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Introduction

Chemotherapy is the most common therapeutic mode 
for the treatment of tumors in clinical setting, which can 
effectively suppress the tumor proliferation and prolong 

the survival of patients, among which oxaliplatin (OXA) 

stands out as one of the most widely utilized options (1,2). 

However, certain studies have indicated that under specific 

circumstances, the administration of chemotherapy drugs 
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may potentially induce tumor cell metastasis, particularly 
when administered at lower dosages (3,4). The current 
trend in research is increasingly focused on investigating 
the adverse effects of low-dose chemotherapeutic agents 
in tumor treatment and exploring effective strategies to 
manage these side effects.

Currently, there is a growing research interest in 
natural product small molecules, with many demonstrating 
remarkable anticancer effects or potential as adjuncts to 
existing anticancer therapies (5). Flavonoids are a class of 
small molecules that exhibit a diverse range of anticancer 
effects, among which apigenin stands out as a typical 
flavonoid molecule with potent anticancer properties (6,7). 
Researchers in the 1950s initially investigated apigenin and 
analyzed its impact on histamine secretion, subsequently 
discovering its inhibitory effect on cell proliferation and 
gene mutation, consequently establishing its association 
with anticancer effects (8,9). The efficacy of apigenin in 
inhibiting tumor cell proliferation, metastasis, and invasion, 
as well as inducing apoptosis and autophagy, has been 
demonstrated through the activation of signaling pathways 
including phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (PKB), transcription 3 (STAT3), and Wingless/
integrase-1 (WNT) (10).

The process of  converting epithelial  cel ls  into 
mesenchymal cells is referred to as epithelial-mesenchymal 
transition (EMT) (11,12). The phenotypic changes in 
tumor cells during epithelial tumor metastasis are primarily 
induced by environmental stimuli, enabling them to 

adapt to various encountered microenvironments such as 
intercellular matrices, components of body fluids, or blood 
(13-15). For oral squamous carcinoma cells (OSCCs), EMT 
plays an essential role in their local recurrence and lymph 
node metastasis, affecting patient survival by regulating 
EMT associated factors (16).

Recently,  mult iple  s tudies  have indicated that 
the inhibitory effects of low-dose platinum-based 
chemotherapeutic agents on tumor cells are limited. 
Furthermore, low-dose platinum-based chemotherapeutic 
agents could also induce EMT in tumor cells and promote 
their metastasis (17,18). In the case of oral tumors, these 
chemotherapeutic agents exert their action on tumor cells via 
the bloodstream, and as the distance between the cells and 
tumor blood vessels increases, the effective concentration 
of the drug decreases, therefore, it is crucial to address the 
potential adverse effects of low-dose chemotherapeutic 
agents on tumor cells from a clinical perspective.

Therefore, this study was proposed to investigate the 
synergistic inhibitory effect of apigenin and OXA on 
OSCC proliferation as well as the potential of apigenin in 
suppressing EMT induced by low-dose OXA. We present 
this article in accordance with the MDAR reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-2335/rc).

Methods

Cell culture

OSCC HSC-3 (Chinese Academy of Sciences, Shanghai, 
China) cultured in Dulbecco’s Modified Eagle Medium 
(DMEM) (Hyclone, Logan, UT, USA) supplemented with 
penicillin, streptomycin, and 10% bovine serum (Hyclone) 
and maintained at a temperature of 37 ℃ in a 5% CO2 
atmosphere.

Cell viability assay

The resistance of apigenin to HSC-3 was examined utilizing 
the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-
tetrazolium bromide (MTT) assay. Cells were vaccinated in 
a 96-well plate at a density of 5,000 cells/well and incubated 
overnight. Triplicate experiments were performed. After  
48 h of drug administration, MTT solution was supplement 
into each flask. Formamide crystals were dissolved through 
incubation for 4 h in dimethyl sulfoxide (DMSO) (Sigma-
Aldrich, Saint Louis, MO, USA). After discarding the 
supernatant, the formazan crystals were dissolved by adding 
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150 μL of DMSO. A microplate reader (Multiskan™ FC, 
USA) was utilized to analyze the absorbance at 590 nm and 
the 50% inhibitory concentration (IC50) was determined. 
CompuSyn software was utilized to calculate the synergistic 
effect, and the presence of synergism was indicated when 
the combination index (CI) of the combined treatment 
group was less than 1 for different doses. OXA and cisplatin 
(DDP) were purchased from MedChemExpress, USA. 
Apigenin was purchased from Push Bio-Technology, China.

Colony formation assay

The cells were dissociated using 0.25% trypsin and 
subsequently into individual cells during the logarithmic 
growth phase. These individual cells were then resuspended 
in complete medium in which 10% fetal bovine serum 
was added and quantified for cell counting purposes. The 
experimental group was inoculated in a 6-well plate at a 
density of 400 cells per well, and 4 mL of pre-warmed 
complete medium which contained 10% fetal bovine 
serum at room temperature was added and mixed gently. 
After an incubation period of 14 days in a cell incubator, 
the supernatant was aspirated and washed with phosphate-
buffered saline (PBS) twice. The cells were subsequently 
fixed by adding paraformaldehyde to each well for a 
duration of 20 minutes, followed by one wash with PBS 
after removing the paraformaldehyde. Finally, crystal violet 
staining was performed on the fixed cells for a duration of 
10 minutes. Following several washes with PBS solution, 
the cells were air-dried and photographed.

Wound-healing assay

A wound healing assay was conducted with HSC-3 cells to 
evaluate alterations in cell motility and migration. After cells 
were cultured to confluence in a 48-well plate, a pipette tip 
was utilized to generate a scratch on the cell monolayer, 
which was subsequently rinsed with PBS. Images were 
captured at 0, 24, and 48 hours after drug treatment [PBS, 
OXA (5 μM), apigenin (40 μM) + OXA (5 μM)] under a 
microscope.

Transwell assays

The invasiveness of HSC-3 cells was assessed utilizing a 
transwell assay. Cells were suspended with three different 
concentrations of medium [control, OXA (5 μM), apigenin 
(40 μM) + OXA (5 μM)]. Subsequently, the cells were 

inoculated onto an 8 μm polyethylene terephthalate filter 
membrane (Corning, NY, USA) that had been pre-coated 
with matrix gel (BD, NJ, USA), while the lower chamber 
of the transwell was filled with approximately 500 mL of 
culture medium. Following a 30-minute fixation with 4% 
paraformaldehyde and subsequent staining with 0.1% 
crystal violet (Sigma-Aldrich) for 20 minutes, the invading 
cells were meticulously observed and manually enumerated 
under an inverted microscope at a magnification of one 
hundred-fold.

Three-dimensional culture assay

Cancer cells from different groups were inoculated into a 
pre-coated Matrigel 48-well plate and cultured in 250 μL 
of DMEM supplement with 10% fetal bovine serum for  
24 hours. The test tubes were imaged using a light 
microscope to capture visual representations. An assessment 
of the tube structure was performed to evaluate its 
angiogenic potential.

Immunofluorescence assays

Cells were processed [control, OXA (5 μM), apigenin  
(40 μM) + OXA (5 μM)], followed by overnight culture and 
subsequent processing using methanol and Triton X-100. 
After 24 h of incubation, cells were washed twice with 
PBS, followed by fixation with 10% cold formalin (−20 ℃)  
and then blocked with FBS (5% bull serum albumin and 
0.1%Tritonx-100) for 1 h. Cells were then incubated 
in a solution containing a 1:100 dilution of E-cadherin 
(ab227639, Abcam, Cambridge, UK) and vimentin (ab8978, 
Abcam) antibody for 1h at room temperature. After three 
washes lasting 20 minutes each, the cells were incubated 
with a secondary antibody at a dilution of 1:200 for  
30 minutes. The staining process was concluded by 
incubating the sample with 4,6-diamidino-2-phenylindole 
for a duration of 10 min and wash twice with PBS, followed 
by visualization using a laser scanning confocal microscope 
(Nikon, Tokyo, Japan).

RNA isolation, reverse transcriptase-quantitative 
polymerase chain reaction (RT-qPCR) and cell transfection

The extraction and reverse transcription of total RNA 
from cultured cells were performed using the kit (Yeasen, 
Shanghai, China). The relative RNA levels were quantified 
with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
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serving as an internal reference control. The resulting 
complementary DNA served as a template for subsequent 
qPCR analysis, and the data were analyzed using the 2-ΔΔCq 
method. The primers are as follows, LINC00342: forward 
5'-TGCTGAGTAACTGTGATTCCC-3' and reverse 
5'-CTTGGCTTCTCCCTCTAGTTG-3', LINC01273: 
forward 5'-AGTCTCTGTTGCGGTGTTC-3' and reverse 
5'-TGTTTTCCAGGTCCATAGGTG-3', LINC00630: 
forward 5'-TGCAGTGAACATGGGAGTAC-3' and reverse 
5'-AATCTGGCAAAGAGGGACTG-3', LINC00857: 
forward 5'-TCCGTTAAGCACCAGAAGTC-3' and reverse 
5'-AGCAATATGGAAGGGAATGGAG-3'.

LINC00857 was overexpressed with pcDNA3.1, blank 
pcDNA-3.1 vector was used as control. Transfection of all 
constructed plasmids into cells was conducted and used 
for subsequent studies after 48 hours of transfection. The 
efficiency of overexpression was examined with RT-qPCR.

Statistical analysis

SPSS 22.0 software was utilized for statistical analysis. 
Three replications were set up for each experiment and 
data were collected and organized and expressed as mean 
± standard deviation (SD). The t-test, one-way analysis of 
variance (ANOVA), or two-way ANOVA were employed to 
evaluate and compare group differences, with a significance 
level set at P≤0.05.

Results

Apigenin enhanced the anticancer effects of platinum-
based chemotherapeutic agents on OSCC

Figure 1A illustrates the molecular structure of apigenin. 
In this study, apigenin was combined with DDP and 
OXA to act on OSCC HSC-3 cell line, respectively. 
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Figure 1 Apigenin enhanced the anticancer effects of chemotherapeutic agents on OSCCs. (A) The structural formulas of apigenin. (B,C) 
The IC50 values of DDP and OXA on HSC-3 were detected. The cancer cells were treated with different concentrations of apigenin (control: 
DMSO, apigenin-L: 20 μM, apigenin-H: 40 μM) (**, P≤0.01). (D,E) MTT assay was operated to detect the inhibition on HSC-3. The 
efficacy of two drugs was synergistic at the medium and low drug concentrations. IC50, 50% inhibitory concentration; DDP, cisplatin; OXA, 
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The results demonstrated that the addition of apigenin 
further decreased the IC50 value of platinum-based 
chemotherapeutic agents on HSC-3 cells in a dose-
dependent manner, as illustrated in Figure 1B,1C. Moreover, 
the inhibitory effects of apigenin, DDP/OXA, and DDP/
OXA combined with apigenin on HSC-3 cell proliferation 
were counted, and the results showed that apigenin exerted 
inhibitory effects on HSC-3 cells, while the combination 
with platinum-based chemotherapeutic agents enhanced 
these inhibitory effects on tumor cell proliferation even 
more effectively. The effect of the drug combination was 
statistically analyzed using CompuSyn software, and the 
results revealed that the CI of the combination of apigenin 
and DDP/OXA was less than 1 at the medium and low drug 
concentrations, and that the efficacy of the two drugs was 
synergistic, as shown in Figure 1D,1E.

Low-dose OXA promoted metastasis of HSC-3 cells

The effects  of  OXA on HSC-3 cel ls  at  di f ferent 
concentrations were investigated using the clone formation 
assay, and the results demonstrated that the high dosage 
of OXA (40 μM) exhibited a significant inhibitory effect 
on tumor cell proliferation, while the inhibitory effect of 

low-dose OXA (5 μM) was limited, as shown in Figure 2A. 
The further results of cellular morphology showed that, 
compared with the HSC-3 cells in the control group, the 
pseudopods of the tumor cells in low-dose OXA group 
(5 μM) were elongated and the cells were spindle shaped, 
as shown in Figure 2B, suggesting that the metastatic 
potential of the tumor cells might be enhanced by the low 
concentration of OXA. Furthermore, cell wound healing 
assay results revealed that the low concentration of OXA 
promoted the migratory ability in HSC-3 cells than the 
control group, as illustrated in Figure 2C,2D.

The metastasis promotion induced by low concentrations of 
OXA in HSC-3 was inhibited by apigenin

The effects  of  apigenin in combination with low 
concentrations of OXA on HSC-3 cells were investigated 
through cell wound healing, transwell,  tumor cell 
angiogenesis, and EMT marker immunofluorescence 
assays. The results demonstrated that apigenin significantly 
suppressed the migration-promoting effect of low 
concentration of OXA on HSC-3 cells (Figure 3A,3B), 
meanwhile, it could also significantly inhibit the invasion 
of tumor cells (Figure 3C,3D). Angiogenesis assay revealed 
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that low concentrations of OXA promoted the vasculogenic 
capacity of tumor cells in comparison to the control group, 
while this trend was inhibited by apigenin, as shown in 
Figure 3E,3F. EMT is an essential phenomenon in the 
metastatic process of tumor cells, and E-cadherin and 
Vimentin are epithelial phenotype marker molecules and 
mesenchymal phenotype marker molecules, respectively. 
Immunofluorescence experiments showed that low 
concentrations of OXA upregulated Vimentin protein 
expression while downregulating E-cadherin protein 
expression in HSC-3 cells than the control group, indicating 
the promotion of EMT by low concentrations of OXA. In 
contrast, the promotion of EMT was significantly inhibited 
by the combination of apigenin and low concentrations of 
OXA, and the results are shown in Figure 3G-3I.

Apigenin inhibited the expression of LINC00857 in OSCC 
cells

To further elucidate the action mechanism of apigenin in 
OSCC cells, the expression profiles of long non-coding 
RNA (lncRNA) in OSCC cells before and after apigenin 

treatment were analyzed in this study, the data were 
from previous study (19). There were 1,655 up-regulated 
lncRNAs and 963 down-regulated lncRNAs identified, as 
indicated in Figure 4A-4C. Among the apigenin-induced 
changes in lncRNA expression, four significantly altered 
lncRNAs were selected, which were LINC00857-001, 
LINC00630-001, LINC01273-001 and lINC00324-001 
(Figure 4D). These alterations in lncRNA expression were 
validated by qRT-PCR. Notably, LINC00857-001 exhibited 
a significant decrease upon apigenin treatment (Figure 4E), 
thus warranting its selection for further investigation and 
subsequent designation as LINC00857.

Apigenin inhibited the tumor metastasis promoting effect 
of low-dose OXA via LINC00857

In this  s tudy,  LINC00857 was  overexpressed by 
transfecting pcDNA3.1-LINC00857. The results revealed 
a significant upregulation of LINC00857 expression in cells 
overexpressing this transcript than the control group, as 
illustrated in Figure 5A. The previous results demonstrated 
a significant inhibition of tumor cell invasion induced by 
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low-dose OXA upon treatment with apigenin, whereas the 
inhibitory effect of apigenin on tumor cell invasion was 
attenuated in the presence of LINC00857 overexpression, 
as illustrated in Figure 5B,5C. Additionally, the previous 
findings demonstrated a substantial suppression of tumor 
cell angiogenesis induced by low-dose OXA through 
apigenin, but the inhibitory effect of apigenin on tumor 
cell angiogenesis was attenuated when LINC00857 was 
overexpressed, as depicted in Figure 5D,5E.

Discussion

The diagnosis and treatment of OSCC have witnessed 
remarkable advancements in recent years, but its prognosis 
remains unfavorable.  The management of  OSCC 
primarily involves surgical intervention, complemented by 
radiotherapy or chemotherapy, whereas these treatments 
have not significantly improved patient survival rates 
over the past two decades, with the 5-year survival rate 
remaining consistently low at approximately 60% (20). 
A contributing factor to this dismal prognosis is delayed 
diagnosis, and implementing early screening and timely 
therapeutic interventions can effectively impede the 
progression of OSCC, leading to an 80% improvement in 
patient survival (21). A significant increase in metastasis of 

residual cancer cells has been reported following treatment 
with OXA. The previous study has demonstrated that 
platinum-based anticancer drugs at low doses can induce 
EMT in cancer cells. Chemotherapy-induced EMT is 
an essential determinant of chemoresistance and tumor 
metastasis. The results of this study were consistent with 
the previous researches that conventional doses of OXA 
significantly inhibited the proliferation of OSCC, but low 
doses of OXA did not exhibit significant inhibitory effect 
on OSCC proliferation. More importantly, low doses of 
OXA significantly promoted the migration, invasion, and 
angiogenic ability of OSCC, as well as the EMT of tumor 
cells. At present, platinum-based chemotherapeutic agents 
remain the first-line drugs in clinical anticancer treatment, 
and their delivery to tumor cells through the blood flow 
for efficacy. Solid tumors exhibit a lack of vascularization, 
rendering it impossible for chemotherapeutic agents to 
maintain optimal blood concentrations within tumor tissues, 
while lower concentrations of chemotherapeutic agents not 
only fail to inhibit the tumor cells, but also stimulate the 
tumor cells to make the corresponding response, as well 
as the metastasis of the tumor cells (22). This unfavorable 
scenario poses challenges in the clinical management of 
tumors.

Novel therapeutic strategies which safely enhance the 
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sensitivity of chemotherapy offer a promising pathway for 
the effective treatment of OSCC. Currently, numerous 
natural small molecules have demonstrated outstanding 
anticancer activity, with flavonoid molecules being 
particularly significant. Apigenin, a well-known flavonoid 
molecule, has been extensively studied and shown to possess 
potent anticancer properties (23). The findings of this 
study demonstrated that apigenin exhibited a synergistic 
effect with OXA and can enhance the inhibitory effect of 
OXA on OSCC proliferation. Further results demonstrated 
that apigenin effectively inhibited the migration, invasion, 
and angiogenic capacity of OSCC induced by low-dose 
OXA, as well as inhibiting the EMT process of tumor cells. 
Apigenin is a natural small molecule originated from plants, 
characterized by its simple structure, easy availability, and 
minimal toxic side effects, which is suitable for a wide range 
of clinical applications (24). The combined administration 
of apigenin and OXA in the treatment of OSCC can 
not only enhance the anti-tumor effect of OXA, but also 
alleviate the side effects of OXA at some extent, which is of 
very important application value.

Further results revealed that apigenin effectively 
suppressed the expression of the lncRNA LINC00857 in 
OSCC. LncRNAs have been identified as key regulators of 
various physiological and pathological processes, including 
but not limited to growth, apoptosis, differentiation, 
motility and invasion, signal transduction, DNA damage 
response, immune modulation. These processes are closely 
associated with tumorigenesis and make lncRNAs a crucial 
target for tumor diagnosis, treatment and prognosis (25-28). 
LINC00857 was initially discovered in lung cancer tissues 
in 2016, and subsequent investigations have demonstrated 
its pro-cancer effect and ability to promote EMT in tumor 
cells (29,30). LINC00857 exerts regulatory control over 
tumor cells through various mechanisms. Its mechanism of 
action involves the absorption of miR-1179 and subsequent 
upregulation of SPAG5 expression, resulting in the 
inhibition of apoptosis and promotion of proliferation, 
in vivo growth, and glycolysis in lung cancer cells (31). 
LINC00857 exerted pro-cancer effects by promoting the 
EMT process in hepatocellular carcinoma cells through 
up-regulating the expression of the mesenchymal marker 
N-cadherin and down-regulating the epithelial marker 
E-cadherin (30). In addition, LINC00857 promoted 
ovarian cancer progression through competitive binding 
with miR-486-5p to regulate Yes1-associated transcriptional  
regulator (32). Although apigenin has been reported to exert 
anti-tumor effects through various mechanisms including 

regulation of lncRNAs, its inhibitory effect on LINC00857 
has not been previously elucidated (19). This study further 
enriched the pharmacological mechanism of natural small 
molecule apigenin.

The study was still subject to several limitations. First, 
this study primarily focused on the efficacy of apigenin in 
combination with OXA, particularly at low concentration 
of OXA, and its preliminary pharmacological mechanism, 
without delving into its detailed pharmacological 
mechanism. Additionally, this study was predominantly 
conducted in vitro and lacked further validation from in vivo 
and clinical studies. Moreover, tumor stem cells are closely 
related to tumor metastasis (33). It has been shown that 
apigenin is able to exert its inhibitory effect on tumor stem 
cells by suppressing the Wnt/β-catenin signaling pathway, 
down-regulating nuclear factor-κB protein expression, 
and inducing cell cycle arrest through up-regulation of 
p21 and cyclin-dependent kinases (34,35). The effect and 
mechanism of apigenin on OSCC tumor stem cells also 
requires investigation. We intend to refine these findings 
through future investigations.

Conclusions

In conclusion, this study focused on investigating the 
combination of apigenin and a low concentration of OXA 
on OSCC, and revealed that apigenin could inhibit the pro-
tumor metastatic effect induced by low concentration of 
OXA through downregulating the expression of LINC00857. 
The present study has contributed to enhancing the 
comprehension of the pharmacological mechanism of 
apigenin, thereby offering novel insights for its potential 
clinical implementation in the management of OSCC.
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