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ABSTRACT The pattern and schedule of histone synthesis in unferti l ized eggs and early embryos of 
the sea urchin Strongylocentrotus purpuratus were studied using two-dimensional gel electrophoresis. 
After ferti l ization there is an abrupt change in the pattern of histone variant synthesis. Al though both 
cleavage-stage- and c~-histone mRNA are stored in sea urchin eggs, unferti l ized eggs synthesize only 
cleavage-stage (CS) variants. However, after ferti l ization, both CS and c~ messages are translated. Since 

histone mRNA isolated from unferti l ized eggs can be translated in vitro, the synthesis of ~ histone 
subtypes appears to be under translational control. Al though the synthesis of ~ subtypes is shown 
here to occur before the second S phase after ferti l ization, l itt le or no c~ histone is incorporated into 
chromatin at this time. Thus, early chromatin is composed predominantly of CS variants probably 
recruited for the most part from the large pool of CS histones stored in the unferti l ized egg. 

During sea urchin development, histone variants of the HI, 
H2A, and H2B classes appear sequentially in the chromatin 
(1-6). Variants of each class are coded by different members of 
the histone multigene family and differ from each other in 
primary amino acid sequence (5, 7-9). Characteristic sets of 
histones are made and assembled into chromatin at each of 
several developmental stages. Cleavage-stage (CS) histones are 
the first to appear (4). They are presumably made during 
oogenesis and are stored in the unfertilized egg in large quan- 
tities (at least several hundred haploid DNA equivalents [10, 
11]). The CS variants participate in an extensive remodeling of 
the sperm chromatin after fertilization, which results in a 
reduction in the nucleosome repeat length (12). Almost im- 
mediately after fertilization, the sperm H1 variant is replaced 
by CS HI.  Concomitant with DNA synthesis, substantial 
amounts of CS H2A and CS H2B accumulate in the chromatin. 
These protein transitions can take place in the absence of  
protein synthesis. Later in development the ct variants appear, 
and, by the morula stage, chromatin is composed predomi- 
nantly of  nucleosomes that contain a histones (1, 4). Synthesis 
of  late histones (designated /3, -/, and 8) is initiated at the 
mesenchyme blastula stage (1, 4). When sea urchin maternal 
mRNA is translated in vitro, both a (6, 8, 13) and CS histones 
(8) are made. Because both a and CS histone mRNAs are 
stored in the sea urchin egg, it is surprising that mature eggs 
contain only CS proteins. There is no detectable storage of a 
histones (11). These observations suggest that the synthesis of 

histone subtypes may be under translational control. On the 
basis of the observation that newly synthesized a variants, 
incorporated into chromatin, are first detected at about the 

third S phase after fertilization, others have suggested a quali- 
tative translational control for histone variant synthesis (4, 6). 

Fertilization of the sea urchin egg stimulates the rate of 
protein synthesis -15-fold by 2 h postfertilization (14). This is 
accompanied by an ~30-fold increase in the fraction of ribo- 
somes found in polysomes but not by large changes in the 
efficiency of  translation (defined as the rate of  protein synthe- 
sis/polysomal mRNA/time) (15). The increase is almost en- 
tirely dependent on maternal message since it occurs in acti- 
nomycin D-treated embryos (16) and enucleated egg fragments 
(17). These results taken together suggest a recruitment of 
untranslated maternal message into polysomes after fertiliza- 
tion. At 2 h after fertilization 90% of the polysomal mRNA is 
maternal, whereas by gastrula stage virtually all is newly 
transcribed from embryonic genes (15). Using an isoelectric 
focusing gel system that does not resolve basic proteins, 
Brandhorst could detect few obvious differences in the protein 
species synthesized before and after fertilization (18). There- 
fore, it was concluded that there are few classes of  abundant 
messages translated after fertilization that are not already being 
translated and that the major increase in protein synthesis rate 
that accompanies fertilization is not accomplished by the re- 
cruitment of qualitatively new messages but rather by the 
translation of more mRNAs of  the same types (18). However, 
there is an increasing amount of evidence that suggests that 
histone mRNAs behave differently than much of the maternal 
message. Wells et al. (19) have shown that, unlike most mes- 
sages, the recruitment of H3 mRNA onto polysomes is delayed. 
Venezsky et al. (20) by in situ hybridization, showed that RNA 
transcripts complementary to a genomic histone repeat are 
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found in high concentration in sea urchin egg pronuclei. How- 
ever, a similar high nuclear concentration is not observed for 
two other abundant maternal mRNAs.  

Although histone mRNA is an abundant maternal messen- 
ger class (~3 pg/egg), amounting to possibly as much as 8% of 
the mRNA pool (21), a detailed analysis of histone variant 
types synthesized before and after fertilization has not been 
made. In this paper we use a polyacrylamide gel system that is 
specifically designed to resolve histone variants (22) and to 
separate them from contaminating proteins (23) in order to 
examine the pattern of histone synthesis in acid extracts of 
unfertilized and fertilized eggs. We fred that (a) before fertil- 
ization CS histones are the only type ofhistone made, (b) after 
fertilization or artificial activation both CS and a variants are 
synthesized, and (c) a synthesis begins before the second S 
phase, which is earlier than other reports have indicated. 

MATERIALS AND METHODS 

Strongylocentrotus t~puratus were obtained from Pacific Bio-marine Laborato- 
ries Inc., Venice, CA. Urchins were maintained in a refrigerated aquarium and 
fed ]aminaria coficcted at the Marine Biological Laboratory, Woods Hole, MA. 

For culture and labeling of eggs and embryos, S.purpuratus eggs were collected 
after intercoelomic injection of 0.5 M KCI, allowed to settle, filtered through 202- 
/an Nitex mesh, and washed three times in fresh Mifiipore-fdtered seawater 
(Instant Ocean, Eastlake, OH) containing 10 #g/ml gentamycin (Sigma Chemical 
Co., St. Louis, MO) and 5 mg/ml streptomycin (Sigma Chemical Co.). Eggs were 
incubated with antibiotics for 1.5 h before the addition of isotope. Eggs were then 
cultured in 50 vol of Millipore-f'tltered (Millipore Corp., Bedford, MA) seawater 
(MPFSW) containing 100 tLCi/ml [al-l]lysine (L-[4,5-aH(N)]lysine [New England 
Nuclear, Boston, MA]; 64.5 Ci/mmol) in a conical 1.5-ml Eppendorf tube 
(Brinkman Instruments, Inc., Westhury, NY) that was rotated at 30 rpm at 150C 
for the times specified in the figure legends. To each 1 ml of culture, 25/d of I M 
HEPES pH 7.3, dissolved in MPFSW, was added to buffer the 0.01 N HC1 in 
which the isotype is packaged. More than 90% of the eggs could be fertilized 
after the incubations. 

Monospermic embryos were cultured as previously described (24) with 50 
~Ci/mi of [~l-l]lysine for the periods specified in the figure legends. 

Eggs were artificially activated with N-9 seawater, which was prepared by 
adjusting ordinary seawater to pH 9.0 with NI-hOH (25). In these experiments, 
eggs were fn'st cultured with 100 #Ci/mi [~H]lysine in N-9 seawater for i h. At 
the end of this time, eggs were washed twice with MPFSW and then cultured in 
ordinary MPFSW containing this same amount of isotope, for the periods given 
in the figure legends. 

To produce actinomycin D-treated blastulae, eggs were incubated in 25 pg/  
ml actinomycin D (grade 1; Sigma Chemical Co.) dissolved in MPFSW for 90 
rain before fertilization. Each lot of actinomycin D was previously tested. Eggs 
were then pelleted by hand centrifugalion and fertilized in MPFSW. Fertilized 
eggs were washed to remove excess sperm, washed twice in 25 t~g/ml actinomycin 
D in MPFSW, and cultured in this solution in the dark to the blastula stage (5, 
26, 27), 

Nuclei from blastulae grown in actinomycin were isolated by Dounce homog- 
enization in 0.075 M NaC1, 25 mM Tris, I mM EDTA pH 7.6 solution containing 
0.01% Triton X-100 as described in Poccia et al. (24). 

Polyspormic fertilization was done as previously described (11). The degree of 
polyspermy was determined in eggs fixed in Caruoy's solution (ethanol:acetic 
acid 3:1). An aliquot of fixed eggs was dried on microscope slides, and nuclei 
were stained with 1% orcein in 75% acetic acid. The number of male pronuelei 
was counted under bright-field optics equipped with a green filter. 

Nuclei were prepared as previously described (25) by lysis of eggs in a solution 
of 15% ethanol, 0.2% Triton X-100 (Triton), 10 mM dithiothreitol (DTT)~ 1 mM 
phenyimethylsulfonyl fluoride (PMSF) by gentle shaking. 

Two-dimensional gel electrophoresis was performed according to Savic and 
Poccia (23) with the modifications described by Poccia et aL (10). The first 
dimension is based on Triton gel systems previously described (22). Briefly, the 
6-cm t'trst dimension resolving gel was 6 M urea, 6 mM Triton, 5% acetic acid, 
12% acrylamid¢, 0.8% b/s-acrylamid¢. The riboflavin-polymerized l-cm stacking 
gel was 5.2 M urea, 9 ~ potassium acetate, pH 4.5, 4.8% acrylamide, 0.032% 
bisacrylamide. The second dimension was a 6-era-long (I-ram-thick) SDS slab 
gel run as described by Laemmll (28), with the amount ofb/s in the acrylamide 
stock halved. 

Gels were stained with 0.3% Coomassie Blue in 50% MeOH, 7.5% acetic acid, 
destained in 50% MeOH, 7.5% acetic acid, and then fluorographed (29, 30). 
Prefiashed Kodak XAR-5 x-ray film was used. 
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For acid extraction, both eggs and embryos were washed free of exogenous 
label, using gentle hand centrifugation (~ 1,000 rpm for 10 s) with cold MPFSW. 
Eggs were disrupted by the addition of 0.ff75 M NaCI, 0.025 M EDTA, 0.01 M 
Tris pH 8.0, 0.1% Triton, 0.1 nLM PMSF, 10 mbl  DTT, followed by Dounce 
homogenization and then extracted with an equal volume of 0.8 N HeSO4 at 0°C 
for 8 h, with occasional vortexing. All subsequent steps were done in 1.5-ml 
Eppendorf test tubes. The extract was centrifuged at 10,000 g for 30 rain to 
remove acid-insoluble material and the superuatant was made 20% in trichloro- 
acetic acid (TCA) by adding 100% (wt/vol) TCA solution. The pellet was 
reextracted with 0.4 N sulfuric acid and centrifuged. This supernatant was made 
20% in TCA and pooled with the first extract. After 30 rain on ice, the precipitate 
was pelleted, washed twice with acetone, 0.1% H2SO4 at -20°C, and washed 
several times with cold acetone. The protein pellet was dried at room temperature 
in vacuo before resuspeusion in sample buffer. Nuclei were twice acid-extracted 
in 0.4 N H~SO4, and the combined superuatants were processed in the same way 
described above for the acid extracts. 

RESULTS AND DISCUSSION 

Electrophoretic Analysis of CS and ~ Variants 
To analyze histone synthetic patterns in whole eggs and 

embryos, a high-resolution electrophoretic system is required. 
A system has been described (23) that separates HI and core 
histone variants on the same slab, even when large amounts of  
contaminating basic proteins are present in the sample. Elec- 
trophoresis on Triton/6 M urea gels in the first dimension 
results in preferential retardation of  the histones (22), which 
then migrate off the diagonal (away from contaminating ribo- 
somal proteins) upon SDS gel electrophoresis in the second 
dimension. 

Figure 1 A shows a Coomassie Blue-stained gel of the his- 
tones that are incorporated into sea urchin blastulae grown 
continuously in the presence of 25 #g/ml actinomycin D from 
90 rain before fertilization. Both CS and a histones are present. 
These histones originate from translation of stored CS and c~ 
mRNA (4) and from stored CS histones (10). Storage ofhistone 
mRNA has also been demonstrated by translation of  maternal 
mRNA in the wheat-germ ceil-free synthesis system (6, 8, 13, 
31). 

Figure 1 B shows a Coomassie Blue-stained gel of acid- 
soluble protein extracted from isolated male pronuclei. As 
previously documented, male pronuclear chromatin at 70 min 
postfertilization contains CS HI and no sperm HI; CS H2A 
and sperm H2A but no a H2A; CS H2P and proteins O and P 
which are modifications of  or substitutes for sperm H2P; H3 
and H4 species; and proteins M and N (10). M is probably the 
H2A variant Y6 of  Newrock et al. (5) and N may be an HI 
protein that runs between sperm H1 and c~ HI on this gel 
system. The relative positions of  O, P, and H4 are variable 
from gel to gel and are checked against internal standards run 
in parallel (10). 

The Pattern of Protein Synthesis Changes after 
Fertilization 

The standards shown in Fig. l were used to identify histone 
variants synthesized in the unfertilized sea urchin egg. Acid- 
soluble proteins labeled with [3H]lysine were extracted from 
unfertilized eggs and electrophoresed. A fluorogram of the gel 
is shown in Fig. 2A. The CS HI, CS H2A, and CS H2B are 
labeled. Even in overexposed gels, no a variants are present. In 
addition to bands that comigrate with the CS proteins, we see 
proteins whose mobilities correspond to O, P, and M described 
above. All of  these newly synthesized proteins are soluble in 
0.4 N H2SO4, all contain lysine, and all comigrate with known 
standards, but additional protein chemistry will be necessary 



FIGURE 1 Electrophoretic separation of protein stand- 
ards. (A) Histones isolated from chromatin of blastulae 
grown in the presence of 25 #g/ml actinomycin D. 
(B) Histones from male pronuclei. Pronuclei were isolated 
70 rain after ferti l ization. Proteins were stained with Coo- 
massie Blue. The degree of polyspermy was ~30 pronu- 
clei/egg. Arrow indicates where sperm H1 would migrate. 

FIGURE 2 Fluorographic comparison of the proteins 
synthesized by unferti l ized and fertil ized eggs: (A) 
2-h labeling of unferti l ized eggs, (B) 5- to 70-min 
postferti l ization labeling. Each was labeled with 100 
#Ci/ml [3H]lysine. Lettering indicates comigration 
with well-characterized standards and is not proof 
of protein identity. The identity of low molecular 
weight spots designated X and Y is not known. 
Arrowheads point to newly synthesized a histones. 

to confirm their identity. Fig. 3 shows that the unfertilized eggs 
make the same proteins when the labeling time is of different 
lengths. Fig. 3 A is a 2-h labeling and Fig. 3 B is a 4-h labeling 
pattern. 

Using one-dimensional SDS gels, Ruderman and Schmidt 
(32) showed the unfertilized egg to be active in histone synthe- 
sis. However, since both CS- and a-histone mRNAs are present 
in the egg, it was uncertain just which of the histone types was 
synthesized. Our data show that only CS mRNAs are translated 
by the unfertilized egg; a proteins either are not synthesized or 

are made in insignificant amounts. These data are consistent 
with the observation that several hundred haploid equivalents 
of CS proteins are stored in the urchin egg (11), whereas no a 
storage is detected. If a histories were synthesized at levels 
comparable to CS variants in the unfertilized egg, a histories 
would have to be preferentially degraded. 

If a histories are not made before fertilization, when is a 
mRNA first translated? Earlier reports show that a proteins are 
the predominant histone variants made and incorporated into 
chromatin at the third S phase after fertilization (4). However, 
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FIGURE 3 Fluorograph of unferti l ized egg proteins labeled in vivo 
with 100/~Ci/ml [3H]lysine. (A) 4-h labeling, (B) 2-h labeling. 

FIGURE 4 Fluorograph of pro- 
teins synthesized by artificially 
activated eggs. Eggs were first 
cultured for 1 h in pH 9.0 NH3- 
seawater containing 100 #Ci/ml 
[3H]lysine. Eggs were washed 
and then cultured for an addi- 
tional hour in ordinary MPFSW 
containing 100 #Ci/ml [3H]ly- 
sine. Proteins were acid ex- 
tracted and separated using the 
gel system described in Mate- 
rials and Methods. 

using an isotope of higher specific activity, the two-dimensional 
gel system, and whole cell extracts, we reexamined the time 
after fertilization when a synthesis begins. 

In S. purpuratus grown at 15°C, the first S period is at 30--45 
rain postfertilization, the second S period at 105-125 min, the 
first cell division at 100-120 min, and the third S period at 
170--185 min (33). Fig. 2B shows histones labeled with 
[SHllysine continuously from 5-70 rain postfertilization (30 min 
before second S phase). A striking change is apparent. In 
addition to the continued synthesis of CS proteins, a mRNA 
translation has commenced. In the H2A class, the a H2A 
becomes the predominant variant synthesized. In the H2B 
class, a H2B is the major protein. The rapidity of the change 
suggests that the appearance of a is not due to the translation 
of  a small amount of newly synthesized RNA (34). Fig. 4 shows 
that the CS to a transition can also be triggered by artificial 
activation with pH 9.0 ammonia-seawater (26). The pattern of 
proteins made is very similar to that seen after fertilization. 
Thus there is no apparent role of the sperm in control of the 
histone synthetic switch that cannot be mimicked chemically. 
Preliminary results show that this early appearance of a his- 
tones occurs even in the presence of actinomycin D (data not 
shown). 

a Histones Are N o t  a Major Component of Male 
Pronuclear Chromatin 

The synthesis of histones well before their incorporation into 
replicating chromatin is unlike the situation reported for many 
other cell types, in which historic and DNA synthesis are more 
or less tightly coupled within a given cell cycle and nonchro- 
mosomal histone pools are believed to be small or nonexistent 
(35). The oocytes and early embryos of sea urchins and frogs 
differ in that historic and DNA synthesis are uncoupled and 
substantial pools are maintained (10, 11, 36-39). 
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Although synthesis, of the c~ variants occurs within the first 
cell cycle, there is no detectable incorporation of a histones 
into the male pronuclear chromatin during this time, as judged 
by Coomassie Blue staining (Fig. 1B and Poccia et al. [10]). 
However, later in the morula stage, a becomes the predominant 
historic variant type in the chromatin (1). Since there are 
enough CS histones stored in the unfertilized egg to package 
all the DNA made up to at least the blastula stage, but blastula 
chromatin contains largely a variants, at some point in devel- 
opment a incorporation into chromatin must predominate over 
CS incorporation. 

It is possible that the flow of a histones, newly synthesized 
affter fertilization, through a large pool of mostly preformed 
CS histones, results in a substantial dilution effect. This would 
delay the appearance of  significant levels of a in the chromatin 
until after the first few cell cycles, when the composition of  the 
pool may change, reflecting greater input of a forms and 
perhaps withdrawal of CS forms. Although sea urchin histones, 
once they are incorporated into chromatin, are long-lived (2, 
40), nothing is known about turnover of the stored histone 
pool. 

A second possibility for the delay between a histone synthesis 
and appearance in the chromatin is that a variants, once made, 
are sequestered until the third S phase when they are released 
and assembled into chromatin. Thus chromatin in the third 
cycle would undergo a qualitative, rather than a simple quan- 
titative transition in its composition (cf. reference 4). 

To clarify these issues, it is essential to compare, at several 
developmental stages, the histone composition of the chromatin 
with its cognate histone pool. Clearly, further study on the fate 
of the stored CS proteins is necessary to determine whether 
they are degraded, rendered assembly incompetent, or assem- 
bled into chromatin at a later developmental stage. In some 
earlier papers (4, 11) labeled a histories can be seen in extracts 
of nuclei isolated at the two-cell stage. However, no careful 
quantitative measurements of the ratio of  a to CS variants in 
embryonic nuclei of  the first three or four cycles after fertil- 
ization are yet available. Such ratio measurements are ham- 
pered by contamination with nonchromosomal proteins (in- 
cluding histones from the pool) and low nuclear yields. 

There are many possible mechanisms for the translational 
regulation of a histone mRNA. An old idea is that specific 
proteins might "mask" the mRNAs in the unfertilized egg. At 
fertilization or later in development there would be a selective 
unmasking dictated by the maternal program. Recent work, 
however, suggests another possible mechanism. A significant 
amount ofhistone gene transcripts, at least 12%, is sequestered 
in the female pronucleus and is later released into the cytoplasm 
(20). The observed delayed recruitment of H3 histone message 
(19) is consistent with this observation. It is likely, in light of 
our results, that much of histone mRNA recruitment is of 
mRNA. We are now testing these ideas. If  a message is 
sequestered in the female pronucleus, we would expect that the 
message isolated from nucleated egg halves would code for 
both a and CS histones, while mRNA from annucleate mero- 
gons would only code for CS variants. 
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