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Background/Aims: The accuracy of endosonographers in diagnosing gastric subepithelial le-
sions (SELs) using endoscopic ultrasonography (EUS) is influenced by experience and sub-
jectivity. Artificial intelligence (AI) has achieved remarkable development in this field. This study 
aimed to develop an AI-based EUS diagnostic model for the diagnosis of SELs, and evaluated its 
efficacy with external validation.
Methods: We developed the EUS-AI model with ResNeSt50 using EUS images from two hospitals 
to predict the histopathology of the gastric SELs originating from muscularis propria. The diagnostic 
performance of the model was also validated using EUS images obtained from four other hospitals.
Results: A total of 2,057 images from 367 patients (375 SELs) were chosen to build the models, 
and 914 images from 106 patients (108 SELs) were chosen for external validation. The sensitiv-
ity, specificity, positive predictive value, negative predictive value, and accuracy of the model for 
differentiating gastrointestinal stromal tumors (GISTs) and non-GISTs in the external validation 
sets by images were 82.01%, 68.22%, 86.77%, 59.86%, and 78.12%, respectively. The sensitiv-
ity, specificity, positive predictive value, negative predictive value, and accuracy in the external 
validation set by tumors were 83.75%, 71.43%, 89.33%, 60.61%, and 80.56%, respectively. The 
EUS-AI model showed better performance (especially specificity) than some endosonographers. 
The model helped improve the sensitivity, specificity, and accuracy of certain endosonographers.
Conclusions: We developed an EUS-AI model to classify gastric SELs originating from mus-
cularis propria into GISTs and non-GISTs with good accuracy. The model may help improve the 
diagnostic performance of endosonographers. Further work is required to develop a multi-modal 
EUS-AI system. (Gut Liver 2023;17:874-883)

Key Words: Artificial intelligence; Subepithelial lesions; Gastrointestinal stromal tumors; Endo-
scopic ultrasonography; Gastric

INTRODUCTION

The reported detection rates of gastric subepithelial 

lesions (SELs) during upper gastrointestinal endoscopy 
ranged from 0.3% to 2%.1-3 Among these, gastrointestinal 
stromal tumors (GISTs) and leiomyomas are more com-
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mon than other types.4 GISTs have malignant potential, 
and need to be cautiously monitored or resected.4,5 The 
lesions are usually located at the muscularis propria.6 Ac-
curate differentiation of GISTs and non-GISTs is of much 
clinical importance. Endoscopic ultrasonography (EUS) is 
usually recommended as the subsequent examination mo-
dality.7 However, the EUS-based diagnosis of SELs often 
depends on the experience of the operator and is liable to 
be influenced by subjective factors. The diagnosis is usu-
ally made based on the analysis of its location, originating 
layer, margins, echogenicity, and morphology.

The reported accuracy rate of the endoscopists in the 
diagnosis of SELs using EUS ranged from 43% to 73%.6,8-10 
In order to improve the diagnostic accuracy, some experts 
have used artificial intelligence (AI) systems to develop 
convolutional neural networks models to help predict the 
diagnosis of SELs on EUS images. Minoda et al.8 developed 
an EUS diagnostic system with AI (EUS-AI), and demon-
strated a good diagnostic yield of their EUS-AI system for 
SELs ≥20 mm; however, the accuracy, especially specificity 
for SELs <20 mm was not that satisfactory.8 We believe it is 
more important to distinguish the smaller SELs, as resec-
tion is usually recommended for SELs ≥20 mm. Ability to 
predict smaller-sized SELs would help inform treatment 
decision-making in clinical settings. Hence, in this study, 
we sought to develop an AI-based EUS diagnostic model 
for the diagnosis of SELs, and evaluated its efficacy with 
both internal and external validation.

MATERIALS AND METHODS

1. Clinical data and EUS image collection
EUS images were retrospectively searched at the Sixth 

Affiliated Hospital, Sun Yat-sen University and Guangdong 
Second Provincial Central Hospital to build the model. 
The inclusion criteria for the collected images were: good-
quality EUS images showing the tumors; gastric SELs origi-
nating from muscularis propria; confirmed histopathology 
(obtained by endoscopic resection, surgery or fine needle 
aspiration). The exclusion criteria were: histopathology 
result not in accordance with the clinical situation (for ex-
ample, resection of just the mucous membrane rather than 
the tumor, or negative fine needle aspiration), leiomyosar-
coma or other sarcomas, poor quality images, and repeated 
images. The following information of the patients was also 
collected: age, sex, EUS results, and histopathology results. 
The collected images were categorized into two groups 
based on the histopathology results of the SELs: GISTs and 
non-GISTs.

2. EUS procedures
EUS was performed by endosonographers with experi-

ence of diagnosing more than 500 cases of SELs by EUS. 
Conventional machines were used: EU-ME1, EU-ME2 
(Olympus, Tokyo, Japan), MAJ-1720 (Olympus), SU-9000 
(Fujifilm, Tokyo, Japan), SP-900 (Fujifilm), and HI VISION 
Preirus (HITACHI, Tokyo, Japan). The echoendoscopes 
used were GF-UE260-AL5, GF-UCT240-AL5, and GF-
UCT260 (Olympus, frequency 5–12 MHz), mini-probes 
UM-2R or UM-3R (Olympus, frequency 20 MHz), EG-
530UT2, EG-580UT, or EG-580UR (Fujifilm, frequency 
5–12 MHz), mini-probes P2612-M or P2615-M (Fujifilm, 
frequency 12 MHz or 15 MHz), and EG-3270UK, EG-
3670URK, EG-3830UT or EG-3870UTK (Pentax Lifecare, 
Tokyo, Japan, frequency 5–20 MHz). The echoendoscopes 
used in the models and the external validation sets are 
specified in the Supplementary Table 1, and the echoendo-
scopes used in each hospital are specified in Supplemen-
tary Table 2.

3. Image processing and augmentation
After collecting and selecting the qualified images, two 

experts (Y. Lu and J.S) in EUS firstly marked the border of 
the tumor with software named LabelMe, which is a po-
lygonal and open annotation tool developed with Python 
by the Massachusetts Institute of Technology, Computer 
Science and Artificial Intelligence Laboratory. The marked 
tumors were regarded as the regions of interest. Then the 
engineers trimmed the images to squares or rectangles pre-
cisely fitting the regions of interest (Fig. 1A). Some images 
had measuring lines or measuring marks which would 
have affected the accuracy of the deep learning models; for 
such images, we used “clone stamp” tool of the Adobe Pho-
toshop (version 13.0) erase them (Fig. 1B), and we only 
chose those with a little measuring lines or marks so as to 
preserve the original images, if the change was huge, then 
we would not choose this image. To enlarge the training 
sets, image augmentation technology was applied. We used 
mirror flip, horizontal flip, and rotation in certain degrees 
without disturbing the textures of the EUS images (Fig. 
1C). The preprocessed images were then changed into the 
RGB three-channel to be regarded as the model input.

4. Development of the deep learning models and 
external validation
We used deep convolutional neural networks classifier 

named ResNeSt50 to train the model.11 The image process-
ing, augmentation, and the development of the deep learn-
ing models was supported by the Tianjin Jinyu Artificial 
Intelligence Medical Technology Co., Ltd. The process was 
mainly performed by Python (version 3.7) and PyTorch 
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(version 1.7.1). The images chosen were randomly divided 
into training sets and test sets with a ratio of 9:1, and 10-
fold cross-validation was applied. The stochastic gradient 
descent optimizer was used, and we introduced the first-
order momentum (whose value was 0.9), which made the 
gradient update inertially and could better achieve the 
effect of convergence. The initial learning rate was set as 
1e-3, and cosine annealing was used as the attenuation 
method. The model was trained for 600 epochs, and the 
final learning rate was 1e-6. When the training reached the 
preset loss value (loss <0.0005) or 600 epochs, the training 
was stopped (Fig. 2 shows the schematic diagram). The 
output of the model was the probability for the pathologi-
cal type of the SELs (GIST or non-GIST) based on the 
evaluation of the EUS images. Three experts (Y. Lu, J.S., 
and W.C.; experience of more than 1,000 EUS procedures) 
and three novices (J.W., M.H., and G.L.; experience of less 
than 500 EUS procedures) who were blinded to the pathol-
ogy of the SELs independently judged the classification of 

the lesions.
Then, we collected the EUS images from four other 

hospitals (Fudan University Shanghai Cancer Center, the 
Fourth Hospital of Hebei Medical University, Zhoushan 
Hospital of Zhejiang Province, and Yangjiang Hospital of 
Traditional Chinese Medicine) to perform external valida-
tion. The inclusion and exclusion criteria were the same as 
mentioned above for the selection of the images for build-
ing the model. Images in the external validation dataset 
were also marked with regions of interests and the measur-
ing lines and marks were erased.

In the external validation, we also evaluated the diag-
nostic performance of AI by tumors. Firstly, the number 
of images of the tumor diagnosed by AI with GISTs or 
non-GISTs was counted, if more images were diagnosed 
as GISTs, then the result of this tumor was GISTs, and vice 
versa. If the number was equal, then the pooled predictive 
probability was calculated, and the category with larger 
probability was the final diagnosis. Also, three experts and 

A B

C

Fig. 1.Fig. 1. Images process. (A) Images were trimmed to squares or rectangles containing the regions of interest. (B) Erasure of the measuring lines or 
measuring marks. (C) Images showing mirror flip, horizontal flip, and rotation in certain degrees for image augmentation.
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three novices who were blinded to the histopathological 
results, were asked to classify the SELs in the external vali-
dation sets, and then they were asked to classify the SELs 
again after knowing the diagnosis of the EUS-AI model (the 
endosonographers were not forced the accept the results of 
AI models, rather, if they know the results of the AI mod-
els, they would think twice and make the final diagnosis 
by their own choice of whether to believe AI models or 
believe themselves).

5. Statistical analysis
Categorical variables were expressed as number (per-

centage). Normally distributed continuous variables were 
presented as mean (standard deviation), while non-nor-
mally distributed continuous variables were presented as 
median (range). Sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accu-
racy of the EUS-AI model and the respective 95% confi-
dence intervals (CIs) were calculated. The receiver operat-
ing characteristic curve was plotted, and the area under the 
curve was calculated. The above calculation was performed 

by the Scikit-learn package in Python. The accuracy, sensi-
tivity, and specificity were compared using the chi-square 
test (SPSS Statistic version 26; IBM Corp., Armonk, NY, 
USA). Two-tailed p-values <0.05 were considered indica-
tive of statistical significance.

This study was approved by the Institutional Review 
Board of The Sixth Affiliated Hospital, Sun Yat-sen Uni-
versity (IRB number: 2021ZSLYEC-319), and the informed 
consent was waived. The study has been registered in the 
Chinese Clinical Trial Registry (No. ChiCTR2100051191).

RESULTS

1. Basic information of the training sets and the test 
sets
A total of 2,057 images (1,320 images of GISTs and 737 

images of non-GISTs) from 367 patients (375 SELs, in-
cluding 245 GISTs, 120 leiomyomas, 8 ectopic pancreas, 1 
sclerotic fibroma, and 1 schwannoma) were finally chosen 
for analysis. The median age of the patients was 54 years 
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(range, 18 to 81 years), and 146 patients (39.78%) were 
male. A total of 1,851 images (1,188 images of GISTs and 
663 images of non-GISTs) were randomly divided into the 
training sets and 206 images (132 images of GISTs and 74 
images of non-GISTs) into the test sets. The characteristics 
of the SELs chosen are summarized in Table 1.

2. Performance of the EUS-AI model for prediction of 
GISTs and non-GISTs in the test sets
The sensitivity, specificity, PPV, NPV, and accuracy 

of the EUS-AI model in differentiating between GISTs 
and non-GISTs in the test sets by images were 84.85% 
(95% CI, 77.75% to 89.97%), 89.19% (95% CI, 80.09% to 
94.42%), 93.33% (95% CI, 87.39% to 96.58%), 76.74% (95% 

Table 1.Table 1. Characteristics of the Subepithelial Lesions Chosen for Analysis

Characteristic GISTs Non-GISTs (n=130)

Location
Cardia 2 5 (leiomyoma)
Gastric fundus 156 67 (leiomyoma)
Junction of gastric fundus and gastric body 2 1 (leiomyoma)
Gastric body 80 53 (47 leiomyomas, 5 ectopic pancreas, 1 sclerotic fibroma)
Gastric angle 2 1 (ectopic pancreas)
Gastric antrum 3 3 (2 ectopic pancreas, 1 schwannoma)
Total 245 130 (120 leiomyomas, 8 ectopic pancreas, 1 sclerotic fibroma, 1 schwannoma)

Size, No. (%)
≥20 mm   74 (30.20) 28 (21.54)
<20 mm 171 (69.80) 102 (78.46)

GIST, gastrointestinal stromal tumor.
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CI, 66.79% to 84.41%), and 86.41% (95% CI, 81.06% to 
90.43%), respectively.

3. Basic information for the external validation sets
A total of 914 images (656 images of GISTs and 258 im-

ages of non-GISTs) from 106 patients (108 SELs, including 
80 GISTs, 27 leiomyomas, and 1 schwannoma) were finally 
chosen in the external validation sets. The number of im-
ages selected from each hospital is presented in Supple-
mentary Table 3.

4. Performance of the EUS-AI model for prediction 
of GISTs and non-GISTs in the external validation 
sets
The sensitivity, specificity, PPV, NPV, and accuracy of 

the EUS-AI model in differentiating GISTs and non-GISTs 
in the external validation sets by images were 82.01% 
(95% CI, 78.89% to 84.76%), 68.22% (95% CI, 62.30% 
to 73.60%), 86.77% (95% CI, 83.88% to 89.22%), 59.86% 
(95% CI, 54.17% to 65.31%), and 78.12% (95% CI, 75.32% 
to 80.68%), respectively. The sensitivity, specificity, PPV, 
NPV, and accuracy of the EUS-AI model for differentiat-
ing GISTs and non-GISTs in the external validation sets by 
tumors were 83.75% (95% CI, 74.16% to 90.25%), 71.43% 
(95% CI, 52.94% to 84.75%), 89.33% (95% CI, 80.34% to 
94.50%), 60.61% (95% CI, 43.68% to 75.32%), and 80.56% 
(95% CI, 72.10% to 86.92%), respectively. The receiver 
operating characteristic curves for the EUS-AI model for 
discriminating GISTs and non-GISTs are shown in Fig. 3. 
The false positive or negative EUS images and the confu-
sion matrices of the pairwise comparison in the external 
validation sets are presented in Fig. 4.

5. Subgroup analysis
We further performed subgroup analysis using the test 

sets and external validation sets by lesion size and by hos-
pital. The accuracy for SELs ≥20 mm in the external vali-
dation sets by images was 84.6%, and 87.5% by tumors; the 
accuracy for SELs <20 mm in the external validation sets 
by images was 69.33%, and 75% by tumors. The diagnostic 
performance of the EUS-AI model varied in different hos-
pitals (Supplementary Table 4).

6. Performance of endosonographers for prediction 
of GISTs and non-GISTs with and without the aid of 
EUS-AI
The diagnostic performance of endosonographers, 

varied even among endosonographers with the same level 
of experience, especially with aspect to specificity (Supple-
mentary Table 5 shows the results of the sets used to build 
the model, and Supplementary Table 6 shows the results of 
the external validation sets).

Both in the test sets and external validation sets, the 
EUS-AI model showed much better specificity than that 
of novices and some experts (except for expert 3, Table 2 
shows the comparison result between the EUS-AI model 
and each endosonographer in the external validation sets 
by tumors).

With the aid of EUS-AI, the sensitivity of expert 3 and 
novice 1 showed a significant increase (p=0.043 for expert 
3, p=0.005 for novice 1), while for other endosonogra-
phers, there were no significant difference (the comparison 
result is shown in Table 3). The specificity of expert 2 and 
novice 3 showed a significant increase (p=0.007 for expert 
2, p<0.001 for novice 3), while no significant difference 
was observed for other endosonographers; the accuracy of 
expert 3, novice 1, and novice 3 increase (p=0.047 for ex-
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sion matrices show the pairwise comparison (number of tumors) in the external validation sets.
EUS, endoscopic ultrasonography; GIST, gastrointestinal stromal tumor; AI, artificial intelligence.



Gut and Liver, Vol. 17, No. 6, November 2023

880  www.gutnliver.org

pert 3, p=0.021 for novice 1 and novice 3), while there was 
no significant difference for other endosonographers.

DISCUSSION

In this study, we built an EUS-AI model to predict the 
histopathological diagnosis of gastric SELs originating 
from muscularis propria based on EUS images. Due to the 
limited sample size of images for building the model in 
certain histopathology categories, we were only able to per-
form binary classification of GISTs and non-GISTs using 
this model. The model was built by images obtained from 
two centers, with various types of echoendoscopes and ul-
trasound systems, which are widely used in clinical centers. 
The performance of this EUS-AI model was validated in 
multicenter external validation. The sensitivity, specificity, 
and accuracy of the model in the external validation sets 
by tumors were 83.75%, 71.43%, and 80.56%, respectively. 
Compared with the endosonographers, this EUS-AI model 
showed superior specificity. This EUS-AI model was found 
to improve the diagnostic sensitivity, specificity, or accu-
racy of some endosonographers.

Previous studies have also tried to build EUS-AI mod-
els to differentiate SELs. The earliest published study was 
probably performed by Minoda et al.8 Later, Kim et al.12 
also built a convolutional neural network-AI system to dis-
criminate GISTs and non-GISTs, and its diagnostic perfor-

mance was similar to that of Minoda et al.8 and our model. 
Other studies have tried to build EUS-AI models to dif-
ferentiate GISTs and leiomyomas, but most of them were 
single-center studies, without external validation.8,9,12,13

Yang et al.10 constructed an EUS-AI model to differenti-
ate GISTs and leiomyomas with prospective and external 
validation. The sensitivity, specificity, and diagnostic ac-
curacy of their model in the external validation sets were 
45.8%, 84.6%, and 66.0%, respectively. The differences in 
the results may be attributed to some differences between 
the studies. First, Yang et al.10 chose all GISTs and leiomyo-
mas regardless of the location, while we only chose gastric 
SELs originating from muscularis propria, and we did not 
perform prospective validation. Second, in some studies, 
the labeled tumor images were resized to different sizes to 
reduce the influence of size in building the models.8,10,14 In 
a previous study, the shapes of the SELs showed variability 
among lesions with different histopathological results;15 
therefore, we tried to trim the images into the shapes of 
the SELs, but the diagnostic performance was not that 
satisfactory. Third, the accuracy of the EUS-AI model may 
be influenced by the EUS probes, echoendoscopes, and 
EUS machines used. As we can see, in Fig. 4, the differ-
ence in some of the EUS images was small, and both the 
endosonographers and the EUS-AI model failed to make 
the correct classification. Fourth, in their study, only about 
30% of the consecutive patients had a clear histopathologi-
cal diagnosis, which caused verification bias, while in our 

Table 3.Table 3. Comparison of the Diagnostic Performance of the Endosonographers before and after the Use of EUS-AI in the External Validation Sets by 
Tumors

Sensitivity, % (95% CI) p-value Specificity, % (95% CI) p-value Accuracy, % (95% CI) p-value

Expert 1+AI 87.50 (78.50–93.07) 0.093 71.43 (52.94–84.75)   1.000 83.33 (75.19–89.19) 0.238
Expert 2+AI 85.00 (75.59–91.21) 0.073 71.43 (52.94–84.75)   0.007 81.48 (73.12–87.68) 0.609
Expert 3+AI 91.25 (83.02–95.70) 0.043 100 (87.94–100)   1.000 93.52 (87.22–96.83) 0.047
Novice 1+AI 86.25 (77.03–92.15) 0.005 64.29 (45.83–79.29)   1.000 80.56 (72.10–86.92) 0.021
Novice 2+AI 95.00 (87.84–98.04) 0.093 50.00 (32.63–67.37)   0.174 83.33 (75.19–89.19) 0.070
Novice 3+AI 88.75 (79.98–93.97) 0.633 57.14 (39.07–73.49) <0.001 80.56 (72.10–86.92) 0.021

EUS, endoscopic ultrasonography; AI, artificial intelligence; CI, confidence interval.

Table 2.Table 2. Comparison of the Diagnostic Performance between the EUS-AI Model and Each Endosonographer in the External Validation Sets by Tu-
mors

Sensitivity, % (95% CI) p-value Specificity, % (95% CI) p-value Accuracy, % (95% CI) p-value

AI 83.75 (74.16–90.25) -   71.43 (52.94–84.75) - 80.56 (72.10–86.92) -
Expert 1 95.00 (87.84–98.04) 0.021   71.43 (52.94–84.75) 1.000 88.89 (81.58–93.53) 0.089
Expert 2 93.75 (86.19–97.30) 0.045   35.71 (20.71–54.17) 0.007 78.70 (70.07–85.37) 0.735
Expert 3 80.00 (69.95–87.30) 0.538   100 (87.94–100) 0.002 85.19 (77.28–90.67) 0.367
Novice 1 65.70 (56.64–76.76) 0.017   64.29 (45.83–79.29) 0.567 66.67 (57.34–74.85) 0.021
Novice 2 87.50 (78.50–93.07) 0.499   32.14 (17.93–50.67) 0.003 73.15 (64.10–80.61) 0.197
Novice 3 86.25 (77.03–92.15) 0.658 10.71 (3.71–27.20) <0.001 66.67 (57.34–74.85) 0.021

EUS, endoscopic ultrasonography; AI, artificial intelligence; CI, confidence interval.
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study, all the patients had confirmed histopathological di-
agnoses.

We performed two kinds of subgroup analysis, and the 
first one was by lesion size. We found that a tendency for 
higher sensitivity and accuracy of the EUS-AI for SELs no 
less than 20 mm compared to SELs <20 mm (sensitivity 
of the test sets by images, sensitivity and accuracy of the 
external validation by images had significant difference); 
however, there was no significant difference in specificity. 
The results were similar to those reported by Yang et al.10 
and Minoda et al.8 The second subgroup analysis was per-
formed by hospitals. There are several potential explana-
tions for this phenomenon. First, though we used almost 
all kinds of echoendoscopes that were utilized in clinical 
settings to build the models, the proportion of each echo-
endoscope varied, and the echoendoscopes were different 
in the hospitals from the external validation sets, which 
may have influenced the result. Second, the diagnostic 
performance of the EUS-AI model was influenced by the 
quality of the images. Although we selected only good-
quality images, we still found variable quality images in 
different hospitals.

In this study, the diagnostic performance varied among 
different endosonographers, even with the same level 
of experience, especially with respect to specificity. This 
indicates the need for introducing a system which may 
help reduce the inter-observer variability among the en-
dosonographers. With the aid of the EUS-AI model, some 
endosonographers showed improvement in sensitivity, 
specificity, or accuracy. We further found that, for those 
with equal or higher sensitivity/specificity/accuracy, the 
EUS-AI model did not help much, but for those with low 
sensitivity/specificity/accuracy, the EUS-AI improved their 
performance. Hence, this EUS-AI model would be more 
helpful for those novices, as it might help improve their 
accuracy and reduce the inter-observer variability. On the 
other hand, whether this model can help the endosonog-
raphers not only depends on its own diagnostic perfor-
mance, but also on the confidence of the endosonographer 
in the model. As for novice 2, his specificity was low, but 
he did not have much confidence in the EUS-AI model, so 
his specificity did not increase much.

In our EUS-AI model, we collected the normal B-mode 
images, and evaluation of the brightness or grayscale histo-
gram, heterogeneity, shape, “halo” sign, and cystic changes 
in EUS images may help distinguish SELs.16-18 However, 
there are other techniques that aid in the differentiation 
of SELs. A previous study demonstrated the usefulness of 
elastography in differentiating GISTs and non-GISTs, as 

the former were found to be harder.19 Contrast-enhanced 
EUS was also reported to be a complementary tool to dif-
ferentiate GISTs from non-GISTs, as GISTs usually showed 
early, clear enhancement, and avascular areas in the center 
of the lesions (referring to necrosis), while non-GISTs 
showed little or no enhancement.20,21 A recently published 
study used contrast-enhanced harmonic EUS images to 
build AI model to distinguish GISTs and leiomyomas, and 
the accuracy of AI model was comparable to that of ex-
perts.22 The above new techniques have all been shown to 
be useful in distinguishing between GISTs and non-GISTs. 
Incorporation of the information or the images or videos 
obtained with these techniques for building a multi-modal 
EUS-AI model may yield much better results.

Some limitations of our study should be taken into 
consideration while interpreting the results. First, we only 
selected gastric SELs originating from muscularis propria 
to build the model, since this was our first step towards 
building an EUS-AI model for distinguishing the SELs, 
and the SELs are most frequently found in the stomach. 
Moreover, the situations of gastric SELs are more compli-
cated.23 Indeed, most of the gastric SELs originate from the 
muscularis propria,24 so we chose this category to build the 
prototype of the model. Our subsequent work may include 
all SELs from the esophagus, duodenum, and large intes-
tine, with all layers to build a modified model. Second, the 
number of images and tumors used to build the EUS-AI 
model can still be increased. AI is based upon big data, and 
inclusion of more images, especially other types of tumors 
rather than GISTs or leiomyomas, may enable multi-class 
classifications using AI. Third, for EUS examinations, vari-
ous machines were used, and there might be differences 
in image resolution or quality among the machines, so we 
collected images of different lesions from varied hospitals 
and using different endoscopes to minimize the influence. 
Fourth, we did not perform prospective validation, and the 
validations were all based on images rather than videos. It 
would be better to validate this EUS-AI model with pro-
spective videos prior to its application in clinical practice.

In conclusion, we developed an EUS-AI model to clas-
sify gastric SELs originating from muscularis propria into 
GISTs and non-GISTs with good accuracy. The model may 
help enhance the sensitivity, specificity, and accuracy of 
endosonographers in differentiating gastric SELs. Further 
work is required to develop a multi-modal EUS-AI system 
which incorporates the information of location, elastogra-
phy, contrast-enhanced, and detective flow imaging tech-
niques, to make more accurate and multi-class classifica-
tions.
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