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Abstract: Necrotizing enterocolitis (NEC) is a life-threatening condition for premature infants in
neonatal intensive care units. Finding indicators that can predict NEC development before symp-
toms appear would provide more time to apply targeted interventions. In this study, stools from
132 very-low-birth-weight (VLBW) infants were collected daily in the context of a multi-center
prospective study aimed at investigating the potential of fecal biomarkers for NEC prediction using
proteomics technology. Eight of the VLBW infants received a stage-3 NEC diagnosis. Stools collected
from the NEC infants up to 10 days before their diagnosis were available for seven of them. Their
samples were matched with those from seven pairs of non-NEC controls. The samples were processed
for liquid chromatography-tandem mass spectrometry analysis using SWATH/DIA acquisition and
cross-compatible proteomic software to perform label-free quantification. ROC curve and principal
component analyses were used to explore discriminating information and to evaluate candidate
protein markers. A series of 36 proteins showed the most efficient capacity with a signature that
predicted all seven NEC infants at least a week in advance. Overall, our study demonstrates that
multiplexed proteomic signature detection constitutes a promising approach for the early detection
of NEC development in premature infants.

Keywords: necrotizing enterocolitis; biomarker; diagnosis; prediction; proteomics; stool analysis;
SWATH; DIA mass spectrometry

1. Introduction

Necrotizing enterocolitis (NEC) is a gastrointestinal disease affecting preterm new-
borns. With a 5–16% occurrence in very-low-birth-weight (VLBW) infants [1–4] and
a mortality rate of 20 to 50% [5–7], NEC is one of the most life-threatening conditions
for premature infants in neonatal intensive care units (NICU). Even in the survivors, NEC
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is responsible for various long-term clinical sequels [7–10]. The etiology and pathology of
NEC are clearly multifactorial but are still incompletely understood. As addressed in many
seminal reviews, the main risk factors of NEC development include functional and immune
intestinal immaturity and dysbiosis, formula feeding and low birth weight [4,11–17].

NEC prediction remains a challenge in the NICU because its diagnosis mostly relies
on clinical and basic radiologic characteristics [18] which are associated with features of
other neonatal conditions [13]. Considering these limitations, most of the efforts for im-
proving the prediction of NEC development in the NICU have focused on the search for
molecular biomarkers. In addition to being able to distinguish NEC from other gastroin-
testinal conditions prior to clinical presentation [19–22], the ideal biomarker candidates
should be tested from samples obtained under noninvasive conditions [17,19,21–24]. It is
noteworthy that the detection of NEC before its progression to an advanced stage would
allow for preventive intervention such as antibiotic treatment and feeding with a human
milk diet [11,13,19,25–27].

The search and discovery of disease molecular targets for prognostic and diagnos-
tic purposes is a key role in biomarker analysis studies [28]. Only a few studies have
performed biomarker research on samples obtained before the onset of NEC clinical man-
ifestations in VLBW infants. In one recent study, a large panel of biomarkers was tested
in blood samples obtained from VLBW infants, but none of them identified the newborns
at risk of developing NEC [29]. It has also been found that the urinary intestinal-fatty
acid binding protein can predict NEC one day before clinical manifestations [30], while
a combination of urinary biomarkers was shown to predict disease severity within the first
6 h of NEC suspicion [31]. The use of stool microbiome features in combination with clinical
metadata features has been shown to identify NEC-affected infants more than 24 h before
disease onset [32]. Specific epigenetic changes (TLR4 gene methylation) [33] and significant
fluctuation in total bile acid levels [34] were also observed in stool samples prior to NEC
diagnosis. Finally, our group recently investigated a series of biomarkers in the stools of
VLBW infants collected prospectively [35]. Among the tested biomarkers—which included
fecal calprotectin, lysozyme, haptoglobin and intestinal alkaline phosphatase, which were
previously found to be indicative of NEC near diagnosis time [36–39] and lipocalin-2, a key
marker associated with the mucosal samples of NEC infants [40]—only the calprotectin and
lipocalin-2 combination was found to provide a predictive signature for NEC development
up to a week in advance of the diagnosis.

In the present study, we have explored SWATH mass spectrometry-based proteomics
to further investigate the potential of fecal biomarkers for predicting NEC development
in stool samples collected from VLBW infants in the context of a multi-center prospective
study [35].

2. Results
2.1. Discovery of Up- and Down-Regulated Proteins in Stools of NEC Infants by
SWATH-MS Analysis

As summarized in the flow chart (Figure 1), stool samples harvested from the seven
VLBW babies over the 10-day period preceding the diagnosis of NEC (identified as day 0),
as well as those of the 14 matched non-NEC VLBW infants, were pooled under three sets
according to the period preceding the diagnosis. Set A was a pool of the samples obtained
10 to 7 days before diagnosis for each infant, set B was for the samples obtained 6 to 3 days
before diagnosis and set C was for the samples obtained between 2 days before diagnosis
and the day of the diagnosis.

Two distinct spectral libraries were generated for comparison. The first one was con-
solidated from the FragPipe analyses of DDA and SWATH data at 5% FDR comprising 8957
peptides (10,029 precursors) and 1044 unique proteins. The second is the reference spectral
library built with DIA-NN using the library-free search mode at 1% FDR and the FASTA
file of protein targets identified from the FragPipe analyses, comprising 12646 peptides
(15,404 precursors) and 1175 protein groups composed of 1046 unique proteins. As ex-
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pected, most of the unique proteins (Figure 2A) and peptides (Figure 2B) were shared
between the two libraries, although DIA-NN identified more peptides at 1% FDR than
FragPipe at 5% FDR. To confirm the validity of the DIA-NN library-free approach, the two
libraries were tested with DIA-NN for the generation of quantified results.
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Using the same parameter for the analysis, both libraries gave comparable results;
however, more protein groups were quantified in total (1085 DIA-NN vs. 1022 FragPipe;
957 shared) and with less than 10% missing values (489 DIA-NN vs. 451 FragPipe;
416 shared; Figure 2C) with the reference spectral library built from the DIA-NN
library-free search.

Starting with the 489 protein groups with less than 10% missing values from the
reference spectral library, potential protein markers were selected with an area under the
curve (AUC) of receiving operating characteristic (ROC) curves of 0.7 and above. Among
these, 80 (69 protein groups of a single protein gene; 11 of two or more protein genes;
86 human genes in total), which were also filling the other selection criteria, as defined in
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M&M, were selected, and half of them were found to be increased in the stools of NEC
infants, the other half being reduced (Figure 3).
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Figure 2. Comparison of libraries and quantified results from FragPipe and DIA-NN analy-
sis. (A,B) Venn diagram comparing unique proteins (A) and unique peptides (modified and
unmodified; (B)) identified in the two libraries. (C) Venn diagram comparing protein groups with less
than 10% missing values quantified with DIA-NN using the combined FragPipe library or DIA-NN
library-free mode. FDR: false discovery rate.
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Figure 3. ROC scatterplot summarizing differentially abundant proteins in NEC stools. “Volcano-
type” ROC scatter-plot of 489 proteins with ≥38 quantified values. On the plot, the x-axis represents
the log2 fold change ratio of the mean protein levels of NEC vs. non-NEC control samples, the y-axis
is the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and the orange
and green dots show down- and up-regulated protein levels passing the 0.7 AUC threshold (dashed
line), respectively. For more clarity, gene symbols are used on the plot (see Supplementary Table S1
for corresponding protein name). Some labels have been skipped.
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The list of these protein markers along with precursor information is provided in
Supplementary Table S1. The principal functions of these selected protein markers were
assessed by gene ontology analysis of the biological process (GO_BiologicalProcess-EBI-
UniProt-GOA-ACAP-ARAP) using the ClueGO app [41]. In total, 125 genes picked from
69 of the 86 human genes were clustered between eight main groups of related biological
process-enriched terms, represented by their most significant term, which were: humoral
immune response (32% of the total clustered genes), acute inflammatory response (21%),
proteolysis (18%) and antioxidant activity (10%), as well as tight junction assembly (5%)
and digestive process (endopeptidase inhibitor activity, carbohydrate process and digestive
system process for 6%, 5% and 4%, respectively) (Figure 4 and Supplementary Table S2).
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Figure 4. Gene ontology of the biological process. Gene ontology analysis of the 86 human genes
associated with the 80 protein markers using the GO_BiologicalProcess-EBI-UniProt-GOA-ACAP-
ARAP (22–04-2022) reference term database with the ClueGO (v.2.5.8) plug-in in the Cytoscape
software (v.3.9.1). In total, 125 genes picked from 69 of the 86 genes were clustered between the eight
main groups of biological process-related terms. On the pie chart, the groups are named based on
their leading (most significant) term, and the size of the segment is defined by the % of associated
genes per group calculated from the total picked genes. Group-corrected p value calculated by
ClueGO with the Bonferroni step-down method: ** p < 0.001.

2.2. Optimization of SWATH-MS-Derived Stool Signatures for NEC Infants

One objective of this study was to generate stool proteomic signatures that could best
predict NEC development. We first chose to use principal component analysis (PCA) [42,43]
to explore the discriminating information provided by the 80 potential protein markers and
to evaluate sub-selections of this marker set. This multivariate unsupervised dimension
reduction method was used to evaluate the capacity of the series of protein markers to
cluster the samples adequately based on their outcomes. For the exploratory purpose, only
the first two principal components (PC), which summarize the most variability information
contained in the original dataset, were selected. As shown in Figure 5, the PC score plot
illustrated the relationship between the NEC and non-NEC control samples (Figure 5A),
while the protein loading plot (Figure 5B) showed how each protein marker correlated with
the score plots. On the loading plot, the clear parting along the PC1 axis of increased (1 to 40)
and decreased (41 to 80) markers in NEC indicates that the variation in abundance between
these two sets contributes strongly to the divergent distribution of the two types of samples
on the same axis as the score plots (Figure 5A). Like the markers (Figure 5B), the sample
distribution on the PC2 axis formed more of a continuum (Figure 5A), but, interestingly,
more matched pairs (e.g., N2A and C2A) were found on the same side of the axis (13 pairs)
than on the opposite side (8 pairs), suggesting that individual characteristics have an impact
on marker levels, which could explain at least one part of the variability summarized by
the PC2 on both plots. The first two PCs accounted for 33.6% of the total variance of the
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dataset (Table 1); however, sample separation into discrete clusters was visibly incomplete
(Figure 5A), as confirmed by a PC regression of PC score coordinates (PC1 and PC2) [44]
that misclassified the membership of two samples (data not shown). Interestingly, parallel
analysis [45] generated by Prism to correct for sampling variability and noise selected the
first six PCs (Table 1) as those that represent actual variance (eigenvalues greater than the
95th percentile) in the dataset.
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Figure 5. PCA of the 80 protein markers. (A) The PC score plots illustrate the relationship between
the NEC (N1 to N7 group A, B, C: in red) and non-NEC control (C1 to C7 group A, B, C: in blue)
samples when the dimensionality of the dataset is reduced to its two principal components (PC1:
x-axis; PC2: y-axis). (B) Protein loadings show how each protein marker (increased in NEC: from
1 to 40; decreased from 41 to 80; see Supplementary Table S1 for corresponding protein name) is
correlated with the two principal components of the PC score plots.

Table 1. PCA information on series’ principal components.

Series 80 Markers

PC summary PC1 PC2 PC6 PC41
Eigenvalue 18.23 8.64 4.12 0.04

Proportion of variance 22.79% 10.80% 5.15% 0.06%
Cumulative proportion of variance 22.79% 33.58% 62.28% 100.00%

Parallel analysis PC selection Selected Selected Last selected

Series 36 markers

PC summary PC1 PC2 PC4 PC36
Eigenvalue 9.31 4.05 2.68 0.002

Proportion of variance 25.86% 11.24% 7.45% 0.00005%
Cumulative proportion of variance 25.86% 37.10% 54.08% 100.00%

Parallel analysis PC selection Selected Selected Last selected

Series 20 markers

PC summary PC1 PC2 PC20
Eigenvalue 6.15 2.21 0.06

Proportion of variance 30.77% 11.05% 0.28%
Cumulative proportion of variance 30.77% 41.82% 100.00%

Parallel analysis PC selection Selected

Series 14 markers

PC summary PC1 PC2 PC14
Eigenvalue 4.72 1.89 0.08

Proportion of variance 33.74% 13.49% 0.60%
Cumulative proportion of variance 33.74% 47.22% 100.00%

Parallel analysis PC selection Selected

PC: principal component
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To increase the variance explained by the first PCs, we reduced the number of predictor
variables using ROC curve information to guide the sub-selection of complementary marker
series that can predict the actual outcomes of NEC and non-NEC samples. As expected,
higher cumulative proportions of variance, explained by PC1 and PC2, were found for
the best 36 (18 up and 18 down; 37.1%), 20 (10 up, 10 down; 41.8%) and 14 (7 up, 7 down;
47.2%) series of protein markers (Table 1), while parallel analysis selected the first 4 PCs of
the 36 series and the first PC of the 20 and 14 series (Table 1). Accordingly, the PC score
plots of the best 36 (Figure 6A), 20 (Figure 6B) and 14 (Figure 6C) series show a complete
separation of NEC and non-NEC sample clusters, as confirmed by PC regression (Table 2).
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Figure 6. PCA of the 36, 20 and 14 series of markers. (A–C) PC score plots from the PCA of the
(A) 36 (18 up, 18 down), (B) 20 (10 up, 10 down) and (C) 14 (7 up, 7 down) series of protein markers
clustering showing the capacity of this series to form discrete clusters of the NEC (N1 to N7 group A,
B, C: in red) and non-NEC control (C1 to C7 group A–C: in blue) samples with the two first principal
components (PC1: x-axis; PC2: y-axis).

Table 2. PC regression on the first PC score coordinates.

Samples 36 Markers 20 Markers 14 Markers

Classification
NEC (N) 21N 21N 21N
CTRL (C) 21C 21C 21C

Misclassified
by period

Gr. A 0 0 0
Gr. B 0 0 0
Gr. C 0 0 0

To further assess the 36, 20 and 14 series’ capacity to discriminate the NEC and non-
NEC control samples, we tested two other classical unsupervised clustering methods
(hierarchical clustering and K-means clustering) and one supervised classification method
(linear discriminant analysis [42,43]) directly on the normalized scores of the expression
values. Hierarchical cluster analysis was performed using the farthest neighbor method
with the Pearson correlation interval. Discrete clustering was achieved with the 36 and
20 series, whereas the 14 series also formed a two-main-clusters solution, but four samples
were misclustered (Table 3). K-means clustering analysis using a two-clusters solution
gave similar results. Although none of the series provided complete discrete clustering, the
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36 series was the more accurate one, with one sample attributed to the wrong cluster, while
the 20 series had two and the 14 series had four misclustered samples (Table 3). Linear
discriminant analysis is a multivariate classification method that aims to find an optimal
linear function from variables that best explain predetermined classes [42,43]. This method
succeeded in correctly classifying all the samples with the 36 series but not with the 20
and the 14 series, which misclassified one (Table 3). The separation of the group centroids
(Chi-square test) was significant for the three series, but the lower Wilk’s Lambda value [46]
of the 36 series indicated a better ability of the discriminant function to separate the cases
into groups compared to the other two series.

Table 3. Clustering and classification analysis.

Hierarchical Clustering 36 Markers 20 Markers 14 Markers

NEC (N) Cluster 1 21N 21N 21N/4C
Ctrl (C) Cluster 2 21C 21C 17C

Misclustered
by period

Gr. A 0 0 3
Gr. B 0 0 1
Gr. C 0 0 0

K-means clustering 36 markers 20 markers 14 markers

NEC (N) Cluster 1 21N/1C 21N/2C 21N/5C
Ctrl (C) Cluster 2 20C 19C 16C

Misclustered
by period

Gr. A 1 2 4
Gr. B 0 0 1
Gr. C 0 0 0

Linear discriminant analysis 36 markers 20 markers 14 markers

Classified
NEC (N) 21N 21N/1C 21N/1C
Ctrl (C) 21C 20C 20C

Wilk’s Lambda 0.035 0.134 0.169
Significance (chi-square) <0.001 <0.001 <0.001

Misclassified
by period

Gr. A 0 1 1
Gr. B 0 0 0
Gr. C 0 0 0

Understandably, the counts of samples misclustered or misclassified for the three
periods (A, B and C) through these three methods indicate that those from group A are
more difficult to differentiate (Tables 2 and 3). However, overall, the results show that it is
feasible to discriminate between all the NEC and non-NEC samples. The signature of the
36 series showed the most efficient discrimination capacity, emphasizing the importance
of selecting the right number of complementary markers to optimize the sorting of the
samples. The list of these 36 selected protein markers is provided in Table 4.
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Table 4. Selection of the 36 series of increased and decreased protein markers.

No. First Protein Name 1 Protein & Protein Groups
(Gene Symbol)

Quantified Values (42
Samples)

Fold Change Ratio 2

NEC/Control
ROC

Curve
AUC

Mann–Whitney Test 3

p-Value q-Value

More abundant in NEC stools

1 Carboxypeptidase A1 CPA1 42 3.04 0.82 <0.001 0.003
2 Peroxiredoxin-1 PRDX1;PRDX4 39 2.33 0.82 <0.001 0.003
3 Glutathione reductase, mitochondrial GSR 42 2.61 0.81 <0.001 0.003
4 Triosephosphate isomerase TPI1 40 3.90 0.80 0.001 0.004
5 Peroxiredoxin-4 PRDX4 41 2.09 0.80 0.001 0.004
6 Protein S100-A12 S100A12 39 4.12 0.79 0.001 0.004
8 Defensin-5 DEFA5 42 5.09 0.76 0.003 0.009

15 Leukocyte elastase inhibitor SERPINB1 42 1.62 0.72 0.014 0.023
17 Trehalase TREH 41 1.63 0.72 0.016 0.023
22 Alpha-2-macroglobulin (1) A2M 42 3.33 0.83 <0.001 0.002
23 Cathepsin S CTSS 42 1.91 0.83 <0.001 0.003
24 Alpha-2-macroglobulin (2) A2M;PZP 42 3.33 0.80 0.001 0.004
25 Probable non-functional Ig kappa variable 2D-24 IGKV2D-24 42 2.09 0.78 0.002 0.007
26 Angiotensin-converting enzyme 2 ACE2 42 2.01 0.77 0.002 0.007
28 Alpha-1-acid glycoprotein 1 (1) ORM1 42 4.82 0.76 0.003 0.009
32 Ig heavy constant gamma 1 IGHG1 42 1.96 0.73 0.010 0.018
35 Ig lambda variable 8-61 IGLV8-61 42 1.80 0.72 0.016 0.023
40 Sucrase-isomaltase, intestinal SI 42 1.68 0.70 0.052 0.055

Less abundant in NEC stools
41 Pancreatic secretory granule mb. major gp GP2 GP2 42 0.36 0.88 <0.001 <0.001
42 Sulfate transporter SLC26A2 41 0.37 0.88 <0.001 <0.001
43 Tetraspanin-1 TSPAN1 42 0.33 0.85 <0.001 0.001
44 Chloride anion exchanger SLC26A3 40 0.45 0.81 <0.001 0.003
45 Chymotrypsin-like elastase family member 3A (1) CELA3A 42 0.43 0.80 0.001 0.004
46 Claudin-3 CLDN3,4,6,9 42 0.48 0.77 0.002 0.007
47 Chymotrypsin-C CTRC 42 0.41 0.77 0.002 0.007
49 Intestinal-type alkaline phosphatase ALPI 42 0.66 0.75 0.005 0.012
57 Ig lambda variable 3-10 IGLV3-10 42 0.44 0.81 <0.001 0.003
58 Mucin-6 MUC6 42 0.53 0.80 0.001 0.004
59 Mucin-1 MUC1 42 0.43 0.80 0.001 0.004
60 Ig kappa variable 1D-33 IGKV1-33 42 0.64 0.79 0.001 0.004
61 Phospholipase B1, membrane-associated PLB1 38 0.49 0.79 0.001 0.004
62 Ig heavy variable 2-26 IGHV2-26 38 0.50 0.77 0.002 0.007
64 Tenascin TNC 41 0.22 0.76 0.003 0.009
65 Colipase CLPS 42 0.50 0.75 0.006 0.014
76 Ig lambda variable 1-51 IGLV1-51 42 0.57 0.70 0.028 0.032
80 Cadherin-related family member 2 CDHR2 42 0.68 0.70 0.038 0.041

Abbreviation: AUC: area under the curve; gp: glycoprotein; Ig: immunoglobulin; MMP: metalloproteinase; NEC: necrotizing enterocolitis; No.: number; ROC: receiver operating
characteristic. 1 Duplicated first protein names come from protein groups formed by DIA-NN when indifferentiable non-proteotypic precursors can be attributed to more than one gene.
2 The fold change ratio was calculated from the mean expression value of both groups. 3 p-values and q-values have been calculated on the standardized expression values using the
Mann–Whitney test for the p-value and Benjamini–Krieger–Yekutieli’s two-stage step-up method for the q-value.
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2.3. SWATH-MS-Derived Stool Signature for Predicting NEC Development

As shown in Figure 7, and as described in the previous section, the discrete clustering
of NEC (N1 to N7 group A, B, C: in red) and non-NEC samples (C1 to C7 group A, B,
C: in blue) on the dendrogram of the 36 series confirms its capacity to discriminate them
according to their respective type. This analysis formed relatively well-defined subclusters
founded on individual cases (e.g., N5A, N5B and N5C), which seem more ostensible for the
NEC samples, supporting that the sample of the same type also shows variability in associ-
ation with individual characteristics. The heat map linked to the dendrogram (Figure 7)
showed normalized scores of protein levels using the Rankit proportion estimation formula.
The x-axis displays the 36 protein markers with the corresponding number from Table 4 (in
brackets), and the y-axis displays the 42 samples in the order determined by the analysis.
This heat map clearly shows the distinct profiles of the increased and decreased markers
and provides a good illustration of how complementarity between and within the group of
markers contributes to the discrete clustering.
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Figure 7. Hierarchical cluster analysis and heatmap of the 36 series. The dendrogram on the left
displays the discrete clustering of NEC (N1 to N7 group A, B, C: in red) and non-NEC control
samples (C1 to C7 group A, B, C: in blue) between two main clusters. The heat map linked to the
dendrogram shows normalized scores of the protein levels for the 36 protein markers (X-axis) with
their corresponding number (in brackets; see Table 4 for the protein name) and the 42 individual
samples in the order determined by the hierarchical clustering analysis (Y-axis). The colored reference
chart on the right indicates the normalized scores (range from −2.26 to 2.26).

The relative score of the samples for the 36 stool protein markers was evaluated as
a potential tool to predict NEC development at a distinct time before the diagnosis for each
subject pair. Relative scores were determined by calculating the means of the standardized
values (z-score) of each sample for the 18 increased and 18 decreased protein markers
separately, converting the sign of the decreased mean values (multiply by −1) and adding
them to the corresponding increased mean values. As shown in Figure 8, the signature from
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the combination of the 36 stool proteins discriminated all seven NEC from non-NEC infants
at least a week in advance. To further test the stool protein signature as a predicting tool for
all VLWB infants born between 24 and 29 weeks, the seven NEC and their corresponding
non-NEC controls were pooled. As shown in Figure 9, their relative expression scores were
found to be significantly different from the control group for both groups of 18 proteins at
all stages, as well as in combination, indicating that the 36 protein-based signatures can
predict NEC development more than a week in advance for all seven tested cases.
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Figure 8. Relative score according to paired samples. Plots of the relative score (Y-axis) of the
36 protein marker levels across the three tested periods (X-axis: 10-7, 6-3, 2-0 days before NEC
diagnosis) for each of the 21 paired NEC (red dot) and non-NEC control (blue square) samples from
the seven paired cases. The two-tailed paired t test on the 36 protein markers (increased and decreased;
multiply by −1) gave a significant difference of at least p ≤ 0.05 for all the pairs of the samples.
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Figure 9. Relative score by period. The plots show the relative scores (Y-axis) for each of the seven
NEC samples (red, yellow and green dots) of the three tested periods (X-axis: 10-7, 6-3, 2-0 days
before NEC diagnosis) compared to the average of the three same periods for the non-NEC control
samples (Ctrl: 10-0 days; blue dots) to assess the overall relative scores for samples from NEC and
non-NEC infants without pairing. The (Increase) and (Decrease) plots were calculated from the 18
increased and the 18 decreased protein markers taken separately, and the (Combined) plot combines
the mean values of these two plots for each sample (increased + decreased; multiply by −1). The
means ±SD are shown on the plots by horizontal bars. p-values were calculated using one-way
ANOVA Dunnett’s multiple comparisons test. ** p < 0.01; *** p < 0.001.

3. Discussion

In this study, we have explored the power of SWATH mass spectrometry-based pro-
teomics to investigate the potential of predicting NEC development from the stools of
premature infants. Major efforts toward the discovery of predictive biochemical and clin-
ical markers for this devastating disease have been made over the last decade, but, as
mentioned above, they have had limited success in terms of days of predictability prior
to the onset of clinical manifestations. This information is a key factor for allowing for an
efficient preventive intervention in the NICU for NEC patients [17,47] and for avoiding the
overtreatment of non-NEC infants [47,48].

Stool samples present many advantages for investigating NEC-related biomarkers.
First, they can be harvested in a completely non-invasive way, even for VLBW, without the
significant additional burden for NICU personnel. Second, they are likely to directly reflect
the intestinal alterations that precede NEC development, as illustrated by the mucosal
release and fecal accumulation of calprotectin and lipocalin2 [35], methylated TLR4 [33],
microRNAs [49] and the fluctuation of fecal bile acid levels [34]. Although bowel move-
ments may be delayed in some VLBW infants, most studies were able to successfully deal
with this issue for their stool analyses [50–52], although, in one study, the low recovery
of stool specimens at the time of the NEC acute phase was reported to reduce the clinical
value of the test for NEC diagnosis [49]. In agreement with the preceding studies, herein,
we have obtained a sufficient number of stool samples for each of the three selected periods
to test seven of the eight NEC cases up to 10 days before the diagnosis [35].

There are only a few studies so far that have used mass spectrometry-based proteomics
for discovering candidate biomarkers for NEC using samples obtained from blood [53,54],
saliva [55], urine [56] or tissues [57], which have led to the identification of proteins
displaying accurate diagnostic and prognostic information, but only few of them have
conducted investigation before the suspicion of NEC [17]. The only one was a pilot
study where proteomics was used to identify predictive biomarkers for NEC from buccal
swabs [55]. To our knowledge, this is the first analysis of stool proteins procured from
premature infants. Our strategy was to use SWATH-MS in the DIA mode to combine
deep proteome coverage with quantitative consistency and accuracy [58]. The strategy
for shotgun proteomics was adapted for the complexity of the protein/peptide matrix of
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the stool. Firstly, DDA and DIA data analysis with FragPipe ensured the completeness
of the protein targets that were analyzed with DIA-NN in the library-free search mode.
Secondly, the generation of two independent libraries from two software based on different
algorithms allowed us to validate the composition of our reference spectral library and of
the quantified results. It is worth noting that the latest version of FragPipe integrates DIA
quantification with DIA-NN. Indeed, both the FragPipe/msFragger library and DIA-NN
library-free mode have been reported to perform well in different aspects of label-free DIA
signal extraction and quantification (e.g., the number of identifications, reproducibility)
with DIA-NN [59,60]. Of note, the library-free mode that we used gave a higher number of
spectral identifications and quantified proteins, even with the FDR estimate considered to
be conservative [61,62].

Overall, 80 proteins with an average of 15 peptides (n = 1–100) were found to be
consistently differentially detected in the stools of NEC infants relative to those of non-
NEC infants. Collectively, the gene ontology analysis of the significantly differentially
expressed proteins revealed that more than 60% of them were associated with immune and
inflammatory responses and antioxidant defense, an observation consistent with previous
observations of NEC intestinal samples analyzed by RNA-Seq, where 60% of the significant
pathways were also identified in samples of patients with Crohn’s disease, including gene
families related to immunity, infection, antioxidants and antimicrobials [40,63]. That 18.4%
of the proteins in the proteolysis categories were observed in the NEC stool samples is
also interesting, since fecal proteolytic and elastase activity were reported to be increased
before the onset of ulcerative colitis [64]. Interestingly, the increase in fecal proteolytic
activity was associated with gut microbiota changes in patients with ulcerative colitis [64],
while only human sequences were considered in this work. In this context, it is pertinent
to note that a number of markers involved in proteolysis were pancreatic enzymes such
as CELA2A, CELA3A, CELA3B and CTRC, which were all found to be reduced in the
stools of NEC infants, an observation consistent with the general immaturity of the gut in
premature infants who are most susceptible to developing NEC, which may also include
limited pancreatic functions [65].

On the other hand, this study also aimed to evaluate the series of markers needed
to find the best signature of NEC. While the evaluation of the 36, 20 and 14 series was
founded on different unsupervised clustering and supervised classification analyses, the
36 series was able to discriminate more samples on average and showed a lower (better)
Wilk’s Lambda value in linear discriminant analysis. Although the variation of abundance
between increased and decreased markers seems central to sorting the sample according to
their actual outcome, the PCA and hierarchical clustering analysis results indicated that
some level of variability within these sets of markers explains the variability between the
samples of the same type. In this sense, reducing the number of markers below a certain
threshold may limit the primary and complementary information available to sort the
samples, which could explain why the 36 series performed better than the 20 and 14 series.
However, as the number of samples is limited in this study, it is essential to mention that we
do not consider this specific selection of protein markers to be the absolute NEC signature.
Indeed, similar work on larger cohorts will be needed to establish more robust conclusions.

It is pertinent to note that, of the 36 selected proteins, 18 were found to be increased
in the stools of NEC infants, while the other 18 were reduced. The findings for some of
the stool proteins appear consistent with expectations based on the literature, such as the
increase in fecal S100A12 in NEC infants [66] and the elevation of mucosal DEFA5 [40,63],
Serpin B1 [67] and peroxiredoxin-1 [57] in NEC infants and/or patients with inflammatory
bowel disease. Stool accumulation of brush border enzymes such as trehalase and sucrase-
isomaltase is also consistent with the extensive destruction of the small intestinal epithelium
noted in NEC infants [57]. However, the reduction in the fecal levels for claudin-3 and
SLC26A3 observed herein is more puzzling, since claudin-3 was reported to increase in
the urine of neonates with NEC [68], and the expression of SLC26A3, an intestinal brush
border chloride anion, is drastically reduced in patients with inflammatory bowel disease
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and has recently been shown to regulate epithelial barrier integrity [69]. Since these two
proteins are reduced in the stools of infants more than a week before NEC is diagnosed,
one may speculate that the lower fecal levels of these paracellular components could be
indicative of a potential mucosal defect in NEC infants.

Another issue that needs to be pointed out is the absence of the calprotectin S100A8 and
100A9 components and lipocalin-2 (LCN2) in the final list of selected proteins, considering
that they were previously identified as a robust stool biomarker combination for predicting
more than half of the NEC infants [35]. One key aspect of the current study to consider
was that each biomarker was selected on the basis of its ability to discriminate NEC vs.
non-NEC infants over the 10-day period preceding diagnosis. Indeed, as observed for
calprotectin and LCN2 in the immunoassay [35], approximately half of the S100A8, S100A9
and LCN2 in the NEC samples displayed an overlap with the non-NEC samples. S100A8,
S100A9 and LCN2 were therefore not retained based on the AUC of ROC analysis. This is
consistent with the fact that our approach favored the robustness of the analysis, in line
with the current biomarker discovery strategies [70]. Indeed, the accurate identification
and quantification of the proteins (ensured here with the hybrid DDA/DIA strategy and
by inferring protein libraries from two independent software) is paramount to biomarker
discovery and outweighs the identification of as many proteins as possible [71] while
reducing the likelihood of false positives [72].

The optimized signatures based on the selection of the 36 proteins found to be in-
creased and decreased in the stools of the NEC infants were able to predict NEC devel-
opment in all seven VLWB infants at least one week before the diagnosis. This finding is
a major achievement in the context of a non-invasive diagnosis method considering that
previous published detection methods were predicting either much less in advance [30–33]
or with less sensitivity [34,35].

It is, however, important to consider this analysis as a proof-of-concept study demon-
strating that label-free quantification using SWATH/DIA mass spectrometry-based pro-
teomics assisted with DIA-NN software can successfully be applied to stool analyses
for the prediction of NEC development. Indeed, despite being derived from a multi-
center prospective study where the stools from 132 VLBW infants were collected, NEC
is a relatively infrequent condition occurring in the NICU, so only eight of them received
a stage-3 diagnosis, including one for which no stools were available for the 7–10 day
period before the diagnosis. In this context, considering the relatively small size of the
NEC cohort, the set of the 36 protein markers selected for the establishment of an “NEC
signature” should not be seen as definitive, since some variations in the levels of proteins
may not be related to the disease but rather are a first step toward the usual strategy
for mass spectrometry-based proteomics biomarker discovery, where a small number of
samples are analyzed in-depth to select the markers to be tested in the next phases [70,73].
The procedure described herein for the selection of the protein markers should therefore be
useful for refining this preliminary NEC signature in a future study with a larger cohort
required prior to the design of a validation phase for the selected biomarkers by using
targeted proteomics analysis. Another aspect that should be considered in a future study
would be the inclusion of samples from premature infants affected with other gut-related
diseases to optimize an NEC-specific signature.

4. Materials and Methods
4.1. Sample Collection and Preparation for LC-MS/MS Analysis

Stools from 132 very-low-birth-weight infants were collected on a daily basis in the
context of a multi-center prospective study aimed at investigating the potential of fecal
biomarkers for NEC prediction [35]. Eight infants received a stage-3 NEC diagnosis. The
stools collected up to 10 days before the diagnosis were available for seven of them. They
were matched with seven pairs of non-NEC controls and grouped according to three test
periods (group A: −10 to −7, group B: −6 to −3 and group C: −2 to 0 days before diagnosis),
as described before [35], for a total of 42 unique samples. For the preparation, 100 mg of
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each stool specimen was solubilized in 1 mL of Tris buffer (25 mM Tris pH 7.5), pooled in
groups (as detailed above) for NEC and non-NEC infants and centrifuged (16,000× g; 4 ◦C)
for 30 min. The aqueous phase between the pellet and the floating residuals was recovered
and stored at −80 ◦C until preparation for LC-MS/MS analysis.

The concentration of solubilized proteins in the individual samples was measured
using a BCA protein assay (ab102536, Abcam, Cambridge, UK). For the 42 individual
sample preparations, volumes corresponding to 40 µg of protein were brought up to 100
µL in a 50 mM Tris buffer pH 8.0 for reduction (dithiothreitol (DTT): 10 mM, 10 min
at 65 ◦C), alkylation (15 mM iodoacetamide, 30 min in the dark at room temperature)
and quenching (10 mM DTT) steps. The proteins were recovered by precipitation in
acetone for 1 h at −80 ◦C, followed by centrifugation at 16,000× g for 15 min, and the
protein pellets were washed with cold methanol. The enzymatic digestion of proteins
was carried out in 100 µL of 50 mM Tris buffer pH 8 using 0.7 µg per sample of the
proteolytic mix Trypsin/Lys-C, MS Grade (Promega) for 2 h at 37 ◦C, continued overnight
with an additional 0.7 µg of the proteolytic mix (30:1 w/w protein/protease total ratio)
and stopped with 2% formic acid. The cleaning and recovery of the peptides were done
with a reverse-phase Strata-X polymeric SPE sorbent column (Phenomenex) according
to the manufacturer’s instructions. The recovered peptides were dried under nitrogen
flow at 37 ◦C for 45 min and stored at 4 ◦C until being resuspended in 20 µL of mobile
phase solvent A (see the section below) before LC-MS/MS analysis. To generate an ion
library, extracted proteins from a representative pool of samples (three NEC and two non-
NEC, covering the three test periods) were separated on a 4–20% polyacrylamide gel. The
proteins were separated in 12 fractions and then reduced, alkylated and digested in the gel.
Peptides were extracted from the gel by successive rounds of dehydration and sonication
and purified using reverse-phase SPE.

4.2. LC-MS/MS Acquisition

LC-MS/MS data acquisitions were carried out at the proteomics facilities of
PhenoSwitch Bioscience Inc. (Sherbrooke, QC, Canada). The acquisitions were conducted
with an ABSciex TripleTOF 6600 (ABSciex, Foster City, CA, USA) equipped with an electro-
spray interface with a 25 µm iD capillary and coupled to an Eksigent µUHPLC (Eksigent,
Redwood City, CA, USA). Analyst TF 1.8 software was used to control the instrument and
for data processing and acquisition. The acquisition was performed in the Data-Dependent
Acquisition (DDA) mode for the 12 fractions of the ion library. The 42 individual samples
(10 µg) were analyzed in the Sequential Window Acquisition of All Theoretical Mass Spec-
tra (SWATH) acquisition mode [74]. The source voltage was set to 5.5 kV and maintained
at 325 ◦C, the curtain gas was set at 35 psi, gas one was set at 27 psi and gas two was set
at 10 psi. Separation was performed on a reverse-phase Kinetex XB column 0.3 mm i.d.,
2.6 µm particles, 150 mm (Phenomenex), which was maintained at 60 ◦C. Samples were
injected by loop overfilling into a 5 µL loop. For the 60 min LC gradient, the mobile phase
consisted of the following: solvent A (0.2% v/v formic acid and 3% DMSO v/v in water)
and solvent B (0.2% v/v formic acid and 3% DMSO in EtOH) at a flow rate of 3 µL/min.

4.3. MS Data Preparation and Pre-Analysis

For label-free quantification, SWATH/DIA is reported to offer better proteome cov-
erage, reproducibility and quantitative precision compared to DDA [75]. The DIA-NN
software [62] can reproduce protein quantification obtained by the semi-automatic but
time-consuming curation of precursor spectra and proteins with the software Skyline
(MacCoss Lab, University of Washington, Seattle, WA, USA) [76]. However, the computer
calculation time from the library-free search mode with DIA-NN increases rapidly with
the size of the reference fasta file and the dataset. Trying to build a library from the whole
human proteome is not optimal. For this reason, and considering the published workflow
on different MS settings and instruments comparing software performance and using
cross-compatible workflow [59–61], we opted for a hybrid strategy combining the fast
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and robust FragPipe Graphical User Interface (GUI; v.17.1; https://fragpipe.nesvilab.org/;
accessed on 15 March 2022) proteomics platform (integrate MSFragger, Philosopher and
EasyPQP) [77–79] for pre-analysis of the data and for creating a list of protein targets from
preliminary libraries and DIA-NN (GUI; v.1.8) for generating the reference spectral library
from this list and for the quantification of the proteins.

To produce an MS data format compatible with FragPipe and DIA-NN, Sciex DDA
and SWATH, .WIFF files were converted to .mzML format with MSConvert (GUI) from
ProteoWizard (v3.0.22074) [80] using the Peak Picking filter with the “Vendor” algorithm.
The .mzML from SWATH data were further converted to pseudo-MS/MS spectra .mzML
files using DIA-Umpire [81] in MSConvert. From FragPipe, MSFragger (v.3.4) was used to
perform proteomic searches against the human proteome reviewed database (UP000005640;
isoforms and contaminants included; www.uniprot.org; accessed on 15 March 2022), with
mostly default open search settings (peptide length from 6 to 42, enzyme set to stricttrypsin,
missed cleavage set to 1, max fragment charge set to 4, methionine oxidation set as variable
modification and carbamidomethylation set as fixed modification) [82,83]. Philosopher was
used (v4.1.1) for the proteomic validation (peptide spectrum matches (PSM) validation,
protein inference and false discovery rate [FDR] filtering), and EasyPQP (https://github.
com/grosenberger/easypqp; accessed on 15 March 2022) was used for spectral library
generation from the filtered results.

To maximize the extent of the list of protein targets, three preliminary spectral libraries
were built from FragPipe using a permissive 5% FDR to filter the results: one from the
DDA data, one from the SWATH pseudo-MS/MS data and one from the DDA and SWATH
pseudo-MS/MS data, concurrently. These libraries were combined and filtered to remove
the duplicates and counted a total of 1087 protein UniProtKB IDs entries and 1044 unique
proteins (isoform IDs of the same protein counted as one protein). Two proteins of interest
were added to this list (alkaline phosphatase, germ cell type [ALPG], and bovine beta-
lactoglobulin [LBG]) and the “retrieve/ID mapping tool” from Uniprot.org (https://www.
uniprot.org/uploadlists/; accessed on 16 March 2022) has been used to create a FASTA file
containing the 1089 protein targets and their amino acid sequence.

4.4. Reference Spectral Library Building and Label-Free Quantification Analysis

The reference spectral library was built with DIA-NN using the 1089 protein target
database .fasta file as reference. First, an in-silico-predicted spectral library was created
from the sequence database with the FASTA digest library-free search/generation and deep
learning based-prediction mode enabled. This library was used to analyze the 42 individual
.mzML files of the SWATH runs, keeping equivalent settings for precursor length, missed
cleavage, charge and modifications, as described above. Match between runs (MBR) was
enabled to create a new library and reanalyze the data from this library (precursor FDR and
matrix q value FDR set to 1%). The “remove likely interference” and “reannotate” options
were activated, and the human proteome reviewed database was used as the reference
.fasta file, with protein inference set to genes. The DIA-NN protein inference algorithm (set
to genes) creates protein groups according to the gene from which the precursor(s) can be
annotated in the reference .fasta file. Precursors from proteotypic peptides are attributed
to single protein groups that correspond to a single gene, whereas indistinguishable non-
proteotypic precursors are also merged to protein groups that combine the single proteins
from which they can originate. The DIA-NN reference spectral library counted 1174 protein
groups from 1046 unique protein names, of which 975 protein groups were composed of
a single protein, and 199 were composed of two proteins or more. A total of 1085 protein
groups were found to have quantified results in the protein groups (pg)_matrix output file,
which contains the normalized expression values calculated by DIA-NN. The label-free
quantification method applied is based on the MaxLFQ algorithm [84], using only the
optimal ion fragments from the top precursors passing the run-specific and global q value
threshold (1% FDR) [62].

https://fragpipe.nesvilab.org/
www.uniprot.org
https://github.com/grosenberger/easypqp
https://github.com/grosenberger/easypqp
https://www.uniprot.org/uploadlists/
https://www.uniprot.org/uploadlists/
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The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium [85] via the PRIDE partner repository [86] with the dataset identifier PXD036178.

4.5. Dataset Composition, Protein Marker Selection and Series Evaluation

From the pg_matrix file, only protein groups with less than 10% missing values were
kept for the statistical analysis, for a total of 489 protein groups with ≥38 quantified values
on the 42 samples. Since the missing values in the pg_matrix indicate the absence or
very low abundance of precursors, zero imputation was applied to missing values. Then,
receiver operating characteristic (ROC) curve analysis was performed to assess the binary
discriminant value of individual protein groups, and those with an area under the curve
(AUC) ≥ 0.7 were kept. To ensure the selection of high-quality and non-biased features,
this list of potential protein markers was further refined by eliminating the protein groups
with four imputed zero values applied to one particular type of sample (NEC or non-NEC
control) and those lacking a precursor with at least 35 quantified values in the precursor
(pr)_matrix output file. A maximum of two protein groups containing redundant entries
were kept as distinct protein markers. The final list of potential markers thus counted
80 protein groups, 40 with levels increasing in NEC, and 40 with levels decreasing in NEC.
Starting with these 80 protein groups, selection for the series of 36, 20 and 14 protein
markers was executed successively from the precedent, keeping the protein groups with
the best individual AUC, and the others were selected based on their impact on communal
ROC curves (increased and decreased taken separately) that collectively show a greater
capability to predict the outcomes of NEC and non-NEC samples.

For each series selection, multidimensional analysis was performed using princi-
pal component (PC) analysis to observe the behavior of the individual samples and the
variables (protein group levels) on the two main dimensions (PC1 and PC2) [87]. PC
regressions were based on binary logistic regression of the PC scores from the first two
PCs as independent variables and the two a priori group knowledge (NEC and non-NEC
control) as dependent variables [44]. Hierarchical cluster analyses were performed with
the farthest neighbor (complete linkage based on the similarity of the farthest pair) method
and Pearson’s correlation intervals (comparing two vectors of values) [88]. The PC regres-
sions K-means clustering analysis [89] and linear discriminant analysis [90] were used to
assess the feasibility of the classification and clustering models from the protein marker
series selection. However, no cross-validation methods were tested, since this was only for
exploratory purposes, and no validation cohort was available.

4.6. Statistical Analysis and Graph

All calculations and graph plotting were carried out with GraphPad Prism (Prism
v.9.3.1; GraphPad Software, Inc) or IBM SPSS Statistics (SPSS v28.0.1.1; IBM), except for
the Venn diagrams, which were created with the web-based tool Venny (v.2.1) [91], and
the Gene Ontology (GO) analysis, which was conducted with the ClueGO (v.2.5.8) plug-in
from the Cytoscape software (v.3.9.1) [41,92].

5. Conclusions

This proof-of-concept study demonstrates that SWATH/DIA mass spectrometry-
based proteomics used for analyzing the stools of premature infants represent a promising
potential approach for predicting NEC development in NICU. The next steps should
include the refinement of this NEC signature in a future study with a larger cohort that
should include premature infants affected by non-NEC intestinal diseases and a validation
step using targeted proteomics analysis.
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