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Abstract: We investigate the influence of hydrostatic/biaxial strain on the formation, migration,
and clustering of vacancy in tungsten (W) using a first-principles method, and show that the vacancy
behaviors are strongly dependent on the strain. Both a monovacancy formation energy and a divacancy
binding energy decrease with the increasing of compressive hydrostatic/biaxial strain, but increase
with the increasing of tensile strain. Specifically, the binding energy of divacancy changes from
negative to positive when the hydrostatic (biaxial) tensile strain is larger than 1.5% (2%). These results
indicate that the compressive strain will facilitate the formation of monovacancy in W, while the tensile
strain will enhance the attraction between vacancies. This can be attributed to the redistribution of
electronic states of W atoms surrounding vacancy. Furthermore, although the migration energy of
the monovacancy also exhibits a monotonic linear dependence on the hydrostatic strain, it shows a
parabola with an opening down under the biaxial strain. Namely, the vacancy mobility will always
be promoted by biaxial strain in W, almost independent of the sign of strain. Such unexpected
anisotropic strain-enhanced vacancy mobility originates from the Poisson effect. On the basis of
the first-principles results, the nucleation of vacancy clusters in strained W is further determined
with the object kinetic Monte Carlo simulations. It is found that the formation time of tri-vacancy
decrease significantly with the increasing of tensile strain, while the vacancy clusters are not observed
in compressively strained W, indicating that the tensile strain can enhance the formation of voids.
Our results provide a good reference for understanding the vacancy behaviors in W.
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1. Introduction

Nuclear fusion energy is a good way to relieve the energy shortage in the future, which is being
developed internationally via the International Thermonuclear Experimental Reactor (ITER) Project.
The choice of the plasma facing materials (PFMs) is one of the critical issues for the steady operation
of the future nuclear fusion device [1–3]. Tungsten (W) and W alloys are considered as one of the
most promising candidates for PFMs, because of its excellent thermal performances and intrinsic
structure characteristics [4,5]. However, serving as the PFMs, W will be exposed to high fluxes H
isotopes and helium (He) ions as well as high energy neutron. Defects and impurities introduced by
these irradiations will seriously degrade the properties and performances of W, leading to the surface
blistering, void formation, and irradiation hardening [6–8]. Therefore, the behaviors of defects and
impurities in W have been under intensive investigations [9–11].
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Vacancy is the typical intrinsic and radiation-induced defect in materials. Indeed, the presence of
vacancy has extremely detrimental effects on the microstructure and properties of W. On the one hand,
vacancies can aggregate to form voids, resulting in the swelling, hardening, and embrittlement [12–14].
For instance, a large number of voids was observed in W after neutron irradiation at 0.6 dpa and
997 K, leading to the increase of Vickers hardness from 3.61 GPa to 6.68 GPa [8]. On the other hand,
vacancies can serve as the strong trapping centers for impurities in W [15–18], because of the large
available space and low electron density. In our previous study [15], the vacancy trapping mechanism
for H bubble formation in W has been proposed, which can also be applied to the collection of H
in other metals [19–21]. Therefore, the formation, migration, and aggregation of vacancy play a key
role in the performance of W-PFM and have attracted much attention. It is found that the formation
energy and migration energy of a monovacancy in W are 3.1~3.6 eV [22–25] and 1.6~1.8 eV [24,26,27],
respectively. Interestingly, although the binding energy of vacancy cluster is positive, that of a first
nearest neighboring (1NN) divacancy in W is negative (−0.12 eV [28,29]), indicating the repulsive
interaction between two monovacancies [24,29–31]. Nevertheless, vacancy clusters (or voids) have been
clearly observed in experiments [8,14]. To remedy this discrepancy, impurities have been considered
as a hinge to drive the initial clustering of vacancies, such as carbon, nitrogen, and oxygen [32,33].
However, the negative binding energy of divacancy in pure W remains poorly understood.

Generally, the formation of vacancy will inevitably induce local distortion. Hence, it is believed
that the applied strain can significantly affect the behaviors of vacancy. As demonstrated in previous
studies [23,34], vacancy formation energy in W, ZnO, and BN is reduced by compressive strain,
indicating the high vacancy concentration in the compression region. Further, the migration behavior
of vacancy is also altered dramatically by external strain in UO2 and CeO2, which can be rationalized
by the elastic dipole tensor of the transition state (saddle point) with respect to the ground state [35,36].
As a matter of fact, W-PFMs will be subjected to either macroscopic or microscopic deformation
under the operational condition. For example, W undergoes significant thermal expansion at elevated
temperatures, that is, 0.26%, 1.41%, and 4.64% at 298, 1205, and 2774 K, respectively [37]. Besides,
the large temperature gradient inside the W-PFMs also induces thermal stress [38]. More importantly,
both intrinsic defects (dislocations and grain boundaries) and radiation-induced defects (dislocation
loops, H/He bubbles, precipitates, and so on) induce the long-range stress field as well [39]. Therefore,
it is of great importance to determine the influence of strain on the behaviors of vacancy in W.

In the present work, we investigated the influence of isotropic/anisotropic strain on the formation,
migration, and clustering of vacancy in W using the first-principles method. The obtained results
were further employed in parameterizing object kinetic Monte Carlo (OKMC) model to simulate the
dynamical evolution of vacancies in W. Our calculations suggest that vacancy cluster is energetically
favorable to nucleate under tensile strain rather than compressive strain, which provides a good
reference for understanding the vacancy behaviors in strained W.

2. Computational Methods

Our calculations were performed using the Vienna Ab initio Simulation Package (VASP v5.3.5)
code [40,41], which carried out self-consistent density functional theory (DFT) with plane-wave
pseudopotential. The projector augment-wave method (PAW) was used to describe the interaction
between ions and electrons [42]. For the exchange-correlation part, we used the generalized gradient
approximation (GGA) proposed by Perdew and Wang [43]. The cutoff energy was set to be 350 eV.
Through the convergence tests, a 4a0 × 4a0 × 4a0 body centered cubic (bcc) supercell was used, and the
Brillouin zone was sampled with 3 × 3 × 3 k-points by the Monkhorst–Pack scheme [44]. During the
calculation, both the atomic positions and supercell size/shape are fully relaxed, unless otherwise
stated. The calculated equilibrium lattice constant for bcc W is 3.175 Å, in agreement with the previous
study [24]. Further, under hydrostatic strain, the lattice parameters of supercell were fixed at given
strain values, that is, εxx = εyy = εzz = εset. As for anisotropic biaxial strain, the in-plane x and y lattice
parameters were fixed at given strain values, that is, εxx = εyy = εset, while the z lattice parameter was



Materials 2020, 13, 3375 3 of 16

relaxed. The energy minimization was continued until the forces on all atoms were less than 0.01 eV/Å.
The vacancy migration behavior was determined using a drag method [45,46].

The object kinetic Monte Carlo (OKMC) method is efficient to simulate the defects’ evolution in
materials [47–49]. In the present work, OKMC is employed to explore the evolution of vacancies in
W under different strain conditions, which is parameterized by our DFT results. The fundamental
hypotheses and physical models of our OKMC code are the same as those described in [47] and
references therein. A cubic box with side length of 157 a0 (a0 is the lattice constant) is adopted, with each
axis parallel to a < 100 > direction of the crystal. Periodic boundary conditions (PBCs) are applied in
all directions to mimic an infinite bulk bcc material. Twenty independent simulations were carried out
for each case, and the average results are presented in the following parts. Here, in order to compare
with the experimental results [50], the temperature was set to be 573 K.

3. Results and Discussion

3.1. Effects of Strain on the Vacancy Formation

In order to investigate the effects of strain on the vacancy formation in W, we calculate the
formation energy of a monovacancy under different strain conditions. The formation energy of the
monovacancy under strain ε can be expressed as

Ef
V,ε = EN−1,1;ε −

N − 1
N

EN,0;ε, (1)

where EN,NV ;ε is the total energy of the strained system containing N W atoms and NV vacancies.
According to our calculations, the vacancy formation energy in strain-free W is 3.11 eV, consistent with
the previous studies [24,51,52]. Figure 1 shows the formation energy of a monovacancy in strained W.
Under both hydrostatic and biaxial strain, the formation energy of a monovacancy increases with the
increasing of tensile strain, while it decreases with the increasing of compressive strain. This suggests
that the compressive (tensile) strain facilitates (suppresses) the formation of vacancy in W. Furthermore,
as displayed in Figure 1, the variation of formation energy under hydrostatic strain is much higher
than that under biaxial strain.
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Generally, the formation energy of a monovacancy can be divided into two parts, as the vacancy
formation is accompanied by the breaking of metallic bonds and the distortion of the lattice [53,54].
The first part is the electronic contribution including both the breaking of metallic bonds and
subsequent electronic relaxation. The other is the mechanical contribution induced by the atomic
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relaxation. Here, in order to eliminate the mechanical contribution, the vacancy formation energy
without atomic relaxation (unrelaxed case) is also examined. As shown in Figure 1, the vacancy
formation energy in the unrelaxed case is slightly higher (< 0.3 eV) than that in the relaxed case,
indicating that the mechanical contribution has little effect on the formation energy of a monovacancy
in W. This is because of the small atomic displacement induced by the vacancy formation. For example,
the 1NN W atoms shift towards the vacant site by less than 1% in strain-free W. The small atomic
displacement can be interpreted by the strong and directional covalent bonds between W atoms, which
maintain the rigid-like lattice [55]. Therefore, the electronic contribution plays a dominating role in the
formation energy of a monovacancy in W.

Physically, the electronic contribution is closely related to the variation of electronic states. Hence,
we further plot the local density of states (LDOSs) projected on the 5d orbitals of a bulk W atom and
the 1NN, 2NN, and 3NN W atoms surrounding the monovacancy in the strain-free case, as displayed
in Figure 2. For the bulk W atom, the Fermi level is close to the minimum of the pseudogap, which
well separates bonding states from anti-bonding states. However, the LDOSs of 1NN W atom in the
vicinity of the monovacancy exhibit two new peaks in the pseudogap. This indicates that the vacancy
formation will affect the electronic states of 1NN W atoms. As shown in Figure 2, the number of
electronic states of 1NN W close to the Fermi level are increased significantly, leading to an increase in
the total energy of the system. This should be responsible for the relatively high formation energy of
a monovacancy in W. Moreover, as illustrated in Figure 2, the LDOSs of 2NN and 3NN W are well
consistent with that of a bulk W in the psuedogap, implying that the vacancy-induced variation of
electronic states is limited to the 1NN W. Therefore, only the electronic states of 1NN W atoms are
examined for the strained cases.
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Figure 2. The local density of states (LDOSs) projected on the 5d orbitals of a bulk W atom (orange
dashed line) and 1NN (red solid line), 2NN (blue solid line), and 3NN (green solid line) W atom of the
monovacancy in strain-free case. The Fermi level is denoted by the black dashed line.

Figure 3 shows the LDOSs projected on the 5d orbitals of a bulk W atom and the 1NN W atom
surrounding the monovacancy in strained W. Under hydrostatic strain (Figure 3a,b), the energy width
of the 5d electrons increases under compressive strain, but decreases under tensile strain, which is
consistent with the previous study [56]. Interestingly, the vacancy-induced peaks at the pseudogap
near the Fermi level for 1NN W atom almost disappear under compressive strain (−5%) (Figure 3a).
Therefore, the electronic states’ distribution near the pseudogap of 1NN W atom is almost the same as
that of W atom in the bulk system, leading to the significant reduction of the formation energy of a
monovacancy. On the contrary, Figure 3b shows that the strain-induced peaks at the pseudogap for the
1NN W become more significant under 5% tensile strain, in comparison with that of the strain-free case.
Hence, the formation energy of a monovacancy is increased under tensile strain. Similar results are also
observed under biaxial strain, as demonstrated in Figure 3c,d. Moreover, the LDOSs variation of 1NN
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W atom induced by hydrostatic strain is much larger than that induced by biaxial strain, which is also
consistent with the strain-induced variation of vacancy formation energy (see Figure 1). Consequently,
these results suggest that the applied strain can significantly affect the electronic states of W atoms
nearby, and thus the formation energy of a monovacancy in W.

Materials 2020, 13, x FOR PEER REVIEW 5 of 17 

 

formation energy (see Figure 1). Consequently, these results suggest that the applied strain can 
significantly affect the electronic states of W atoms nearby, and thus the formation energy of a 
monovacancy in W. 

 
Figure 3. The LDOSs projected on the 5d orbitals of a bulk W atom and the 1NN W atom surrounding 
the monovacancy under different strain conditions. (a) 5% compressive hydrostatic strain, (b) 5% 
tensile hydrostatic strain, (c) 5% compressive biaxial strain, and (d) 5% tensile biaxial strain. The Fermi 
level is denoted by the black dashed line. 

3.2. Effects of Strain on the Vacancy Migration 

The mobility of vacancy in materials plays a crucial role on the vacancy evolution and is mainly 
controlled by the migration energy, which is the energy difference between the transition and ground 
states. There are three potential migrating directions for a monovacancy in bcc W, that is, < 111 >, < 
100 >, and < 110 > directions, and the saddle point lies in the halfway of the migration path for all 
cases. As shown in Figure 4, the migration energies of a monovacancy in strain-free W along [111], 
[100] and [110] directions are 1.64 eV, 5.34 eV, and 11.77 eV, respectively. This suggests that the 
migration along < 111 > direction is the optimal migration path for a monovacancy in W, in agreement 
with previous results [23–25]. As the different paths have the same ground state, the difference of 
their energy barriers originates from the different structure of transition states. It is found that the 
interatomic distances between the migratory-W (Mig-W) atom and its 1NN W atoms in transition 
states are 2.68 Å, 2.47 Å, and 2.22 Å along < 111 >, < 100 >, and < 110 > directions, respectively. These 
values are much shorter than the equilibrium distance between W atoms (2.75 Å) in perfect lattice. 
Therefore, the smaller the W-W distance, the larger the lattice distortion in transition states and the 
higher the migration energy. 
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hydrostatic strain, (c) 5% compressive biaxial strain, and (d) 5% tensile biaxial strain. The Fermi level is
denoted by the black dashed line.

3.2. Effects of Strain on the Vacancy Migration

The mobility of vacancy in materials plays a crucial role on the vacancy evolution and is mainly
controlled by the migration energy, which is the energy difference between the transition and ground
states. There are three potential migrating directions for a monovacancy in bcc W, that is, < 111 >,
< 100 >, and < 110 > directions, and the saddle point lies in the halfway of the migration path for
all cases. As shown in Figure 4, the migration energies of a monovacancy in strain-free W along
[111], [100] and [110] directions are 1.64 eV, 5.34 eV, and 11.77 eV, respectively. This suggests that the
migration along < 111 > direction is the optimal migration path for a monovacancy in W, in agreement
with previous results [23–25]. As the different paths have the same ground state, the difference of
their energy barriers originates from the different structure of transition states. It is found that the
interatomic distances between the migratory-W (Mig-W) atom and its 1NN W atoms in transition states
are 2.68 Å, 2.47 Å, and 2.22 Å along < 111 >, < 100 >, and < 110 > directions, respectively. These values
are much shorter than the equilibrium distance between W atoms (2.75 Å) in perfect lattice. Therefore,
the smaller the W-W distance, the larger the lattice distortion in transition states and the higher the
migration energy.
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Next, we investigate the effect of hydrostatic strain on the migration energy of a monovacancy in
W. Owing to the low energy barrier, only the migration of a monovacancy along < 111 > direction
was considered. Under hydrostatic strain, the vacancy migration energy decreases “monotonically”
with the increasing of tensile strain and increases with the increasing of compressive strain, as shown
in Figure 5a. This is in a good agreement with the previous study [23]. Hence, the mobility of a
monovacancy in W is promoted by the hydrostatic tensile strain, while it is hindered by the hydrostatic
compressive strain.
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As the migration energy of a monovacancy in W is strongly related to the atomic structure of
transition state (Figure 6a), the interatomic distances between Mig-W and its 1NN W atom under
different strain are examined. As illustrated in Figure 6b, the distance of Mig-W-W(1NN) also displays
a linear monotonic dependence on hydrostatic strain, that is, the larger the tensile strain, the longer
the Mig-W-W(1NN) distance. Thus, the tensile strain facilitates the Mig-W atom passing through
the saddle point, resulting in the reduction of migration energy of a monovacancy in W (Figure 5a).
In contrast, the Mig-W-W(1NN) distance is shortened under the compressive strain, leading to the
increase of migration energy.
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Figure 6. (a) The atomic structure during the migration of a monovacancy in W. The green sphere
and white circle represent the Mig-W atom and vacant site, respectively. (b) The interatomic distances
between the Mig-W and its NN atoms for the transition state. The dash dot/solid line corresponds to
hydrostatic/biaxial strain, respectively. The dashed line is deduced according to the Poisson ratio.

In addition, the strain-induced variation of migration energy for a monovacancy can also be
rationalized by the elastic dipole tensor. According to the elastic theory, the elastic field induced by
the defect will interact with external strain field, thus affecting the formation energy of the defect.
For a system subjected to an arbitrary strain state ε, the variation of defect formation energy can be
expressed as [35]

∆E = −tr(G · ε) = −Gi jεi j, (2)

where Gi j is the second-rank elastic dipole tensor induced by the defect and εi j is the external strain
tensor. Both of them are symmetric tensors and the right-hand side of Equation (2) is expressed in
Einstein summation convention. The elastic dipole tensor Gi j can be obtained through DFT calculation
via the strain-controlled approach [35]. In this approach, the defect is introduced in the supercell
without the relaxation of the supercell size and shape. After that, the supercell with a defect contains a
finite stress σi j, and the elastic dipole tensor Gi j is given by

Gi j = V0σi j, (3)

where V0 is the equilibrium volume of the supercell. Thus, the migration energy under given strain
state ε can be estimated as

Emig
strained = Etransition

strained − Eground
strained

= (Etransition
unstrained −Gtransition

i j εi j) − (E
ground
unstrained −Gground

ij εi j)
(4)



Materials 2020, 13, 3375 8 of 16

where Etransition
strained /Eground

strained and Etransition
unstrained/Eground

unstrained are energies of the system at the transition/ground state
with and without strain, respectively. Note that the shape and volume of the supercell are fixed during
the migration of a monovacancy in strained W. Hence, Equation (4) can be further written as

Emig
strained = Emig

unstrained −V0(σ
transition
i j − σ

ground
ij )εi j, (5)

whereσtransition
i j /σground

ij is the global stress induced at the transition/ground state, respectively. Therefore,
the variation of migration energy under strain depends on the defect-induced stress at the transition
state with respect to the ground state.

Under hydrostatic strain, three diagonal elements of the elastic dipole tensor for the
transition/ground state are the same considering the symmetry of the bcc system, namely
Ptransition

11 = Ptransition
22 = Ptransition

33 , Pground
11 = Pground

22 = Pground
33 . Therefore, the stress difference

between the transition and ground states along the hydrostatically strained direction are the same,
that is, (σtransition

11 − σ
ground
11 ) = (σtransition

22 − σ
ground
22 ) = (σtransition

33 − σ
ground
33 ). As illustrated in Figure 7,

the stress differences during migration barely change with the hydrostatic strain, except at large
compressive strain where nonlinear effects become important. Hence, the stress difference could
be approximated as a positive constant, leading to a linear function of the migration energy of a
monovacancy on the hydrostatic strain. In this case, Equation (5) can be expressed as

Emig
strained = Emig

unstrained − 3V0(σ
transition
11 − σ

ground
11 )ε11. (6)
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The positive value of (σtransition
11 − σ

ground
11 ) suggests the lattice expansion during the Mig-W atom

migrating from the ground state to the transition state. Thus, the extension of lattice under tensile
strain balances the expanding tendency, decreasing the migration energy of a monovacancy, while the
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compressive strain leads to the increase of the migration energy. Indeed, as displayed in Figure 5a,
there is a good agreement between the elastic dipole tensor prediction by Equation (6) (solid line)
and the direct DFT calculation (data points).

Further, it is important to note that the strain field in W-PFMs should be highly nonuniform
and anisotropic owing to the low-symmetry structures of defects and the irregular shape of radiation
damage. Therefore, the influence of anisotropic strain on vacancy migration should be considered to
understand the evolution of vacancies in W-PFMs. However, little work has focused on this. We further
examined the vacancy migration behavior in W under biaxial strain. Figure 5b shows the migration
energy of a monovacancy in W under biaxial strain. Surprisingly, the function relation between
migration energy and biaxial strain is a downward parabola rather than a conventional linear function.
Namely, the migration energy of a monovacancy always decreases with the increasing of both tensile
and compressive strain, except for a negligible increase (< 0.01 eV) in a limited range of compressive
strain. These results suggest that the vacancy migration is effectively promoted by the biaxial strain,
independent of its sign.

In order to explore the physical origin for this unexpected result, the atomic configurations
for vacancy migration under biaxial strain at transition state were examined. As mentioned above,
the Mig-W has six 1NN W atoms with the same equilibrium distance at transition state in the strain-free
W (Figure 6a). This symmetric structure remains unchanged under the isotropic strain, and then
the distances between Mig-W and its 1NN W are always the same and show a linear relationship
with hydrostatic strain (Figure 6b). However, the lattice symmetry is broken by the biaxial strain
owing to the Poisson effect. Hence, despite the linear dependence of a specific Mig-W-W distance
on the biaxial strain, two opposite slopes of those functions are obtained, as illustrated in Figure 6b.
Although the distances between Mig-W and four 1NN W (1/2/5/6 in Figure 6a) atoms show the same
trend as that under hydrostatic strain, that is, the distance of Mig-W-W (1/2/5/6) increases (decreases)
with the increasing of tensile (compressive) strain, the remaining Mig-W-W (3/4) distances show a
completely opposite trend (Figure 6a). This indicates that the lattice distortion is always partly released
along the stretched directions under both compressive and tensile strains, leading to the reduction of
vacancy migration energy. To quantitatively describe this effect, we employed a simplified statistical
approach to estimate the variation of interatomic distances under biaxial strain. As mentioned in
Part 2, the in-plane x and y lattice parameters were fixed at given strain values under biaxial strain,
that is, εxx = εyy = εset, while the z lattice parameter was fully relaxed to εzz. Thus, the Poisson ratio
in the biaxial case can be defined as

υ= −
εzz

εxx
, (7)

which can be obtained by DFT calculations. On the basis of this ratio, the interatomic distance between
Mig-W and W-1/2/5/6 is given by

d1 =

√
[
3
4

a0(1 + εxx)]
2
+ [

1
4

a0(1 + εxx)]
2
+ [

1
4

a0(1− υεxx)]
2
. (8)

Analogously, the interatomic distance between Mig-W and W-3/4 can be expressed as

d2 =

√
[
1
4

a0(1 + εxx)]
2
+ [

1
4

a0(1 + εxx)]
2
+ [

3
4

a0(1− υεxx)]
2
. (9)

As shown in Figure 6b, the slope of the curves predicted by the statistical approach is well
consistent with that obtained by DFT calculations, confirming the critical role of the Poisson effect.
Besides, it should be noted that the interatomic distance of the Mig-W-W pair in DFT calculations is
slightly higher than that in our simplified statistical approach. This can be attributed to the strong
repulsive interaction between Mig-W and its 1NN W atoms at the saddle point of vacancy migration,
which leads to the increase of Mig-W-W distance (as the interatomic positions are relaxed spontaneously
during DFT calculations) and is not considered in the statistical approach.
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The abnormal migration energy of a monovacancy under biaxial strain can also be understood by
the stress difference between the transition and ground states. As shown in Figure 7, instead of being
invariant under hydrostatic strain, the stress difference increases linearly under small biaxial strain
(−3% < ε < +3%). Beyond this region, the nonlinear effects become important. Hence, by analogy with
Equation (5), the migration energy under biaxial strain can be obtained by

Emig
strained = Emig

unstrained −V0

∫
(σtransition

i j − σ
ground
ij )dεi j. (10)

Obviously, the integration of a liner function results in a quadratic function, corresponding to the
parabolic dependence of vacancy migration energy on biaxial strain. Indeed, as displayed in Figure 5b,
there is a good agreement between the elastic dipole tensor prediction by Equation (7) (solid line) and
the DFT calculation (data points).

3.3. Effects of Strain on the Interaction between Two Vacancies

The interaction between vacancies plays a key role in the nucleation of vacancies in materials.
In order to explore the influence of strain on the nucleation of vacancies, we investigate the interaction
between two vacancies (divacancy) under hydrostatic and biaxial strain in W. The binding energy of
divacancy under strain ε is defined as the energy released during the coalescence of two monovacancies,
which can be expressed as

Eb
ε = 2EN−1,1;ε − EN−2,2;ε − EN,0;ε. (11)

The positive values of the binding energy indicate attractive interaction, while the negative ones
refer to repulsive interaction.

In strain-free W, the binding energies of divacancy along the [111] (1NN) and [100] (2NN) directions
are −0.09 eV and −0.43 eV, respectively. This indicates that two vacancies with 1NN distance exhibit
weak repulsion, and the repulsive interaction becomes stronger at 2NN distance. These results are
consistent with previous studies [28,29]. To understand the contribution of electronic and mechanical
relaxation to the interaction of divacancy, we also calculate the binding energy of 1NN and 2NN
divacancy with a fixed atomic structure (unrelaxed case). In this case, the binding energies of 1NN and
2NN divacancy are calculated to be −0.1 eV and −0.43 eV, respectively, which is almost the same as
the fully relaxed case. This indicates that the atomic relaxation has little effect on the interaction of
divacancy, and thus the electronic contribution plays a dominating role.

Figure 8 shows the differential charge density on the < 110 > plane, which is the close-packed
plane in bcc W. The differential charge density is defined as the difference between the superposition
densities of the monovacancy system plus a single W atom at the vacant site and the charge density of
bulk W. The red region indicates accumulation of electrons after forming a monovacancy, while the
blue region refers to depletion of electrons. Figure 8b shows that there is obvious electron accumulation
(like a bond ring) between 1NN (e.g., W1) and 2NN (e.g., W5) W atoms. The accumulated electrons
form a bonding cage surrounding the monovacancy, which causes more energy to be consumed to
further break the metallic bonds in comparison with the perfect W. A similar phenomenon has also
been reported in fcc Al [54]. Here, we refer to this enhanced bonding between 1NN–2NN W atoms as
1NN–2NN bonds. For the 1NN divacancy, seven extra bonds are broken for the formation of the second
vacancy, as shown in Figure 9a, which is lower than that of a monovacancy (~8 extra bonds). However,
three of them are the enhanced 1NN–2NN bonds, denoted as red double-sided arrow (Figure 9a).
Moreover, it needs more energy to break these enhanced bonds than to break the four normal bonds.
Accordingly, there is slight repulsion for the 1NN divacancy. As for the 2NN divacancy, eight bonds
are broken for the formation of the second vacancy and four of them are enhanced 1NN–2NN bonds,
as illustrated in Figure 9b. Thus, extra energy is needed to create the second vacancy, leading to the
low binding energy of 2NN divacancy. Therefore, we mainly focus on the binding energy of the 1NN
divacancy for the strained case, because it is more stable than the 2NN divacancy.
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Figure 10 shows the variation of binding energy of 1NN divacancy under both hydrostatic and
biaxial strain. It can be found that the binding energy of 1NN divacancy increases with the increasing
of tensile strain, while it decreases with the increasing of compressive strain. This suggests that
tensile strain facilitates the clustering of vacancies, but compressive strain suppresses it. Interestingly,
the binding energy turns from negative to positive when the hydrostatic/biaxial tensile strain exceeds
1.5%/2%, respectively. This suggests that the 1NN divacancy is energetically stable under large
hydrostatic/biaxial tensile strain.

As mentioned above, the binding energy of divacancy is closely related to the electron redistribution
between the 1NN and 2NN W atoms surrounding the monovacancy. Therefore, we further plot the
differential charge density on the < 110 > plane under ± 5% hydrostatic strains. Under 5% compressive
strain (Figure 8c), the 1NN-2NN bonds become even stronger owing to the more compact atomic
configuration. The enhanced bonding cage surrounding the monovacancy makes it harder to remove
the second W atom, leading to the decrease of the binding energy. In contrast, under 5% hydrostatic
tensile strain, the 1NN-2NN bonds almost vanish (Figure 8d). The weakened bonding cage makes it
easier to remove the second W atom, resulting in the increase of the binding energy. Consequently,
the strain will affect the vacancy clustering in W by changing the electron distribution surrounding
the vacancy.
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3.4. Effects of Strain on the Nucleation of Vacancies

Recently, Zibrov et al. investigated the effects of plastic deformation on the performance of W
exposed to D plasma [50]. It is found that the D retention is enhanced in the deformed W, which can be
attributed to the formation of vacancy-type defects induced by deformation. This suggests that the
strain has a significant effect on the evolution of vacancies in W. Hence, on the basis of the energetic
and kinetics parameters of vacancies under strain, as mentioned above, we further employ the OKMC
method to investigate the effect of both hydrostatic and biaxial strain on the nucleation of vacancies
in W.

Here, the initial concentration of vacancy is set to be 10−5 appm (77 monovacancies), and the
monovacancies are randomly inserted in the simulation box. The simulation temperature is 573 K,
which is consistent with the experiment [50]. The vacancy object is allowed to hop to one of the eight
bcc nearest neighboring lattice sites with the vibration frequency of 6 × 1012/s. As the migration energy
of the monovacancy and the 1NN divacancy in strain free W is almost the same [25], the migration
energy of < 111 > divacancy in strained W is assumed to be the same as that of the monovacancy.
As for the tri-vacancy in W, it can migrate rapidly throughout the matrix, with the migration energy of
~0.90 eV [57]. Once a tri-vacancy interacts with another monovacancy, a stable vacancy cluster can be
formed with high binding energy (> 0.6 eV in [24]), which is hard to dissociate at 573 K and serves as
the trapping center for the subsequent vacancies. Therefore, the formation of tri-vacancy can be used
as the sign of vacancy nucleation.

Figure 11 shows the formation time of tri-vacancy in W under different strain conditions. It is
found that the tri-vacancy is observed under both hydrostatic/biaxial tensile strain. The formation
time of the tri-vacancy significantly decreases with the increase of tensile strain. However, there is
no tri-vacancy under hydrostatic/biaxial compressive strain. This can be attributed to the influence
of strain on the mobility and clustering of vacancies in W. For the tensile strain cases, the migration
energy of the monovacancy decreases with the increase of strain, enhancing the clustering of vacancies
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kinetically. Moreover, the binding energy of divacancy is positive under hydrostatic/biaxial tensile
strains, except for strain of 1%. This suggests that, once a divacancy is formed, it is unlikely to dissociate.
These two factors shorten the formation time of tri-vacancy with the increase of tensile strain,
as illustrated in Figure 11. On the contrary, the mobility of the monovacancy is significantly reduced
owing to the high migration energy under hydrostatic compressive strain. Therefore, the formation
of the divacancy and tri-vacancy requires much more time. In addition, the binding energy of
the divacancy is negative under hydrostatic compressive strain, indicating that the divacancy is
energetically favorable to dissociate, thus inhibiting the formation of the tri-vacancy. Under biaxial
compressive strain, the migration energy of the monovacancy is significantly reduced, corresponding
to the high mobility of the monovacancy. However, the binding energy of the divacancy is negative,
which indicates that, even though a divacancy is formed, it will soon dissociate before meeting another
monovacancy. Therefore, the formation of the tri-vacancy is not observed in the whole simulation time
scale under biaxial compressive strains. Consequently, the tensile strain will facilitate the nucleation
of vacancies, while the compressive strain will suppress it. Note that, although tri-vacancy is not
observed under ε ≤ 0% in our OKMC simulation time scale owing to the negative binding energy,
vacancy clusters could indeed be formed owing to the stabilizing effect of impurities (such as carbon
and oxygen [32,33]), which is beyond the scope of this work.
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4. Summary

In summary, we have investigated the formation, migration, and clustering of vacancy in tungsten
(W) under different strain conditions using a first-principles method combined with linear elastic
theory. The formation energy of a monovacancy responds to hydrostatic strain “monotonically”, that is,
increasing (decreasing) with the increase of tensile (compressive) strain. This can be rationalized by the
variation of electronic states of the 1NN W atoms surrounding the monovacancy. The ideal path for the
migration of a monovacancy is < 111 > direction and the corresponding migration energy decreases
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monotonically with hydrostatic strain. Surprisingly, the vacancy mobility is always promoted by biaxial
strain, almost independent of the sign of strain, which originates from the Poisson effect. Although
the binding energy of divacancy is negative in strain-free W, it increases monotonically with both
hydrostatic and biaxial strains. Specifically, the binding energy of divacancy turns from negative to
positive at ε = 1.5%/2% for hydrostatic/biaxial strain. This indicates that two 1NN monovacancies are
energetically favorable to bind with each other under large hydrostatic/biaxial tensile strain, leading to
the formation of vacancy clusters. Furthermore, the nucleation of vacancy cluster under different strain
conditions is simulated with the OKMC method. The nucleation time of vacancy cluster decreases
significantly with the increasing tensile strain, while it is not observed under compressive strain for the
whole simulation time. This suggests the enhancing effect of tensile strain on the formation of voids in
W, which is consistent with the experimental observations.
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