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Suppression of diabetic retinopathy 
with GLUT1 siRNA
Zhi-Peng You, Yu-Lan Zhang, Ke Shi, Lu Shi, Yue-Zhi Zhang, Yue Zhou & Chang-yun Wang

To investigate the effect of glucose transporter-1 (GLUT1) inhibition on diabetic retinopathy, 
we divided forty-eight mice into scrambled siRNA, diabetic scrambled siRNA, and GLUT1 siRNA 
(intravitreally injected) groups. Twenty-one weeks after diabetes induction, we calculated retinal 
glucose concentrations, used electroretinography (ERG) and histochemical methods to assess 
photoreceptor degeneration, and conducted immunoblotting, leukostasis and vascular leakage assays 
to estimate microangiopathy. The diabetic scrambled siRNA and GLUT1 siRNA exhibited higher glucose 
concentrations than scrambled siRNA, but GLUT1 siRNA group concentrations were only 50.05% of 
diabetic scrambled siRNA due to downregulated GLUT1 expression. The diabetic scrambled siRNA 
and GLUT1 siRNA had lower ERG amplitudes and ONL thicknesses than scrambled siRNA. However, 
compared with diabetic scrambled siRNA, GLUT1 siRNA group amplitudes and thicknesses were higher. 
Diabetic scrambled siRNA cones were more loosely arranged and had shorter outer segments than 
GLUT1 siRNA cones. ICAM-1 and TNF-α expression levels, adherent leukocyte numbers, fluorescence 
leakage areas and extravasated Evans blue in diabetic scrambled siRNA were higher than those in 
scrambled siRNA. However, these parameters in the GLUT1 siRNA were lower than diabetic scrambled 
siRNA. Together, these results demonstrate that GLUT1 siRNA restricted glucose transport by 
inhibiting GLUT1 expression, which decreased retinal glucose concentrations and ameliorated diabetic 
retinopathy.

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM). DR often results 
in decreased vision and even blindness caused by macular edema, retinal detachment, and vitreous hemorrhage. 
The number of patients with diabetes may grow to 642 million in 20401. DR has been recognized as a microa-
ngiopathy, as well as a neurodegenerative disease. Although the detailed mechanism underlying DR is unclear, 
two major global multicenter studies on diabetes, DCCT2 and UKPDS3, have revealed that a long-term high 
blood glucose level is the decisive factor for DR development. Moreover, excessive generation of retinal oxidative 
stress products4, activated protein kinase C5, and increased synthesis of glycosylated end products6 under the 
environment of high blood glucose levels initiate the impairment of retinal tissues and cells4. Since lesions are 
induced by high blood glucose levels, we hypothesize that DR progression can be relieved by restricting glucose 
transfer into the retina, thereby decreasing its local glucose content. Glucose transporter-1 (GLUT1) is the only 
currently known carrier of glucose through the blood–retinal barrier and is also responsible for the distribution 
of glucose in ganglion cells, photoreceptor cells, and Müller cells in the retina; GLUT1 is primarily expressed in 
the vascular endothelial cells of the inner blood–retinal barrier and retinal pigment epithelial cells of the outer 
blood–retinal barrier7. GLUT1 was identified as a promising target for diabetic retinopathy8, but current research 
did not observe particular effect on retinopathy including neuron degeneration and microangiopathy with means 
of GLUT1 downregulation.

In this study, we intend to assess and compare electroretinography (ERG) amplitudes, outer nuclear layer 
(ONL) thicknesses, and cone cell densities in diabetic mice. The results will be used to determine pathological 
changes in photoreceptor cells, measure the expression levels of retinal inflammatory factors, quantify adherent 
leukocytes in retinal vessels and determine the leakage area of the inner blood–retinal barrier to compare the level 
of microangiopathy. Our purpose is to investigate the effect of GLUT1 negative regulation on retinopathy via the 
above parameters to verify whether suppression of GLUT1 would be benefit for DR.
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Results
Establishment of the diabetic model and measurement of body weight and blood glucose lev-
els in the three groups.  At 7 d after intraperitoneal injections with streptozotocin, all blood glucose levels 
of the 48 males C57BL/6 mice (diabetic scrambled siRNA and GLUT1 siRNA groups) used for the establishment 
of the diabetic model were greater than 300 mg/dL, and the success rate of modeling was 100%. The body weight 
and blood glucose levels of the mice were measured again at 20 weeks after the diabetic model was established. 
No significant differences in the body weights of the mice were found among the three groups when the diabetic 
model was successfully established. However, the body weight of the scrambled siRNA group was significantly 
higher than that of the diabetic scrambled siRNA and GLUT1 siRNA groups by 40.44% and 35.59%, respectively, 
at 20 weeks after the diabetic model was established (P < 0.01). Both groups with diabetes exhibited an emaciated 
body, whereas their water intake, food intake, and urine volume were higher than those of the scrambled siRNA 
group. At two time points: 1 d and 20 weeks after the diabetic model establishment the blood glucose levels of the 
scrambled siRNA group were lower than those of the diabetic scrambled siRNA group by 46.85% and 55.37%, 
respectively. The blood glucose levels were significantly lower than those of the GLUT1 siRNA group by 47.36% 
and 54.39% (P < 0.05). However, no significant difference was found in the blood glucose levels between the dia-
betic scrambled siRNA and GLUT1 siRNA groups at both time points (Table 1).

Determination of retinal glucose concentrations.  The glucose concentration in the retinal tissue of 
the scrambled siRNA group was approximately 36.36 ± 2.98 nmol glucose/mg protein, whereas the glucose con-
centration in the retinal tissue of the diabetic scrambled siRNA group increased to 156.73 ± 8.01 nmol glucose/
mg protein at 20 weeks after the diabetic model was established. The glucose concentration in the GLUT1 siRNA 
group was 78.44 ± 4.96 nmol glucose/mg protein. The glucose concentrations in the retinal tissues of the diabetic 
model mice of the two groups were significantly higher than those in the mice of the scrambled siRNA group 
(P < 0.01). However, the glucose concentration in the retinal tissue of the GLUT1 siRNA group was significantly 
lower than that in the diabetic scrambled siRNA group by 50.05% (P < 0.01) (Fig. 1a).

Retinal GLUT1 expression in the three groups.  Immunoblotting revealed that the expression of GLUT1 
in the neural retinal layer was upregulated under diabetic conditions, but the expression of retinal GLUT1 in the 
GLUT1 siRNA group was lower than that in the scrambled siRNA group by approximately 77.00%; however, 
GLUT1 expression in the GLUT1 siRNA group was only lower than that in the diabetic scrambled siRNA group 
by 8.07%. Both of these differences were statistically significant (P < 0.01) (Fig. 1b). Simultaneously, GLUT1 
expression in the retinal pigment epithelium was also detected, and the results were different from those obtained 
in the neural retinal layer. Although GLUT1 expression in the GLUT1 siRNA group was only 50.22% of that in the 
diabetic scrambled siRNA group, which represented a significant difference (P < 0.01), there was no significant 
difference compared with that in the scrambled siRNA group (P > 0.05) (Fig. 1c).

Pathological changes in cone photoreceptors.  Photopic electroretinogram amplitudes reflect the 
function of cone photoreceptors9. The photopic ERG a and b wave amplitudes of both the diabetic scrambled 
siRNA and GLUT1 siRNA groups were significantly lower than those of the scrambled siRNA group (P < 0.01). 
However, the photopic ERG a and b wave amplitudes of the GLUT1 siRNA group were significantly higher than 
those of the diabetic scrambled siRNA group (Fig. 2a–c). Cone photoreceptors were detected using an immuno-
fluorescence colocalization method. Compared with the scrambled siRNA group, both the diabetic scrambled 
siRNA and GLUT1 siRNA groups exhibited decreased cone cell density and loosely arranged cones. The changes 
were more significant in the diabetic scrambled siRNA group, and the cone outer segments in the diabetic scram-
bled siRNA group appeared shorter than those in the GLUT1 siRNA treatment group (Fig. 2d–f).

Pathological changes in rod cells.  Scotopic ERG uses a gradient of luminance to stimulate the retina 
under dark conditions, which reflects rod cell function9. The ERGs of the three groups are shown in Fig. 3a,b; the 
scotopic ERG a and b wave amplitudes in both the diabetic scrambled siRNA and GLUT1 siRNA groups were 
significantly lower than those in the scrambled siRNA group (P < 0.01). However, the scotopic ERG a and b wave 
amplitudes in the GLUT1 siRNA group were significantly higher than those in the diabetic scrambled siRNA 
group. The ONL is primarily composed of photoreceptor nuclei, and ONL thickness essentially reflects changes 
in the number of rod photoreceptors because rods constitute 98% of all photoreceptors. In our study, ONL thick-
nesses were measured at 0.48, 0.96, 1.44, and 1.92 mm from the optic nerve. At 20 weeks after the model was 
established, the ONL thicknesses in the GLUT1 siRNA treatment and diabetic scrambled siRNA groups were 

group

body weight (g) blood glucose level (mg/dL)

at 1 d after 
the diabetic 
model was 
established

at 20 weeks after 
the diabetic model 
was established

at 1 d after the 
diabetic model 
was established

at 20 weeks after the 
diabetic model was 
established

Scrambled siRNA 24.51 ± 2.13 34.21 ± 3.29 178.13 ± 24.31 173.41 ± 28.12

Diabetic scrambled 
siRNA 23.12 ± 2.04 24.36 ± 3.23** 335.16 ± 63.37 388.54 ± 51.46**

GLUT1 siRNA 
treatment 23.62 ± 2.12 25.23 ± 2.78** 338.42 ± 61.28 380.17 ± 65.81**

Table 1.  Body weight and blood glucose levels of the three groups (n = 16, x  ± S). **P < 0.01, vs Scrambled 
siRNA.
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lower than those in the scrambled siRNA group by approximately 16.05% and 35.38%, respectively. However, 
the ONL thicknesses in the GLUT1 siRNA treatment group were significantly thicker than those in the diabetic 
scrambled siRNA group by 29.92% (P < 0.05) (Fig. 3c–f).

Inflammatory reactions in the retina.  Previous research has demonstrated that DR is an inflammatory 
disease10, and ICAM-1 and TNF-α are two important inflammation markers. Immunoblotting revealed that the 
expression levels of ICAM-1 in the diabetic scrambled siRNA and GLUT1 siRNA groups were significantly upreg-
ulated compared with those in the scrambled siRNA group (P < 0.01). However, the expression of retinal ICAM-1 
in the GLUT1 siRNA group was approximately 66.14% of that in the diabetic scrambled siRNA group (P < 0.05) 
(Fig. 4a). Similar results were obtained for the expression levels of TNF-α, which were also significantly upreg-
ulated in both the diabetic scrambled siRNA and GLUT1 siRNA groups compared with those in the scrambled 
siRNA group (P < 0.01). However, the expression of retinal TNF-α in the GLUT1 siRNA group was approxi-
mately 54.76% of that in the diabetic scrambled siRNA group (P < 0.05) (Fig. 4b).

Leukostasis is also an important indicator of retinal inflammatory reactions9, as well as early pathological 
changes in DR. No adherent leukocytes were found in the scrambled siRNA group, whereas adherent leukocytes 
were detected in the diabetic scrambled siRNA and GLUT1 siRNA groups. However, the number of adherent 
leukocytes in the GLUT1 siRNA group was approximately 52.76% of that in the diabetic scrambled siRNA group 
(P < 0.01) (Fig. 4a–d).

Blood–retinal barrier leakage.  We used fluorescence microscopy to observe and compare fluorescein 
isothiocyanate-labeled bovine serum albumin as measurement of inner blood–retinal barrier leakage. The results 
showed that the inner blood–retinal barrier in the scrambled siRNA group was intact, and no fluorescence leak-
age was observed, whereas fluorescence leakage regions were detected in the diabetic scrambled siRNA and 
GLUT1 siRNA groups. However, fewer fluorescence leakage regions and smaller leakage areas were found in the 
GLUT1 siRNA group than in the diabetic scrambled siRNA group (Fig. 5a–c). We also used immunoblotting 
to measure the content of retinal albumin, and the albumin expression levels were also significantly increased 
in both the diabetic scrambled siRNA and GLUT1 siRNA groups compared with those in the scrambled siRNA 
group (P < 0.01). However, the expression of retinal albumin in the GLUT1 siRNA group was approximately 
56.18% of that in the diabetic scrambled siRNA group (P < 0.01) (Fig. 5d). As shown in Fig. 5e, BRB permeability 
was also measured in vivo using the Evans blue dye. The concentration of Evans blue in formamide extract of 
diabetic retina was significantly higher than scrambled siRNA group (P < 0.01). GLUT1 siRNA treatment signif-
icantly reduced Evans blue extravasation compared to diabetic scrambled siRNA group (P < 0.01).

Discussion
DR is  the  one of  the  most  common and ser ious  ocular  complicat ions ,  and its  patho-
genesis  remains unclear.  The key ef fects  of  high blood glucose levels  in DR and other 
diabetes-related complications have been demonstrated in the cl inical  tr ials  DCCT2 and 
UKPDS3. The effects of high blood glucose on retinal cells may include changes in the expression 

Figure 1.  (a) Determination of glucose concentration in retinal tissues of the three groups, **P < 0.01 vs. 
scrambled siRNA group, n = 6, x  ± S. (b) GLUT1 expression in the neural retinal layers of the three groups, 
**P < 0.01 vs. scrambled siRNA group, ΔΔP < 0.01 vs. diabetic scrambled siRNA group, n = 6, x  ± S. (c) GLUT1 
expression in the retinal pigment epithelia of the three groups, **P < 0.01 vs. diabetic scrambled siRNA group, 
ns: P > 0.05 vs. scrambled siRNA group, n = 6, x  ± S. Full-length blots are presented in Supplementary Figure 1
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levels of specific genes, buildup of advanced glycation end products, and increased oxidative stress reactions11.  
Given that the high-glucose microenvironment in DR damages retinal tissues, controlling the glucose content of 
local retinal tissues and reversing the high-glucose microenvironment may address the problem. However, glu-
cose in the retina is transferred from blood circulation and cannot pass through the phospholipid bilayer of mam-
malian cell membranes due to its water solubility; thus, GLUT, a family of transport proteins, is used to transport 
glucose12, which is required for retinal tissues to take up glucose: GLUT1 is the only carrier for the transport of 
glucose across the blood–retinal barrier7.

Researches concerning GLUT1 expression under high glucose condition are contrary at present. Kumagai et 
al. examined GLUT1 expression in the eyeballs (without or with mild retinopathy) of patients with diabetes using 
immunocytochemistry and found that the activity of retinal GLUT1 in more than half of the eyeballs was 18 times 
higher than that in the eyeballs of the normal control group13. Fernandes et al. found that there was no compensa-
tory downregulation of GLUT1 on the inner BRB in diabetic rats by means of immunogold staining14. However, 
Fernandes et al. also reported that GLUT1 expression was decreased in alloxan-induced diabetic rabbits15.  
Similarly, Badr et al. suggested that diabetic condition downregulated GLUT1 expression in the retina and its 
microvessels16. These controversial results may attribute to different animal species, diabetic course and meth-
odology. In our study, GLUT1 level in diabetic scrambled siRNA group was 2.67 times that of scrambled siRNA 
group.

Figure 2.  (a) Representations of classic photopic ERG waveforms. Figure 2b and c: Results of the statistical 
analysis of photopic ERG a wave (b) and b wave (c) amplitudes (n = 9) **P < 0.01, compared with scrambled 
siRNA group, ΔΔP < 0.01, compared with diabetic scrambled siRNA group. Figure 2d–f: Changes in cone 
cells of the three groups were detected using an immunofluorescence colocalization method (fluorescence 
microscope ×400) (d) scrambled siRNA group, scale bar represents 50 µm; (e) diabetic scrambled siRNA group; 
(f) GLUT1 siRNA group; green: PNA, red: opsin, blue: DAPI; OS: outer segment of cone cell; IS: inner segment 
of cone cell.
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siRNA is a type of RNA fragment that ranges in size from 19 bp to 21 bp. siRNA can specifically degrade 
mRNA of particular genes to inhibit the expression of these genes. In our experiment, we administered effec-
tive GLUT1 siRNA sequences, which were identified in previous studies17, to decrease the amount of glucose 
transported into the retina. As mentioned above, no significant difference in the overall blood glucose levels 
was found between the mice with diabetes of both groups at 20 weeks after the diabetic model was established. 
GLUT1 siRNA was intravitreally injected into mice of the GLUT1 siRNA group, and the expression of retinal 
GLUT1 was downregulated accordingly: it was decreased by approximately 91.93% compared with that in the 
diabetic scrambled siRNA group and by approximately 77% compared with that in the scrambled siRNA group. 
At the same time, the retinal glucose concentration in the GLUT1 siRNA group was only 50.05% of that in the 
diabetic scrambled siRNA group. This finding indicates that the amount of glucose transported into the retina 
was effectively reduced after GLUT1 was inhibited by GLUT1 siRNA. The retinal glucose concentration in the 
GLUT1 siRNA group remained higher than that in the scrambled siRNA group by approximately 53.64% because 
intravitreal injections of GLUT1 siRNA significantly inhibited GLUT1 within the inner blood–retinal barrier. 
However, GLUT1 siRNA had a limited effect on the retinal pigment epithelium, which forms the outer blood–ret-
inal barrier, and the expression of GLUT1 in the retinal pigment epithelium was not downregulated. The biolog-
ical activities of GLUT1 have also been found to be upregulated under diabetic conditions compared with those 
under normal conditions18, 19. Consequently, the retinal glucose transported from the outer blood–retinal barrier 
resulted in higher retinal glucose concentrations in the GLUT1 siRNA group than those in the scrambled siRNA 
group. Therefore, we established the conditions predicted in our hypothesis by restricting GLUT1 in the inner 
blood–retinal barrier. Next, we determined if the function and morphology of photoreceptors and the level of 
microangiopathy were affected using various indicators.

Figure 3.  (a) Representations of classic scotopic ERG waveforms. Figure 3b: Results of the statistical analysis 
of scotopic ERG a wave and b wave amplitudes (n = 9) **P < 0.01, compared with scrambled siRNA group, 
ΔΔP < 0.01, compared with diabetic scrambled siRNA group. Figure 3c–f: ONL thicknesses of the three groups 
(inverted microscope ×400) (d) scrambled siRNA group; (e) diabetic scrambled siRNA group, scale bar 
represents 50 μm; (f) GLUT1 siRNA group; (f) Statistical analysis of ONL thicknesses.
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Figure 4.  Inflammatory reactions in the retina of mice in the three groups. (a) Expression of retinal 
inflammation marker ICAM-1 in mice of the three groups **P < 0.01 vs. scrambled siRNA group, ΔP < 0.05 vs. 
diabetic scrambled siRNA group, n = 6, x  ± S. (b) Expression of retinal inflammation marker TNF-α in mice of 
the three groups, **P < 0.01 vs. scrambled siRNA group, ΔΔP < 0.01 vs. diabetic scrambled siRNA group, n = 6, 
x  ± S, (c–f) Leukocytes adhesion to retinal vessel (c): scrambled siRNA group, scale bar represents 100 µm 
(upper row images)/scale bar represents 50 µm (lower row images); (d) diabetic scrambled siRNA group; (e) 
GLUT1 siRNA group; white arrows indicates adherent leukocytes; (f) statistical analysis **P < 0.01 vs. 
scrambled siRNA group, ΔΔP < 0.01 vs. diabetic scrambled siRNA group, n = 6, x  ± S (fluorescence microscope 
×400). Full-length blots are presented in Supplementary Figure 2.

Figure 5.  Comparison of leakage of the inner blood–retinal barrier among the three groups (a) scrambled 
siRNA group; (b) diabetic scrambled siRNA group; (c) GLUT1 siRNA group, scale bar represents 200 µm, 
fluorescence microscope ×400; white arrows indicate fluorescence leakage regions; (d) Expression of retinal 
albumin in mice of the three groups, (e) BRB permeability assay using Evans blue dye in mice of the three 
groups, **P < 0.01 vs. scrambled siRNA group, ΔΔP < 0.01 vs. diabetic scrambled siRNA group, n = 6, x  ± S. 
Full-length blot is presented in Supplementary Figure 3.
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Non-invasive recording is performed in ERG via platinum electrodes at the surface of cornea, using flashes of 
different brightness to stimulate the electrical activity of photoreceptor cells9. Scotopic ERG and photopic ERG 
are often used to measure the function of rod photoreceptors and cone photoreceptors, respectively. Previous 
studies have shown that abnormal ERGs are detected at the early stage of diabetes in rats20. Another study has 
reported that functional disorder of retinal photoreceptors occurs in DR patients at the non-proliferative phase 
before the onset of microangiopathic lesions, such as fundus neovascularization, when inspected using flash 
ERG21. In our study, although the scotopic ERG and photopic ERG a and b wave amplitudes in the GLUT1 siRNA 
group were lower than those in the scrambled siRNA group, they were higher than those in the diabetic scram-
bled siRNA group. This finding indicates relatively mild functional impairment in photoreceptor cells of mice 
with diabetes after glucose transport into the retina was restricted by GLUT1 siRNA.

ONL thickness was primarily used to measure rod photoreceptors, and PNA was used to label cone photore-
ceptors. Another study has shown that the ONL thickness of diabetic rats was gradually decreased over the course 
of the illness20. Researchers have recognized that the degeneration and death of rod cells are the primary cause of 
abnormal visual function in patients with diabetes before the presentation of DR and the associated important 
pathological changes22. Moreover, in this study, the ONL thicknesses in diabetic model mice of both groups were 
lower than those in mice of the scrambled siRNA group at 20 weeks after the diabetic model was established. This 
finding indicates that the rod cells in the diabetic model mice were constantly dying throughout the experiment. 
However, the ONL thickness at each time point in the GLUT1 siRNA group was higher than that in the diabetic 
scrambled siRNA group. In addition to PNA labeling, we also used S-opsin to mark the outer segments of cone 
cells23 and found that the cone cells were more loosely arranged and had shorter outer segments in the diabetic 
scrambled siRNA group than those in the GLUT1 siRNA group, as previously described. The above results sug-
gest that although photoreceptor cells were constantly dying under diabetic conditions, the numbers of dead rod 
and cone cells in the GLUT1 siRNA treatment group were relatively low, which also demonstrates the protective 
effect of a relatively low blood glucose microenvironment on photoreceptor cells.

Inflammatory reactions are an important process in the microangiopathy of DR; numerous studies have indi-
cated that the number of retinal leukocytes with enhanced adhering ability and decreased deformability24, 25 is 
increased in diabetic animal models. Adherent leukocytes increase due to reduced passive deformability when 
passing through capillary vessels with sizes less than the diameter of the leukocytes in DR patients; adherent leu-
kocytes also significantly increase in number throughout the progression of DR26. Therefore, a leukostasis assay 
can be used for the analysis of inflammatory reaction levels in DR. In our study, although the number of adherent 
leukocytes in retinal vessels in the GLUT1 siRNA group was higher than that in the scrambled siRNA group, it 
was only 52.76% of the total number detected in the diabetic scrambled siRNA group. We detected the expres-
sion levels of two inflammation markers simultaneously, including chemotactic factor ICAM-1 and cytokine 
TNF-α. ICAM-1 and its ligand CD18 play an important role in mediating leukocyte adhesion27, and inhibition 
of ICAM-1 results in significant mitigation of leukocyte adhesion and vasopermeability28. Expression of TNF-α 
is also upregulated in the retina under DR conditions29. The expression levels of both inflammatory factors in the 
retina of the GLUT1 siRNA group were only 66.14% and 54.76% of those in the diabetic scrambled siRNA group. 
This finding indicates a relatively mild inflammatory reaction in mice with diabetes after glucose transport into 
the retina was restricted by GLUT1 siRNA. Damage to the blood–retinal barrier is an important cause of retinal 
edema, particularly macular edema, which might be ascribed to the increase in leukostasis and upregulation of 
inflammation marker expression9. As described above, the numbers of adherent leukocytes and levels of inflam-
mation factors in the GLUT1 siRNA group were significantly lower than those in the diabetic scrambled siRNA 
group. When we examined the leakage of the inner blood–retinal barrier, we identified fewer leakage regions and 
smaller leakage areas in the GLUT1 siRNA group compared with those in the diabetic scrambled siRNA group. 
Similar result was obtained by Evans blue permeation assay. These findings indicate that the relatively low blood 
glucose microenvironment of the retina exerted a protective effect on the inner blood–retinal barrier.

In summary, after an intravitreal injection of GLUT1 siRNA was administered to inhibit GLUT1 in the retina, 
the retinal glucose concentration in mice with diabetes was decreased. Therefore, a retinal microenvironment 
with relatively low glucose levels was formed. Under this environment, pathological changes in the function 
and morphology of retinal photoreceptors and the pathological changes associated with microangiopathy were 
relieved to some extent compared with those in mice with diabetes, which suggests that restricting local retinal 
glucose content by inhibiting GLUT1 might be a new direction for the prevention and treatment of DR in the 
future.

Materials and Methods
Synthesis of GLUT1 siRNA.  An effective siRNA sequence was designed according to reference17, 
and Shanghai GenePharma Company synthesized the GLUT1-targeted siRNA (positive-sense strand 
5′-GGAATTCAATGCTGATGATGA-3′ and antisense strand 5′-TCATCATCAGCATTGAATTCC-3′) and the 
non-targeted siRNA as a negative control (positive-sense strand 5′-TTCTCCGAACGTGTCACGT-3′ and anti-
sense strand 5′-ACGTGACACGTTCGGAGAA-3′). Normal saline treated with diethy pyrocarbonate (Sigma-
Aldrich Corp. St. Louis, MO, USA.) was used to dissolve siRNA to reach a 20 μmol/L concentration.

Experimental animals and grouping.  This study was carried out in strict accordance with the recom-
mendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The 
protocol was approved by the Committee on the Ethics of Animal Experiments of Nanchang University. All 
surgeries were performed under ketamine & xylazine anesthesia, and all efforts were made to minimize suffering. 
A total of 48 male inbred line C57BL/6 mice at eight weeks of age without eye diseases and weighing 20 g to 30 g 
were purchased from the Animal Science Department, Nanchang University. After we marked ear nails and serial 
numbers for the mice, the animals were randomly divided into scrambled siRNA, diabetic scrambled siRNA, 
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and GLUT1 siRNA treatment groups, with 16 mice in each group. Establishment of DM model: Streptozotocin 
(Sigma-Aldrich Corp. St. Louis, MO, USA.) was intraperitoneally injected into mice for 5 consecutive days after 
the mice fasted for 8 h. Streptozotocin (50 mg/kg body weight in 0.01 mol/L citrate buffer solution [pH 4.5]) 
was intraperitoneally injected into the diabetic scrambled siRNA and GLUT1 siRNA groups, whereas an equal 
amount of citrate buffer solution was injected into the scrambled siRNA group. A blood sample was collected 
from the caudal vein to measure blood glucose levels at 7 d. The standard for successful establishment of the DM 
model was a blood glucose level > 300 mg/dL.

Intravitreal injection with siRNA.  We performed intravitreal injections in the first week after diabetes 
induction. Intraperitoneal anesthesia with mixture of ketamine and xylazine (Sigma-Aldrich Corp. St. Louis, MO, 
USA.) was administered to the three groups and iodophor disinfection was conducted around the eyes subse-
quently. A thirty-Gauge needle (Becton, Dickinson and Company. Franklin Lakes, NJ, USA.) was inserted using 
a Hamilton microinjector (Hamilton Company, Reno, NV, U.S.A) toward the optic nerve at 1 mm outside of the 
limbus under a microscope. The medicine was slowly injected after the needle tip was detected in the pupil area. 
A volume containing 1 μL of 20 μmol/L GLUT1 siRNA and 1 μL of transfection reagent was intravitreally injected 
into the GLUT1 siRNA treatment group, whereas a volume containing 1 μL of 20 μmol/L non-targeted siRNA 
and 1 μL of transfection reagent (Invitrogen, Waltham, MA, USA) was intravitreally injected into the scrambled 
siRNA and diabetic scrambled siRNA groups. The injection was conducted in both eyes and repeated twice a 
week until nine injections were completed.

Electroretinography.  Electroretinography was inspected at 20 weeks after the DM model was established. 
All mice were dark-adapted overnight in a dark chamber after pupil dilation was induced by tropicamide eye 
drops (Santen Pharmaceutical Co., Ltd. Kita-ku, Osaka, Japan). Anesthesia, consisting of ketamine and xyla-
zine, was administered the next day. The mice were then placed on a heating board. The reference and ground 
electrodes were inserted into the palate and tail, respectively. Platinum corneal electrodes were placed on cornea 
of both eyes, and recombinant bovine fibroblast growth factor eye gel was applied for lubrication. Mouse ERG 
preparation was completed under dim red lighting in the dark chamber. Illumination intensities of 0.0004, 0.04, 
4, 400, and 2000 cd•s/m2 were used to record scotopic ERG by Espion electroretinogram E2 system (Diagnosys, 
Lowell, MA, USA) Then, the mice were light adapted for 10 min, and photopic ERGs were recorded under an 
illumination intensity of 2000 cd•s/m2.

Determination of retinal glucose concentrations.  Six eyeballs were enucleated for measurement of 
retinal glucose concentrations. Retinal tissues were collected, and 50 μL of deionized water was added to the 
tissues. Samples were heated at 70 °C for 15 min, followed by ultrasonication for 30 s, and centrifugation for 
20 min. Up to 35 μL of supernatant was transferred into 165 μL of reagent of a glucose concentration assay kit 
(Sigma-Aldrich Corp. St. Louis, MO, USA.), followed by the establishment of a standard curve and blank control. 
A spectrum analyzer (SPECTRO Analytical Instruments GmbH, Boschstr, Kleve, Germany) was used to measure 
the optical density of the samples, and SPECTROstar Nano MARS software (SPECTRO Analytical Instruments 
GmbH, Boschstr, Kleve, Germany) was used to calculate glucose concentrations. Subsequently, 10 μL of super-
natant was added to 190 μL of reagent of a protein concentration assay (BIO-RAD Laboratories, Inc., Hercules, 
CA, USA). A standard curve and blank control were also established. The spectrum analyzer was used to measure 
the optical density of the samples, and SPECTROstar Nano MARS software was used to calculate protein con-
centrations. Retinal glucose concentration is presented as nmol/mg, and the calculation formula was G × GV/
GMW × (P × PV), where G = glucose concentration (ng/mL), GV = volume of liquid used to determine glucose 
content (mL), P = protein concentration (mg/mL), PV = volume of liquid used to determine protein content 
(mL), and GMW = glucose molecular weight (180.2).

ONL thickness measurement.  Eyeballs were enucleated and directly fixed in 4% paraformaldehyde for 
1 h. The cornea and lens were then removed, and the eyes were fixed again in 4% paraformaldehyde for 15 min. 
Subsequent steps were performed in accordance with a conventional hematoxylin-eosin staining protocol. Slices 
were sealed and observed under a microscope. ImagePro software (Olympus Corporation, Tokyo, Japan) was 
used to measure ONL thickness at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 mm from the optic nerve.

Immunofluorescence colocalization method.  Eyeballs were enucleated and directly fixed in 4% para-
formaldehyde for 1 h. The cornea and lens were then removed, and the eyes were fixed again in 4% paraformal-
dehyde for 15 min. Subsequent steps were performed in accordance with a conventional protocol. After paraffin 
sections were prepared, dewaxing and heat-induced antigen retrieval were performed in accordance with a con-
ventional protocol. The sections were then incubated with S-opsin primary antibodies (Millipore Corporation. St. 
Charles, MI, USA), followed by incubation with Peanut agglutinin (PNA) (Vector Laboratories., Burlingame, CA, 
USA) secondary antibodies the next day. After DAPI (Vector Laboratories., Burlingame, CA, USA) was added, 
the slices were observed under a fluorescence microscope.

Immunoblotting.  Six eyeballs were enucleated, and retinal tissues were collected and placed into Eppendorf 
tubes with 200 μL of lysate. The remaining tissues- “eyecups” were also mounted in tissue culture plate (Corning 
Incorporated, Corning, NY, USA) and up to 5 μL of lysate was added into the eyecups to extract retinal pigment 
epithelial proteins. After 5 min, the lysates were collected. Subsequent steps were performed in accordance with 
a conventional protocol. Equal amounts of protein samples were used for SDS-PAGE electrophoresis and trans-
membrane incubation with GLUT-1 (Millipore Corporation. St. Charles, MI, USA), ICAM-1, TNF-α (Santa 
Cruz Biotechnology, Inc., Dallas, TX, USA) and albumin (Abcam plc, Cambridge, UK) primary antibodies. The 
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following day, secondary antibody incubation was conducted at room temperature for 1 h after the membranes 
were washed three times. Finally, the relative densities of the blots were measured by UVP GelDoc-It Imager 
(UVP LLC, Upland, CA, USA).

Leukostasis assay.  Anesthesia, consisting of ketamine and xylazine, was administered to three mice from 
each of the three groups. The chest skin and ribs were cut open to expose the thoracic cavity. The descending aorta 
was closed by clamping, and the right auricle was cut open. A 27 G needle was inserted into left ventricle. Initially, 
10 mL of PBS with heparin (0.1 mg/mL) was used to perfuse the tissue and remove leukocytes that did not adhere 
to retinal vessels. An additional volume of 20 μg/mL of PBS and FITC- Concanavalin A (5 mg/kg) (Sigma-Aldrich 
Corp. St. Louis, MO, USA.) was used to label adherent leukocytes in retinal vessels. Up to 10 mL of PBS was 
reused to remove excess FITC- Concanavalin A. The flow rate of perfusion is 3–4 ml/min. Six eyeballs were enu-
cleated and directly fixed in 4% paraformaldehyde for 1 h. Retinal flat mounts were prepared, and a fluorescence 
microscope was used to observe and quantify the total number of adherent leukocytes in the whole retina.

Blood–retinal barrier leakage.  Ketamine and xylazine were used to anesthetize three mice from each of 
the three groups. FITC-BSA (66 kDa, 100 mg/kg) (Sigma-Aldrich Corp. St. Louis, MO, USA.) was injected into 
the femoral vein. The mice were killed after 20 min, and six eyeballs from each group were enucleated and fixed 
in 4% paraformaldehyde for 30 min. Retinal whole-mounts were prepared, and blood–retinal barrier leakage was 
observed under a fluorescence microscope.

Evans blue dye assay.  Mouse was injected with received Evans blue dye (45 mg/kg) (Sigma Aldrich, St. 
Louis, MO, USA) via the tail vein. After 2 hours, 0.2 mL of blood sample was drawn from re-anesthetized mice, 
and mouse were perfused via the left ventricle with 200 mL PBS to wash out dye. Retina was dissected out and 
treated with dimethylformamide (Sigma Aldrich, St. Louis, MO, USA) overnight at 70 °C for 18 hours. The extract 
was centrifuged for 45 min. A spectrum analyzer (SPECTRO Analytical Instruments GmbH, Boschstr, Kleve, 
Germany) was used to test supernatant at 620 nm and 740 nm. Blood samples were centrifuged for 15 min and 
the supernatant was diluted 1:1000. The concentration of Evans blue in the blood and retina was used to assess 
BRB breakdown.

Statistical analysis.  Statistical software SPSS17.0 was used to perform analyses. The results are presented as 
x  ± S or x  ± SEM, and chi-square test was used to compare groups. P < 0.05 was considered significant.
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