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Objective. To explore the convolutional neural network (CNN) method in measuring hematoma volume-assisted microsurgery for
spontaneous cerebral hemorrhage. Methods. A total of 120 patients with spontaneous cerebral hemorrhage were selected and
randomly divided into control and CNN groups with 60 patients in each group. Patients in the control group received
traditional Tada formula to calculate hematoma volume and microsurgery. Convolutional neural network algorithm
segmentation was used to measure hematoma volume, and microsurgery was performed in the CNN group. This article
assessed neurological function, ability to live daily, complication rate, and prognosis. Results. The incidence of postoperative
complications in the CNN group (13.33%) was lower than the control group (43.33%). The neurological function and daily
living ability in the CNN groups were recovered better. The incidence of poor prognosis in the CNN group (16.67%) was
lower than the control group (30.00%). Conclusion. Convolutional neural network measurement of hematoma volume to assist
microsurgical treatment of spontaneous intracerebral hemorrhage patients is conducive to early recovery, reducing the damage
to the patients’ cerebral nerves.

1. Introduction

Spontaneous intracerebral hemorrhage is one of the most
common critical and severe diseases in neurosurgery, which
occurs in middle-aged and elderly patients [1–3]. It is a cere-
brovascular disease with high mortality and disability rate.
For a long time, researchers have conducted a lot of research
and practice on the pathogenesis and treatment of spontane-
ous intracerebral hemorrhage. In recent years, under the
influence of various factors such as life pressure and diet,
the incidence of spontaneous intracerebral hemorrhage
shows a significant upward trend [4], and the onset age
gradually decreases, seriously impacting patients and fami-
lies, and society.

Spontaneous intracerebral hemorrhage is a hemorrhage
in the brain parenchyma that extends into the ventricle or
subarachnoid space [1]. Although the rapid development
of modern medical science and technology and the continu-
ous development of minimally invasive surgical techniques

and equipment provide new methods for the treatment of
hypertensive intracerebral hemorrhage, the total mortality
of intracerebral hemorrhage is still very high. Hematoma
volume was a determinant of mortality within 30 days [5].

Due to the high incidence, disability, and mortality of
spontaneous intracerebral hemorrhage, timely and effective
treatment of hypertensive intracerebral hemorrhage is
required. Accurate measurement of intracerebral hemor-
rhage is essential for clinical treatment and evaluation of
curative effects. CT is the first choice for cerebral hemor-
rhage. Tada formula is a traditional method for measuring
intracerebral hemorrhage, which is simplified from the ellip-
tic sphere volume formula [6]. Its premise is that the hema-
toma is approximately regular elliptic sphere. However, the
clinical hematoma is often irregular in shape, resulting in
low accuracy of Tada formula measurement results and poor
repeatability due to the influence of subjective factors [7, 8].

With the development of deep learning and other com-
puter technologies [9–11], more and more scholars are using
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relevant technologies to calculate hematoma volume [12–14].
Yu et al. [15] constructed a deep learning algorithm covering
hematoma volume of all types of intracerebral hemorrhage,
which has higher accuracy and consistency with manual seg-
mentation method. This study analyzed the segmentation
method based on the convolutional neural network (CNN)
algorithm to calculate hematoma volume and microsurgery
to treat spontaneous intracerebral hemorrhage.

2. Materials and Methods

2.1. General Information. The study lasted from May 2018 to
April 2021. A total of 120 patients with spontaneous intrace-
rebral hemorrhage were selected and randomly divided into
control group and CNN group (60 cases equally) according
to a random number table method. The male-female ratio
and the hemorrhage location in the control group and
CNN group are shown in Figure 1. The two groups found
no significant difference between gender, age, bleeding site,
and other general information (P > 0:05, Table 1).

2.2. Selection Criteria. Inclusion criteria were as follows: (1)
signed the informed consent for the study approved by the
hospital ethics committee, (2) met the diagnostic criteria
for cerebral hemorrhage and had a clear history of hyperten-
sion, (3) the first onset of hypertensive intracerebral
hemorrhage, (4) intracranial hemorrhage was confirmed by
craniocerebral CT examination, and (5) the amount of blood
loss was 30~70mL.

Exclusion criteria were as follows: (1) intracerebral hem-
orrhage caused by autoimmune diseases or coagulation dis-
orders, (2) cerebral hemorrhage caused by vascular diseases
such as aneurysm, (3) cerebral hemorrhage caused by brain
trauma, inflammation, and dilated pupil requiring decom-
pression by bone flap removal and anticoagulant drug treat-
ment, and (4) patients with incomplete case data or unable
to achieve a long-term follow-up.

2.3. Experimental Grouping. The overall structure of this
experimental process is shown in Figure 2.

2.3.1. Control Group. Preoperative hematoma volume was
calculated by 2 doctors with 3 years of neuroimaging
diagnosis experience according to Tada’s formula, which is
as follows:
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Figure 1: Male-female ratio and hemorrhage location in the control and CNN groups.

Table 1: Age and hematoma volume in the control and CNN
groups.

Group
Age range
(years)

Average age
(years)

Hematoma volume
(mL)

Control group 39-80 60:8 ± 1:9 40:2 ± 10:8
CNN group 41-82 61:2 ± 2:1 39:3 ± 11:1
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Poor prognosis
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Figure 2: The overall structure of experimental process.
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V bleedingð Þ = A × B × C
2 : ð1Þ

The ABC/2 volume formula can express the Tada vol-
ume formula. The bleeding area of each section was com-
pared with the maximum section. The amount of bleeding
and the physician’s measurement time were recorded.

A craniotomy was performed. Before the operation, the
hematoma was located according to the results of cranial
CT imaging, craniotomy was routinely performed, and the
hematoma was removed under the microscope. Postopera-
tive imaging review was performed.

2.3.2. CNN Group. In order to reduce the overfitting risk of
constructing algorithm segmentation results, we have
included a large number of cerebral hemorrhage cases in
the early stage and evaluated the performance of the algo-
rithm model through the interactive brain image segmenta-
tion algorithm (Figure 3).

When the CNN algorithm analyzes the image, the image
is deaveraged, as shown in the following equation:

a∗ = a − λ, ð2Þ

where λ is the average of the image set and α is the
eigenvalue.

The complete CNN includes many layers. The convolu-
tional layer is the most crucial part and can be described by
the following equation:
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i
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: ð3Þ

The pooling layer can be described as follows:

alj = down al?1j
� �

: ð4Þ

Since the CNN algorithm has a good feature extraction
performance, we performed fusion preprocessing on CT
images and automatically detected and segmented hema-
toma area on the images by CNN algorithm (Figure 4).

According to the measurement results, craniotomy was
performed, and the removal of craniotomy hematoma was
performed under the microscope. Imaging review was per-
formed after surgery.

2.4. Evaluation Index

2.4.1. Complications. In this paper, the incidence of postop-
erative complications was observed and counted as in the
following equation:

C = I + R + CR + SC
T

× 100%: ð5Þ

In Equation (5), C represents complications. It is formed
by the sum of I (infection), R (rebleeding), CR (cerebral
infarction), and SC (stress ulcer).

2.4.2. Nerve Function. Neurological function was assessed by
the National Institutes of Health Stroke Scale (NIHSS)
before and 3 and 6 months after surgery.

2.4.3. Daily Living Ability. The ability of daily living (ADL)
was used to evaluate the daily living ability of 2 groups in
the same time point.

Brain CT images

Import

Pre-trained CNN

Initial segmentation results

Interactive diagram

Weight plots for image-specific fine-tuning

Export

Split the graph

Update model parameters

User interaction
information

Figure 3: Schematic diagram of interactive brain image
segmentation algorithm.
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Figure 4: The CT images were preprocessed by the CNN
algorithm.
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2.4.4. Poor Prognosis. The outcomes were followed up for 6
months by the GlasgowOutcome Scale (GOS). The adverse out-
comes (P) are formed by the sum of I (disease death, 1 point), PS
(plant survival, 2 points), and SM (severe disability, 3 points).

P = I + PS + SM
T

: ð6Þ

2.5. Statistical Methods. SPSS 23.0 statistical software was used
for data processing and analysis. The comparison of between
groups was performed by independent sample T-test. A group
design and a two-sample comparison were used to compare
the hierarchical grouped data.

3. Results

3.1. Complications. The total proportion of postoperative
complications in the CNN group (13.33%) was significantly
lower than that in the control group (43.33%) (Table 2).

3.2. Neurological Function and Daily Living Ability. There
was no significant difference in preoperative neurological
function and daily living ability between the two groups,
but 3 and 6 months after surgery, the neurological function
and daily living ability of the two groups were better than
those of the three groups before surgery (Table 3).

3.3. Poor Prognosis. The incidence of poor prognosis in the
CNN group (16.67%) was lower than that in the control
group (30.0%, Figure 5).

4. Discussion

The basic cause of disability and death caused by spontane-
ous intracerebral hemorrhage is the injury of brain tissue
caused by acute intracerebral hemorrhage, intracerebral
mass effect, cerebral edema, and cerebrospinal fluid circula-
tion system obstruction, resulting in acute intracerebral
pressure increase [16]. Therefore, in the clinical treatment

Table 3: Comparison of nerve function and ability of daily living.

Group
Nerve function Ability of daily living

Preoperative
3 months after

surgery
6 months after

surgery
Preoperative

3 months after
surgery

6 months after
surgery

Control
group

23.59 19.07 14.36 51.23 70.74 79.67

CNN group 24.11 10.47 8.66 50.38 81.08 91.32

Sick to death Plant survival Severe disability Mild disability
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Figure 5: Comparison of outcomes after 6 months of follow-up.

Table 2: Comparison of complications between the two groups.

Group Postoperative infection Bleeding again Stress ulcer Cerebral infarction Total incidence

Control group 5 6 5 10 26 (43.33)

CNN group 1 2 2 3 8 (13.33)

χ2 22.16

P <0.01
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of spontaneous cerebral hemorrhage, the timely and accu-
rate evaluation of the bleeding volume and the effective
removal of the intracerebral hematoma is the key to the
treatment. Timely intervention can reduce the surrounding
brain tissue after brain hematoma removal by oppression,
ease the cerebrospinal fluid circulation obstruction, reduce
secondary brain edema, reduce mortality, and improve
survival quality.

The amount of bleeding in patients with spontaneous
intracerebral hemorrhage is closely related to clinical treat-
ment strategy, brain function recovery, and mortality [17].
The untimely and inaccurate measurement will affect clini-
cal decision-making, delay the optimal treatment timing,
and affect the therapeutic effect [18]. Therefore, accurate
measurement of intracerebral hemorrhage has essential clin-
ical significance [19]. CT quantitative method, Tada formula
method, and stereology method are recommended to calcu-
late the amount of cerebral hemorrhage in the 2006 guide-
lines for the surgical treatment of craniocerebral trauma in
the United States. The CT quantitative method, also known
as computer-assisted volume analysis (CAVA), is the gold
standard for noninvasive measurement of intracranial
hematoma volume, which has the advantages of accurate
measurement and is not limited by bleeding shape [20, 21].
Equipment conditions limit the disadvantage, need to be
completed on the CT machine, are time-consuming, and
are not suitable for clinical emergencies. Tada formula is
more accurate in measuring morphologically regular intra-
cerebral hemorrhage. However, there are large errors for
irregular intracerebral hemorrhage and manual segmenta-
tion is time-consuming and laborious [22, 23]. Stereology
has made progress in measuring irregular hematoma, but it
requires tools and is complicated.

This is a challenge for clinicians in order to grasp the
condition better and more accurately answer clinical ques-
tions, especially in cases where traditional calculations of
hematoma volume are inaccurate. Artificial intelligence
technology’s in-depth application in clinical medicine allows
intracranial hematoma to be accurately and conveniently
separated [24, 25]. This study explored the feasibility of
using a convolutional neural network to calculate hematoma
volume as a surgical indication.

The comparison of experimental data showed that the
CNN group was superior to the control group in all
indicators, with statistically significant differences among
the groups (P < 0:05). Compared with the control group,
the complications in the CNN group were lower. The neu-
rological function and daily living ability were better
before and after operation, and the incidence of poor
prognosis was low.

Our results show that convolutional neural network cal-
culation of hematoma volume guiding craniotomy treatment
can reduce the incidence of postoperative complications and
poor prognosis, reduce neurological impairment, but also
help improve patients’ daily living ability. We believe that
convolutional neural network-based hematoma volume cal-
culation has the advantages of timeliness, accuracy, and ease
of operation [26]. Thus, the patients can obtain timely and
effective treatment in a short time.

5. Conclusions

In conclusion, in the surgical treatment of patients with
spontaneous intracerebral hemorrhage, the application of
convolutional neural network to calculate hematoma vol-
ume as the reference of surgical indication has obvious
advantages, which can significantly improve the prognosis
of patients. At the same time, it is helpful to reduce surgical
trauma, reduce complications, and promote the recovery of
patients’ neurological function.
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