff injury.

GERA—ALL Casesa Controls Overall

Subjects [N (%)] 8357 (8.1%) 94622 (91.9%) 102979

Sexb [N (%)]

Female 4166 (7.0%) 55505 (93.0%) 59671

Male 4188 (9.7%) 39054 (90.3%) 43242

Undetermined 3 (4.5%) 63 (95.5%) 66

Racec [N (%)]

European 6993 (8.4%) 76271 (91.6%) 83264

Latin American 669 (7.8%) 7891 (92.2%) 8560

East Asian 394 (5.2%) 7124 (94.8%) 7518

African American 269 (8.5%) 2892 (91.5%) 3161

South Asian 32 (6.7%) 444 (93.3%) 476

Aged 66.9 62.4 62.7

(66.7–67.0) (62.3–62.5) (62.6–62.8)

a Cases with rotator cuff injury as defined by individuals with 1 or more qualifying ICD-9 or CPT-4 code in their electronic health records (EHR). For details

see Methods and Table 2.
b Sex/gender as determined by an individuals genetic data, reported as the number and percentage of total cases, controls, or overall for each respective

group. For details see Methods and dbGaP (Study Accession: phs000674.v1.p1).
c Race/ethnic groups as determined by principle component analysis (PCA) on individuals genetic data from the GERA cohort. Reported as the number and

percentage of total cases, controls, or overall for each respective group. For details see Methods and dbGaP (Study Accession: phs000674.v1.p1).
d Age at subject enrollment in the GERA cohort, reported as mean age with 95% confidence interval.

https://doi.org/10.1371/journal.pone.0189317.t002
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Genome-wide study for association with rotator cuff injury

The RPGEH cohort, genotyping data, methodological approach and logical flow presented

here overlap those used in previous work by the same authors on MCL injury, shoulder dislo-

cation, plantar fasciitis, ACL injury, Achilles tendon injury and ankle injury [22–26]. However,

the analyses presented here present new results on the genetic basis for rotator cuff injury.

A logistic regression was performed to search for SNPs associated with rotator cuff injury

(Methods). We compared the observed p-values from the GERA cohort meta-analysis to the

distribution of p-values that would be expected by chance in a Q-Q plot (Fig 1). We observed

slight deviation from the null hypothesis for the lowest observed p-value, illustrated by the far-

thest upper-right points tending to be above the diagonal red line. This deviation indicates that

one or more SNPs from our analysis show an association with rotator cuff injury.

We plotted the p-value for every SNP from the meta-analysis on a Manhattan plot (Fig 2).

The tested SNPs are arranged linearly by genomic position along the x-axis and the p-value

for each SNP is indicated along the y-axis. To correct for multiple hypothesis testing, we used

the commonly-accepted genome-wide threshold for statistical significance of p<5x10-8 (indi-

cated by the red line)[27–29]. One SNP (rs71404070) exceeds the genome-wide statistical

threshold for association with rotator cuff injury (Table 3). rs71404070 yielded data for three

races (EUR, LAT, AFR) but not the two Asian races. rs71404070 was not directly genotyped

in the dataset, but rather the genotypes were imputed with fairly high accuracy (R2 = 0.93)

Fig 1. Quantile-quantile plot for genome-wide association analyses of rotator cuff injury. The expected

versus observed log transformed values for the 10,582,947 p-values are graphed. The observed p-values (black

dots) are plotted on the y-axis and the p-values expected by chance (red line) are plotted on the x-axis.

https://doi.org/10.1371/journal.pone.0189317.g001
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(Table 3). Summary statistics for all SNPs from the fixed-effects meta-analysis are available at

NIH GRASP: https://grasp.nhlbi.nih.gov/FullResults.aspx.

The GWAS results were analyzed to determine whether the association with rotator cuff

injury for rs71404070 was stronger in some races than in others, a phenomenon known as het-

erogeneity[30]. A forest plot shows the odds ratio and 95% confidence interval for the three

different races with data, as well as the overall result from all three races combined (Fig 3). The

odds ratios for each race were in the same direction and of similar magnitude. Using I2 and

Cochran’s Q to assess heterogeneity, we saw no evidence of heterogeneity; specifically, I2 = 0%

(95% confidence interval: 0–79%) and Cochran’s Q = 1.614 with p = 0.446.

The allelic odds ratio for rs71404070 is 1.25. Individuals that carried one risk allele at

rs71404070 (A/T) had a 29% increased chance of rotator cuff injury compared to individuals

that have no risk alleles (Table 4).

Our cohort of rotator cuff injuries includes 904 cases of full rupture and 2241 cases of either

full or partial rupture of the rotator cuff (Table 5). We asked whether increasing severity of

rotator cuff injury would also increase the strength of the association of rs71404070 with that

injury. We repeated the analysis for rs71404070 using either full or partial/full rupture as cases

Fig 2. Manhattan plot for genome-wide association analyses of rotator cuff injury. The log10 p-values for association with rotator cuff injury for

10,582,947 SNPs from the meta-analysis from this study are plotted by genomic position with chromosome number listed across the bottom. The y-axis

shows the -log10 p-value for association with rotator cuff injury. The blue line represents suggestive genome-wide significance (p<1x10-5) and the red line

represents genome-wide significance (p<5x10-8). The top SNP rs71404070 and the nine other SNPs within the same linkage disequilibrium block at

suggestive significance are highlighted in green.

https://doi.org/10.1371/journal.pone.0189317.g002

Table 3. Association of rs71404070 with rotator cuff injury from genome-wide association analyses.

SNP Gene Allelea P-Valueb OR (95% CI)c

rs71404070d CDH8/LOC729159 A 2.31x10-8 1.25 (1.18–1.33)

a Effect allele.
b P-value from fixed-effects meta-analysis.
c Allelic odds ratio with 95% confidence interval, adjusted for covariates in the logistic regression from fixed-effects meta-analysis.
d rs71404070 was not directly genotyped, but rather the data were imputed with R2 = 0.93 (all races), 0.94 (EUR), 0.86 (AFR) and 0.90 (LAT).

https://doi.org/10.1371/journal.pone.0189317.t003
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versus uninjured patients as controls (Table 5). We note that the odds ratio increases for the

partial/full ruptures (1.38) but not for full ruptures (1.22) compared to the overall cohort of all

injured patients (1.25). As expected, the p-values for the association of rs71404070 with each

rotator cuff injury phenotype became less significant as the number of cases decreased.

Rs71404070 is located in the 1.5 Mb intergenic region between LOC729159 and cadherin8
(CDH8) on chromosome 16 (Fig 4). There is one SNP that is tightly linked (R2 = 0.99) and 8

additional SNPs that are weakly linked (R2>0.6) to the sentinel SNP rs71404070 (S1 Table).

Since all of these SNPs are linked and tend to be inherited as one haplotype, it is unclear which

of these, if any, is the SNP that directly affects risk for rotator cuff injury and which show an

association simply because they are linked.

We investigated all of the SNPs linked to rs71404070 for evidence that they may affect the

expression or coding capacity of neighboring genes, consistent with a variant that is directly

responsible for affecting rotator cuff injury risk. The entire linkage disequilibrium block is

intergenic, so none of the SNPs directly affect protein coding regions.

Next, we searched for evidence that these SNPs affect gene expression levels of either

LOC729159 or cadherin8 by acting as expression quantitative trait loci (eQTLs)(Methods). The

Genotype-Tissue Expression database has documented SNPs associated with changes in

expression of nearby genes [31]. However, neither rs71404070 nor any of the nine linked SNPs

showed an association with variation in expression of either LOC729159 or cadherin8.

Finally, we interrogated data from the ENCODE project to determine whether rs71404070

or any of the nine linked SNPs might affect binding of transcription factors [32]. In general,

when transcription factors bind to DNA, they are associated with a factor known as CTCF and

the bound region becomes DNAse I hypersensitive[32]. SNPs located in these regions may

affect transcription factor binding and consequently gene expression. The lead SNP in our

Fig 3. Forest plot for association of rs71404070 with rotator cuff injury. Only three race/ethnic populations yielded data for the lead SNP rs71404070:

European, Latin-American and African-American. Effect size estimates with their 95% confidence intervals are given for each individual group, as well as the

overall summary result. We observe little heterogeneity as measured by I2 (0%) and the p-value for Cochran’s Q statistic (0.446).

https://doi.org/10.1371/journal.pone.0189317.g003

Table 4. Genotype distributions for rs71404070.

rs71404070 A/A A/T T/T

Cases 13 709 7,437

Controls 142 6,213 86,089

Overall 155 6,922 93,526

Risk for rotator cuff injury 8.4% 10.2% 7.9%

Relative risk for rotator cuff injurya 1.06 1.29 1.00

(0.60–1.86) (1.19–1.40)

a Risk relative to homozygous T/T (95% confidence interval).

https://doi.org/10.1371/journal.pone.0189317.t004
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study, rs71404070, was not associated with either CTCF binding or DNAse I hypersensitivity.

One weakly-linked SNP, rs35448966 (R2 = 0.67), is located in a CTCF binding site[32]. A mod-

erately-linked SNP, rs76226460 (R2 = 0.81), is located in a DNase I hypersensitivity peak[32].

These data suggest that these two SNPs might have an effect on expression of nearby genes.

However, their association with rotator cuff injury is weak (p>10−7) and they are not highly

correlated with the sentinel SNP rs71404070 (R2<0.81), indicating that these SNPs are not

likely to be responsible for the highly-significant association of rs71404070 with rotator cuff

injury (S1 Table). In summary, none of the nine SNPs linked to rs71404070 has strong evi-

dence for being directly responsible for affecting the activity of any of the nearby genes. Since

rs71404070 has by far the most significant association with rotator cuff injury, it has the best

evidence for being the SNP that is responsible for the association.

We attempted to validate the association of rs71404070 with rotator cuff injury using data

from a previous GWA study[12]. However, neither rs71404070 itself nor any closely linked

SNPs were included in the previous set of genotyped markers (C. Teerlink and R. Tashjian,

Personal Communication).

Failure to validate previously reported SNPs associated with rotator cuff

injury

In previous studies, 18 SNPs in 10 genes have been reported to be significantly associated with

rotator cuff injury[9–14]. Two SNPs (rs820218 and rs10484958) were identified in a genome-

wide screen (with p<1.9 x 10−7)[12]. The remaining 16 SNPs were identified in candidate

gene studies (with p<0.05)[9–11,13,14]. None of the reported SNPs have been independently

replicated for association with rotator cuff injury.

We tested whether any of these 18 SNPs showed an association with rotator cuff injury in

our dataset (Table 6). To compensate for multiple testing, we used the Benjamini-Hochberg

method, with a false discovery rate of q = 0.05[33,34]. None of the 18 SNPs showed a signifi-

cant association with rotator cuff injury in our dataset. In previous studies, the cases had full

ruptures of the rotator cuff whereas in this work, the cases included partial ruptures, full rup-

tures, sprains and avulsions. One possibility is that the 18 SNPs might show an association

with full ruptures but not with other injuries of the rotator cuff. To address this possibility, we

repeated the analysis using only full ruptures (904 cases) or partial/full ruptures (2241 cases) of

the rotator cuff (Table 6). Even restricting the analysis to full and/or partial ruptures, none of

the 18 previous SNPs showed a significant association with rotator cuff injury in our dataset.

Discussion

With the advent of large-scale genotyping programs, it is now possible to screen the entire

genome for polymorphisms associated with musculoskeletal injury risks, such as rotator cuff

Table 5. Association of rs71404070 with full and partial/full rotator cuff tears.

SNP Phenotype Na P-Valueb OR (95% CI)c

rs71404070 All Injuries 8357 2.31x10-8 1.25 (1.18–1.33)

rs71404070 Partial or Full Rupture 2241 6.14x10-5 1.38 (1.24–1.52)

rs71404070 Full Rupture 904 0.36 1.22 (0.98–1.46)

a Number of cases included in each analysis.
b P-value from fixed-effects meta-analysis.
c Allelic odds ratio with 95% confidence interval, adjusted for covariates in the logistic regression from fixed-effects meta-analysis.

https://doi.org/10.1371/journal.pone.0189317.t005
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tears. A genome-wide screen for rotator cuff injury could provide new insights regarding the

differences between individuals in their inherent propensity for injury and reveal insights into

Fig 4. Regional-association plot for rs71404070 with rotator cuff injury. Tested SNPs are arranged by genomic position on chromosome 16 (x-axis) in a

2Mb window around the lead SNP rs71404070, including the locus where our association signal is present. The y-axis indicates -log10 p-values for

association with rotator cuff injury for each SNP. The top group of SNPs are located in the intergenic region between LOC729159 and cadherin8 (CDH8).

The purple diamond represents the lead SNP rs71404070. The color of dots representing flanking SNPs indicates their linkage disequilibrium (R2) with the

lead SNP as indicated in the heat map color key. The grey dots represent SNPs that lack R2 information in 1000genomes or HapMap. Blue vertical lines

show the recombination rate at specific genomic positions and approximate locus boundaries.

https://doi.org/10.1371/journal.pone.0189317.g004
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Table 6. Replication testing of SNPs previously reported to be associated with rotator cuff injury.

All RTCa Partial/Full Ruptureb Full Rupturec

SNP Gene EAd Pe OR Pe OR Pe OR Refg

(95% CI)f (95% CI)f (95% CI)f

rs3045 ANKH C 0.78 1.01 0.71 1.02 0.72 0.97 [11]

(0.95–1.07) (0.92–1.12) (0.82–1.12)

rs1800972 DEFB1 C 0.53 0.99 0.08 0.93 0.05 0.89 [10]

(0.95–1.03) (0.85–1.01) (0.78–0.99)

rs17583842 ESRRB C 0.014 0.95 0.88 1.01 0.16 1.08 [12,13]

(0.91–0.99) (0.94–1.08) (0.97–1.19)

rs4903399 ESRRB T 0.86 1.00 0.87 0.99 0.66 1.03 [10]

(0.96–1.04) (0.92–1.06) (0.90–1.16)

rs1676303 ESRRB C 0.16 0.96 0.02 0.89 0.43 0.94 [10]

(0.91–1.01) (0.79–0.99) (0.80–1.08)

rs12574452 FGF3 A 0.95 1.00 0.14 1.06 0.64 1.03 [10]

(0.96–1.04) (0.99–1.13) (0.90–1.16)

rs1011814 FGF10 T 0.8 1.00 0.19 0.96 0.43 0.96 [10]

(0.97–1.03) (.90–1.02) (0.86–1.06)

rs11750845 FGF10 T 0.7 0.99 NDh ND ND ND [10]

(0.96–1.02)

rs13317 FGFR1 C 0.75 1.01 0.11 0.94 0.18 0.92 [10]

(0.97–1.05) (0.86–1.02) (0.79–1.02)

rs820218 SAP30BP A 0.24 0.98 0.22 0.96 0.85 0.99 [12]

(0.94–1.02) (0.89–1.03) (0.89–1.11)

rs10484958 SASH1 A 0.85 1.00 0.03 0.91 0.10 0.89 [12]

(0.95–1.05) (0.82–1.00) (0.77–1.03)

rs4654760 TNAP T 0.83 1.01 0.33 0.93 0.07 1.21 [11]

(0.94–1.08) (0.79–1.07) (0.98–1.50)

rs1138545 TNC T 0.73 1.01 0.99 1.00 0.72 1.03 [14]

(0.96–1.06) (0.91–1.09) (0.89–1.16)

rs3789870 TNC A 0.93 1.00 0.87 0.99 ND ND [14]

(0.96–1.04) (0.92–1.06)

rs10759753 TNC G 0.91 1.00 0.93 1.00 0.70 0.98 [14]

(0.96–1.045) (0.93–1.07) (0.88–1.09)

rs72758637 TNC G 0.62 1.01 0.95 1.00 0.81 1.02 [14]

(0.96–1.06) (0.91–1.09) (0.88–1.117)

rs7021589 TNC C 0.64 1.01 0.86 1.01 ND ND [14]

(0.95–1.06) (0.92–1.10)

rs7035322 TNC A 0.72 1.01 0.93 1.00 ND ND [14]

(0.97–1.05) (0.93–1.07)

a All Rotator Cuff Injuries; 8357 cases.
b Partial or Full Rotator Cuff Tears; 2241 cases.
c Full Rotator Cuff Tears; 904 cases.
d Effect allele from this study, also denoted A1 in GWAS + meta-analysis results.
e P-value from fixed-effects meta-analysis in this study.
f Allelic odds ratio with 95% confidence interval, adjusted for covariates in the logistic regression, from fixed-effects meta-analysis in this study.
g Original publication showing an association of the candidate SNP with rotator cuff injury.
h No Data for this SNP.

https://doi.org/10.1371/journal.pone.0189317.t006
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underlying mechanisms for shoulder tendinopathy. Furthermore, because the genotype data

includes most of the common polymorphisms that are known, a genome-wide screen reports

the strongest associations in the genome in an unbiased manner. Here, we have performed a

study to find DNA polymorphisms associated with rotator cuff injury by obtaining access to

large-scale genotype and phenotype data from the Research Program on Genes, Environment

and Health. The data contained information from 102,979 individuals of whom 8,357 had

rotator cuff injury.

We found rs71404070 to be associated with rotator cuff injury with a p-value that has

genome-wide significance. It will be important to validate this finding in independent studies

[35,36]. rs71404070 lies in a linkage disequilibrium block that contains nine other SNPs that

also show an association with rotator cuff injury, although at a lower level than rs71404070.

Within this block, it is unclear which variant(s) causes increased risk of rotator cuff injury and

which are neutral polymorphisms linked to this variant(s). Neither rs71404070 nor any of the

linked SNPs affect protein-coding regions. Additionally, none of these SNPs are known to

affect expression of the two nearest genes (LOC729159 or cadherin8). The cadherin8 gene

encodes a type II classical cadherin, which is an integral membrane protein that mediates cal-

cium-dependent cell-cell adhesion. The function of LOC729159 is currently unknown.

Individuals carrying one risk allele at rs71404070 (A/T) had a 29% increased chance of

injury compared to individuals with no risk allele (T/T). The size of the effect of rs71404070 is

typical for many genome-wide association studies but far smaller than those for simple Mende-

lian traits. The rs71404070 genotype explains part of the heritable risk for rotator cuff injury,

but a large part of the heritability remains unanswered. For some traits such as height or bone

mineral density, heritability is largely explained by the cumulative effect from hundreds or thou-

sands of loci [37–39]. One possibility is that rotator cuff injury is also polygenic, in which case

identification of more loci in future studies might explain the heritability of this injury more

fully. Another possibility is that rotator cuff injury may be heterogeneous; i.e. there may be dis-

tinct types of injury, and the rs71404070 SNP might explain risk for some types but not others

[40]. In this case, methods could be developed to classify rotator cuff injury into sub-types, in

which case the effect size of rs71404070 might increase for a specific sub-type of injury.

We re-tested 18 SNPs in 10 genes that were previously reported to show an association with

rotator cuff injury, but we were unable to validate any associations. Evidence from many other

genetic association studies suggests that candidate gene associations need to be independently

replicated, otherwise their credibility is low[41–44]. Our study included 8,357 cases of rotator

cuff injury compared to between 175 and 331 cases of rotator cuff injury in previous studies

[12,13]. Compared to previous studies, our study had a larger number of cases, indicating that

we had good statistical power to replicate the previously reported associations[45]. For exam-

ple, for a SNP with a minor allele frequency of 5% and a genotype relative risk of 1.2 for 8,357

cases, power calculations indicate that our study had a 99% chance of replication. However, if

we restrict the re-testing to just 904 cases of full rotator cuff rupture, our study had only a 15%

chance of replicating such a SNP.

One possible reason explaining why our study was not able to replicate previous results is

that rotator cuff injury was classified according to data from electronic health records. Some of

the previous studies classified rotator cuff injuries using magnetic resonance imaging to con-

firm full-thickness rotator cuff tears. For large studies like ours, it is typical to perform bioin-

formatics searches of electronic health records, as it is not possible to manually evaluate each

case. Nevertheless, it could be that some of the rotator cuff injuries in our study may be mis-

classified due to inaccuracy of the electronic health records.

The summary statistics for 10,582,947 SNPs from the GWAS for rotator cuff injury may be

used in future genetic studies of rotator cuff injury. For instance, one could make a list of
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additional genes and genetic pathways involved in the development, formation or structure of

the rotator cuff, and then use the data presented here to test those genes for an association. In

addition, GWA studies for rotator cuff injury may be conducted in the future, in which case

the data from this paper could be used to validate any new SNPs that are found. Finally, the

data on rotator cuff injury could be combined with data from other musculoskeletal injuries

(e.g. Achilles tendon injury) in a cross-phenotype meta-analysis in order to find SNPs associ-

ated with tendon injuries in general.

An attractive possibility is that rs71404070 could be used as a diagnostic marker to identify

individuals with increased risk for injury, and then to take preventative measures to alleviate

some of that risk. In our data from the general population, having one copy of the risk A allele

of rs71404070 increased the risk for rotator cuff injury by 29% compared to having no copies.

The underlying biological mechanism responsible for the association of rs71404070 with rota-

tor cuff injury is currently unknown.

There are several limitations to this study. First, the results should be replicated in an inde-

pendent cohort. Second, the phenotypes were defined from codes contained in patient elec-

tronic health records, which may be inaccurate. Third, the number of individuals of Latin-

American, African-American and Asian ethnicity was relatively small, and hence the associa-

tion results for these results are weaker than those from the European group. Fourth, these

results should be repeated in a cohort of athletes to determine whether the effect size is similar

in athletes. Fifth, additional studies are warranted to begin to illuminate the underlying biolog-

ical mechanism for the association of variation near cadherin8 and rotator cuff injury.
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