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INTRODUCTION

The reported detection rates of gastric subepithelial

Background/Aims: The accuracy of endosonographers in diagnosing gastric subepithelial le-
sions (SELs) using endoscopic ultrasonography (EUS) is influenced by experience and sub-
jectivity. Artificial intelligence (Al) has achieved remarkable development in this field. This study
aimed to develop an Al-based EUS diagnostic model for the diagnosis of SELs, and evaluated its
efficacy with external validation.

Methods: We developed the EUS-Al model with ResNeSt50 using EUS images from two hospitals
to predict the histopathology of the gastric SELs originating from muscularis propria. The diagnostic
performance of the model was also validated using EUS images obtained from four other hospitals.

Results: A total of 2,057 images from 367 patients (375 SELs) were chosen to build the models,
and 914 images from 106 patients (108 SELs) were chosen for external validation. The sensitiv-
ity, specificity, positive predictive value, negative predictive value, and accuracy of the model for
differentiating gastrointestinal stromal tumors (GISTs) and non-GISTs in the external validation
sets by images were 82.01%, 68.22%, 86.77%, 59.86%, and 78.12%, respectively. The sensitiv-
ity, specificity, positive predictive value, negative predictive value, and accuracy in the external
validation set by tumors were 83.75%, 71.43%, 89.33%, 60.61%, and 80.56%, respectively. The
EUS-AI model showed better performance (especially specificity) than some endosonographers.
The model helped improve the sensitivity, specificity, and accuracy of certain endosonographers.

Conclusions: We developed an EUS-AI model to classify gastric SELs originating from mus-
cularis propria into GISTs and non-GISTs with good accuracy. The model may help improve the
diagnostic performance of endosonographers. Further work is required to develop a multi-modal
EUS-AI system. (Gut Liver 2023;17:874-883)

Key Words: Artificial intelligence; Subepithelial lesions; Gastrointestinal stromal tumors; Endo-
scopic ultrasonography; Gastric

lesions (SELs) during upper gastrointestinal endoscopy
ranged from 0.3% to 2%.'” Among these, gastrointestinal
stromal tumors (GISTs) and leiomyomas are more com-
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mon than other types.* GISTs have malignant potential,
and need to be cautiously monitored or resected."’ The
lesions are usually located at the muscularis propria.’ Ac-
curate differentiation of GISTs and non-GISTs is of much
clinical importance. Endoscopic ultrasonography (EUS) is
usually recommended as the subsequent examination mo-
dality.” However, the EUS-based diagnosis of SELs often
depends on the experience of the operator and is liable to
be influenced by subjective factors. The diagnosis is usu-
ally made based on the analysis of its location, originating
layer, margins, echogenicity, and morphology.

The reported accuracy rate of the endoscopists in the
diagnosis of SELs using EUS ranged from 43% to 73%.°*"°
In order to improve the diagnostic accuracy, some experts
have used artificial intelligence (AI) systems to develop
convolutional neural networks models to help predict the
diagnosis of SELs on EUS images. Minoda et al.* developed
an EUS diagnostic system with AI (EUS-AI), and demon-
strated a good diagnostic yield of their EUS-AI system for
SELs 220 mm; however, the accuracy, especially specificity
for SELs <20 mm was not that satisfactory.® We believe it is
more important to distinguish the smaller SELs, as resec-
tion is usually recommended for SELs 220 mm. Ability to
predict smaller-sized SELs would help inform treatment
decision-making in clinical settings. Hence, in this study,
we sought to develop an Al-based EUS diagnostic model
for the diagnosis of SELs, and evaluated its efficacy with
both internal and external validation.

MATERIALS AND METHODS

1. Clinical data and EUS image collection

EUS images were retrospectively searched at the Sixth
Affiliated Hospital, Sun Yat-sen University and Guangdong
Second Provincial Central Hospital to build the model.
The inclusion criteria for the collected images were: good-
quality EUS images showing the tumors; gastric SELs origi-
nating from muscularis propria; confirmed histopathology
(obtained by endoscopic resection, surgery or fine needle
aspiration). The exclusion criteria were: histopathology
result not in accordance with the clinical situation (for ex-
ample, resection of just the mucous membrane rather than
the tumor, or negative fine needle aspiration), leiomyosar-
coma or other sarcomas, poor quality images, and repeated
images. The following information of the patients was also
collected: age, sex, EUS results, and histopathology results.
The collected images were categorized into two groups
based on the histopathology results of the SELs: GISTs and
non-GISTs.

2. EUS procedures

EUS was performed by endosonographers with experi-
ence of diagnosing more than 500 cases of SELs by EUS.
Conventional machines were used: EU-ME1, EU-ME2
(Olympus, Tokyo, Japan), MAJ-1720 (Olympus), SU-9000
(Fujifilm, Tokyo, Japan), SP-900 (Fujifilm), and HI VISION
Preirus (HITACHI, Tokyo, Japan). The echoendoscopes
used were GF-UE260-AL5, GF-UCT240-AL5, and GF-
UCT260 (Olympus, frequency 5-12 MHz), mini-probes
UM-2R or UM-3R (Olympus, frequency 20 MHz), EG-
530UT2, EG-580UT, or EG-580UR (Fujifilm, frequency
5-12 MHz), mini-probes P2612-M or P2615-M (Fujifilm,
frequency 12 MHz or 15 MHz), and EG-3270UK, EG-
3670URK, EG-3830UT or EG-3870UTK (Pentax Lifecare,
Tokyo, Japan, frequency 5-20 MHz). The echoendoscopes
used in the models and the external validation sets are
specified in the Supplementary Table 1, and the echoendo-
scopes used in each hospital are specified in Supplemen-
tary Table 2.

3. Image processing and augmentation

After collecting and selecting the qualified images, two
experts (Y. Lu and J.S) in EUS firstly marked the border of
the tumor with software named LabelMe, which is a po-
lygonal and open annotation tool developed with Python
by the Massachusetts Institute of Technology, Computer
Science and Artificial Intelligence Laboratory. The marked
tumors were regarded as the regions of interest. Then the
engineers trimmed the images to squares or rectangles pre-
cisely fitting the regions of interest (Fig. 1A). Some images
had measuring lines or measuring marks which would
have affected the accuracy of the deep learning models; for
such images, we used “clone stamp” tool of the Adobe Pho-
toshop (version 13.0) erase them (Fig. 1B), and we only
chose those with a little measuring lines or marks so as to
preserve the original images, if the change was huge, then
we would not choose this image. To enlarge the training
sets, image augmentation technology was applied. We used
mirror flip, horizontal flip, and rotation in certain degrees
without disturbing the textures of the EUS images (Fig.
1C). The preprocessed images were then changed into the
RGB three-channel to be regarded as the model input.

4. Development of the deep learning models and

external validation

We used deep convolutional neural networks classifier
named ResNeSt50 to train the model." The image process-
ing, augmentation, and the development of the deep learn-
ing models was supported by the Tianjin Jinyu Artificial
Intelligence Medical Technology Co., Ltd. The process was
mainly performed by Python (version 3.7) and PyTorch
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Fig. 1. Images process. (A) Images were trimmed to squares or rectangles containing the regions of interest. (B) Erasure of the measuring lines or
measuring marks. (C) Images showing mirror flip, horizontal flip, and rotation in certain degrees for image augmentation.

(version 1.7.1). The images chosen were randomly divided
into training sets and test sets with a ratio of 9:1, and 10-
fold cross-validation was applied. The stochastic gradient
descent optimizer was used, and we introduced the first-
order momentum (whose value was 0.9), which made the
gradient update inertially and could better achieve the
effect of convergence. The initial learning rate was set as
le-3, and cosine annealing was used as the attenuation
method. The model was trained for 600 epochs, and the
final learning rate was le-6. When the training reached the
preset loss value (loss <0.0005) or 600 epochs, the training
was stopped (Fig. 2 shows the schematic diagram). The
output of the model was the probability for the pathologi-
cal type of the SELs (GIST or non-GIST) based on the
evaluation of the EUS images. Three experts (Y. Lu, J.S.,
and W.C,; experience of more than 1,000 EUS procedures)
and three novices (J.W., M.H., and G.L.; experience of less
than 500 EUS procedures) who were blinded to the pathol-
ogy of the SELs independently judged the classification of

876 www.gutnliver.org

the lesions.

Then, we collected the EUS images from four other
hospitals (Fudan University Shanghai Cancer Center, the
Fourth Hospital of Hebei Medical University, Zhoushan
Hospital of Zhejiang Province, and Yangjiang Hospital of
Traditional Chinese Medicine) to perform external valida-
tion. The inclusion and exclusion criteria were the same as
mentioned above for the selection of the images for build-
ing the model. Images in the external validation dataset
were also marked with regions of interests and the measur-
ing lines and marks were erased.

In the external validation, we also evaluated the diag-
nostic performance of Al by tumors. Firstly, the number
of images of the tumor diagnosed by AI with GISTs or
non-GISTs was counted, if more images were diagnosed
as GISTs, then the result of this tumor was GISTs, and vice
versa. If the number was equal, then the pooled predictive
probability was calculated, and the category with larger
probability was the final diagnosis. Also, three experts and
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Fig. 2. Schematic diagram of the DCNNs from an endoscopic ultrasonography image to the final prediction.
DCNN, deep convolutional neural networks; FC, fully connected; conv, convolutional layer; GIST, gastrointestinal stromal tumor.

three novices who were blinded to the histopathological
results, were asked to classify the SELs in the external vali-
dation sets, and then they were asked to classify the SELs
again after knowing the diagnosis of the EUS-AI model (the
endosonographers were not forced the accept the results of
Al models, rather, if they know the results of the AI mod-
els, they would think twice and make the final diagnosis
by their own choice of whether to believe Al models or
believe themselves).

5. Statistical analysis

Categorical variables were expressed as number (per-
centage). Normally distributed continuous variables were
presented as mean (standard deviation), while non-nor-
mally distributed continuous variables were presented as
median (range). Sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and accu-
racy of the EUS-AI model and the respective 95% confi-
dence intervals (Cls) were calculated. The receiver operat-
ing characteristic curve was plotted, and the area under the
curve was calculated. The above calculation was performed

by the Scikit-learn package in Python. The accuracy, sensi-
tivity, and specificity were compared using the chi-square
test (SPSS Statistic version 26; IBM Corp., Armonk, NY,
USA). Two-tailed p-values <0.05 were considered indica-
tive of statistical significance.

This study was approved by the Institutional Review
Board of The Sixth Affiliated Hospital, Sun Yat-sen Uni-
versity (IRB number: 2021ZSLYEC-319), and the informed
consent was waived. The study has been registered in the
Chinese Clinical Trial Registry (No. ChiCTR2100051191).

RESULTS

1. Basic information of the training sets and the test
sets
A total of 2,057 images (1,320 images of GISTs and 737
images of non-GISTs) from 367 patients (375 SELs, in-
cluding 245 GISTs, 120 leiomyomas, 8 ectopic pancreas, 1
sclerotic fibroma, and 1 schwannoma) were finally chosen
for analysis. The median age of the patients was 54 years

https://doi.org/10.5009/gnl220347 877



Gut and Liver, Vol. 17, No. 6, November 2023

(range, 18 to 81 years), and 146 patients (39.78%) were
male. A total of 1,851 images (1,188 images of GISTs and
663 images of non-GISTs) were randomly divided into the
training sets and 206 images (132 images of GISTs and 74
images of non-GISTs) into the test sets. The characteristics
of the SELs chosen are summarized in Table 1.

Table 1. Characteristics of the Subepithelial Lesions Chosen for Analysis

2. Performance of the EUS-AI model for prediction of
GISTs and non-GISTs in the test sets
The sensitivity, specificity, PPV, NPV, and accuracy
of the EUS-AI model in differentiating between GISTs
and non-GISTs in the test sets by images were 84.85%
(95% CI, 77.75% to 89.97%), 89.19% (95% CI, 80.09% to
94.42%), 93.33% (95% CI, 87.39% to 96.58%), 76.74% (95%

Characteristic GISTs Non-GISTs (n=130)

Location

Cardia 2 5 (leiomyoma)

Gastric fundus 156 67 (leiomyomal)

Junction of gastric fundus and gastric body 2 1 (leiomyoma)

Gastric body 80 53 (47 leiomyomas, 5 ectopic pancreas, 1 sclerotic fibroma)

Gastric angle 2 1 (ectopic pancreas)

Gastric antrum 3 3 (2 ectopic pancreas, 1 schwannomal)

Total 245 130 (120 leiomyomas, 8 ectopic pancreas, 1 sclerotic fibroma, 1 schwannoma)
Size, No. (%)

>20 mm 74 (30.20) 28 (21.54)

<20 mm 171 (69.80) 102 (78.46)

GIST, gastrointestinal stromal tumor.
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Fig. 3. Receiver operator curves (ROCs) of the EUS-AI model in differ-
entiating GISTs and non-GISTs in the following: (A] test sets by image;
(B) external validation sets by image; and (C) external validation sets
by tumor.

EUS, endoscopic ultrasonography; Al, artificial intelligence; GIST,
gastrointestinal stromal tumor; Cl, confidence interval.
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CI, 66.79% to 84.41%), and 86.41% (95% CI, 81.06% to
90.43%), respectively.

3. Basic information for the external validation sets

A total of 914 images (656 images of GISTs and 258 im-
ages of non-GISTs) from 106 patients (108 SELs, including
80 GISTs, 27 leiomyomas, and 1 schwannoma) were finally
chosen in the external validation sets. The number of im-
ages selected from each hospital is presented in Supple-
mentary Table 3.

4. Performance of the EUS-Al model for prediction

of GISTs and non-GISTs in the external validation

sets

The sensitivity, specificity, PPV, NPV, and accuracy of
the EUS-AI model in differentiating GISTs and non-GISTs
in the external validation sets by images were 82.01%
(95% CI, 78.89% to 84.76%), 68.22% (95% CI, 62.30%
to 73.60%), 86.77% (95% CI, 83.88% to 89.22%), 59.86%
(95% CI, 54.17% to 65.31%), and 78.12% (95% CI, 75.32%
to 80.68%), respectively. The sensitivity, specificity, PPV,
NPV, and accuracy of the EUS-AI model for differentiat-
ing GISTs and non-GISTs in the external validation sets by
tumors were 83.75% (95% CI, 74.16% to 90.25%), 71.43%
(95% CI, 52.94% to 84.75%), 89.33% (95% CI, 80.34% to
94.50%), 60.61% (95% CI, 43.68% to 75.32%), and 80.56%
(95% CI, 72.10% to 86.92%), respectively. The receiver
operating characteristic curves for the EUS-AI model for
discriminating GISTs and non-GISTs are shown in Fig. 3.
The false positive or negative EUS images and the confu-
sion matrices of the pairwise comparison in the external
validation sets are presented in Fig. 4.

5. Subgroup analysis

We further performed subgroup analysis using the test
sets and external validation sets by lesion size and by hos-
pital. The accuracy for SELs >20 mm in the external vali-
dation sets by images was 84.6%, and 87.5% by tumors; the
accuracy for SELs <20 mm in the external validation sets
by images was 69.33%, and 75% by tumors. The diagnostic
performance of the EUS-AI model varied in different hos-
pitals (Supplementary Table 4).

6. Performance of endosonographers for prediction
of GISTs and non-GISTs with and without the aid of
EUS-AI
The diagnostic performance of endosonographers,

varied even among endosonographers with the same level
of experience, especially with aspect to specificity (Supple-
mentary Table 5 shows the results of the sets used to build
the model, and Supplementary Table 6 shows the results of
the external validation sets).

Both in the test sets and external validation sets, the
EUS-AI model showed much better specificity than that
of novices and some experts (except for expert 3, Table 2
shows the comparison result between the EUS-AI model
and each endosonographer in the external validation sets
by tumors).

With the aid of EUS-AI the sensitivity of expert 3 and
novice 1 showed a significant increase (p=0.043 for expert
3, p=0.005 for novice 1), while for other endosonogra-
phers, there were no significant difference (the comparison
result is shown in Table 3). The specificity of expert 2 and
novice 3 showed a significant increase (p=0.007 for expert
2, p<0.001 for novice 3), while no significant difference
was observed for other endosonographers; the accuracy of
expert 3, novice 1, and novice 3 increase (p=0.047 for ex-

C Actual class

GISTs

Predicted class

Non-GISTs

GISTs Non-GISTs

Fig. 4. (A) EUS image of a GIST misdiagnosed as non-GIST by EUS-AI. (B) EUS image of a non-GIST misdiagnosed as a GIST by EUS-AI. (C) Confu-
sion matrices show the pairwise comparison (number of tumors) in the external validation sets.
EUS, endoscopic ultrasonography; GIST, gastrointestinal stromal tumor; Al artificial intelligence.
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Table 2. Comparison of the Diagnostic Performance between the EUS-Al Model and Each Endosonographer in the External Validation Sets by Tu-

mors
Sensitivity, % (95% Cl) p-value Specificity, % (95% Cl) p-value Accuracy, % (95% Cl) p-value
Al 83.75 (74.16-90.25) - 71.43 (52.94-84.75) - 80.56 (72.10-86.92) -
Expert 1 95.00 (87.84-98.04) 0.021 71.43 (52.94-84.75) 1.000 88.89 (81.58-93.53) 0.089
Expert 2 93.75 (86.19-97.30) 0.045 35.71(20.71-54.17) 0.007 78.70 (70.07-85.37) 0.735
Expert 3 80.00 (69.95-87.30) 0.538 100 (87.94-100) 0.002 85.19 (77.28-90.67) 0.367
Novice 1 65.70 (56.64-76.76) 0.017 64.29 (45.83-79.29) 0.567 66.67 (57.34~74.85) 0.021
Novice 2 87.50 (78.50-93.07) 0.499 32.14.(17.93-50.67) 0.003 73.15 (64.10-80.61) 0.197
Novice 3 86.25 (77.03-92.15) 0.658 10.71 (3.71-27.20) <0.001 66.67 (57.34-74.85) 0.021

EUS, endoscopic ultrasonography; Al, artificial intelligence; CI, confidence interval.

Table 3. Comparison of the Diagnostic Performance of the Endosonographers before and after the Use of EUS-Al in the External Validation Sets by

Tumors
Sensitivity, % (95% Cl) p-value Specificity, % (95% Cl) p-value Accuracy, % (95% Cl) p-value
Expert 1+Al 87.50 (78.50-93.07) 0.093 71.43 (52.94-84.75) 1.000 83.33(75.19-89.19) 0.238
Expert 2+Al 85.00 (75.59-91.21) 0.073 71.43 (52.94-84.75) 0.007 81.48 (73.12-87.68) 0.609
Expert 3+Al 91.25(83.02-95.70) 0.043 100 (87.94-100) 1.000 93.52 (87.22-96.83) 0.047
Novice 1+Al 86.25(77.03-92.15) 0.005 64.29 (45.83-79.29) 1.000 80.56 (72.10-86.92) 0.021
Novice 2+Al 95.00 (87.84-98.04) 0.093 50.00 (32.63-67.37) 0.174 83.33(75.19-89.19) 0.070
Novice 3+Al 88.75(79.98-93.97) 0.633 57.14 (39.07-73.49) <0.001 80.56 (72.10-86.92) 0.021

EUS, endoscopic ultrasonography; Al, artificial intelligence; Cl, confidence interval.

pert 3, p=0.021 for novice 1 and novice 3), while there was
no significant difference for other endosonographers.

DISCUSSION

In this study, we built an EUS-AI model to predict the
histopathological diagnosis of gastric SELs originating
from muscularis propria based on EUS images. Due to the
limited sample size of images for building the model in
certain histopathology categories, we were only able to per-
form binary classification of GISTs and non-GISTs using
this model. The model was built by images obtained from
two centers, with various types of echoendoscopes and ul-
trasound systems, which are widely used in clinical centers.
The performance of this EUS-AI model was validated in
multicenter external validation. The sensitivity, specificity,
and accuracy of the model in the external validation sets
by tumors were 83.75%, 71.43%, and 80.56%, respectively.
Compared with the endosonographers, this EUS-AI model
showed superior specificity. This EUS-AI model was found
to improve the diagnostic sensitivity, specificity, or accu-
racy of some endosonographers.

Previous studies have also tried to build EUS-AI mod-
els to differentiate SELs. The earliest published study was
probably performed by Minoda et al.* Later, Kim et al."’
also built a convolutional neural network-AlI system to dis-
criminate GISTs and non-GISTs, and its diagnostic perfor-
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mance was similar to that of Minoda et al.® and our model.
Other studies have tried to build EUS-AI models to dif-
ferentiate GISTs and leiomyomas, but most of them were
single-center studies, without external validation.*”'*"’
Yang et al."” constructed an EUS-AI model to differenti-
ate GISTs and leiomyomas with prospective and external
validation. The sensitivity, specificity, and diagnostic ac-
curacy of their model in the external validation sets were
45.8%, 84.6%, and 66.0%, respectively. The differences in
the results may be attributed to some differences between
the studies. First, Yang et al." chose all GISTs and leiomyo-
mas regardless of the location, while we only chose gastric
SELs originating from muscularis propria, and we did not
perform prospective validation. Second, in some studies,
the labeled tumor images were resized to different sizes to
reduce the influence of size in building the models.*'*"* I
a previous study, the shapes of the SELs showed variability
among lesions with different histopathological results;"’
therefore, we tried to trim the images into the shapes of
the SELs, but the diagnostic performance was not that
satisfactory. Third, the accuracy of the EUS-AI model may
be influenced by the EUS probes, echoendoscopes, and
EUS machines used. As we can see, in Fig. 4, the differ-
ence in some of the EUS images was small, and both the
endosonographers and the EUS-AI model failed to make
the correct classification. Fourth, in their study, only about
30% of the consecutive patients had a clear histopathologi-
cal diagnosis, which caused verification bias, while in our

n
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study, all the patients had confirmed histopathological di-
agnoses.

We performed two kinds of subgroup analysis, and the
first one was by lesion size. We found that a tendency for
higher sensitivity and accuracy of the EUS-AI for SELs no
less than 20 mm compared to SELs <20 mm (sensitivity
of the test sets by images, sensitivity and accuracy of the
external validation by images had significant difference);
however, there was no significant difference in specificity.
The results were similar to those reported by Yang et al.'’
and Minoda et al.® The second subgroup analysis was per-
formed by hospitals. There are several potential explana-
tions for this phenomenon. First, though we used almost
all kinds of echoendoscopes that were utilized in clinical
settings to build the models, the proportion of each echo-
endoscope varied, and the echoendoscopes were different
in the hospitals from the external validation sets, which
may have influenced the result. Second, the diagnostic
performance of the EUS-AI model was influenced by the
quality of the images. Although we selected only good-
quality images, we still found variable quality images in
different hospitals.

In this study, the diagnostic performance varied among
different endosonographers, even with the same level
of experience, especially with respect to specificity. This
indicates the need for introducing a system which may
help reduce the inter-observer variability among the en-
dosonographers. With the aid of the EUS-AI model, some
endosonographers showed improvement in sensitivity,
specificity, or accuracy. We further found that, for those
with equal or higher sensitivity/specificity/accuracy, the
EUS-AI model did not help much, but for those with low
sensitivity/specificity/accuracy, the EUS-AI improved their
performance. Hence, this EUS-AI model would be more
helpful for those novices, as it might help improve their
accuracy and reduce the inter-observer variability. On the
other hand, whether this model can help the endosonog-
raphers not only depends on its own diagnostic perfor-
mance, but also on the confidence of the endosonographer
in the model. As for novice 2, his specificity was low, but
he did not have much confidence in the EUS-AI model, so
his specificity did not increase much.

In our EUS-AI model, we collected the normal B-mode
images, and evaluation of the brightness or grayscale histo-
gram, heterogeneity, shape, “halo” sign, and cystic changes

16-18
However,

in EUS images may help distinguish SELs.
there are other techniques that aid in the differentiation
of SELs. A previous study demonstrated the usefulness of

elastography in differentiating GISTs and non-GISTs, as

the former were found to be harder.”” Contrast-enhanced
EUS was also reported to be a complementary tool to dif-
terentiate GISTs from non-GISTs, as GISTs usually showed
early, clear enhancement, and avascular areas in the center
of the lesions (referring to necrosis), while non-GISTs
showed little or no enhancement.”™" A recently published
study used contrast-enhanced harmonic EUS images to
build AT model to distinguish GISTs and leiomyomas, and
the accuracy of Al model was comparable to that of ex-
perts.”” The above new techniques have all been shown to
be useful in distinguishing between GISTs and non-GISTs.
Incorporation of the information or the images or videos
obtained with these techniques for building a multi-modal
EUS-AI model may yield much better results.

Some limitations of our study should be taken into
consideration while interpreting the results. First, we only
selected gastric SELs originating from muscularis propria
to build the model, since this was our first step towards
building an EUS-AI model for distinguishing the SELs,
and the SELs are most frequently found in the stomach.
Moreover, the situations of gastric SELs are more compli-
cated.” Indeed, most of the gastric SELs originate from the
muscularis propria,” so we chose this category to build the
prototype of the model. Our subsequent work may include
all SELs from the esophagus, duodenum, and large intes-
tine, with all layers to build a modified model. Second, the
number of images and tumors used to build the EUS-AI
model can still be increased. Al is based upon big data, and
inclusion of more images, especially other types of tumors
rather than GISTs or leilomyomas, may enable multi-class
classifications using Al Third, for EUS examinations, vari-
ous machines were used, and there might be differences
in image resolution or quality among the machines, so we
collected images of different lesions from varied hospitals
and using different endoscopes to minimize the influence.
Fourth, we did not perform prospective validation, and the
validations were all based on images rather than videos. It
would be better to validate this EUS-AI model with pro-
spective videos prior to its application in clinical practice.

In conclusion, we developed an EUS-AI model to clas-
sify gastric SELs originating from muscularis propria into
GISTs and non-GISTs with good accuracy. The model may
help enhance the sensitivity, specificity, and accuracy of
endosonographers in differentiating gastric SELs. Further
work is required to develop a multi-modal EUS-AI system
which incorporates the information of location, elastogra-
phy, contrast-enhanced, and detective flow imaging tech-
niques, to make more accurate and multi-class classifica-
tions.
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