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ABSTRACT We investigated the individual and combined effects of diet and physi-
cal exercise on metabolism and the gut microbiome to establish how these lifestyle
factors influence host-microbiome cometabolism. Urinary and fecal samples were col-
lected from athletes and less active controls. Individuals were further classified according
to an objective dietary assessment score of adherence to healthy dietary habits accord-
ing to WHO guidelines, calculated from their proton nuclear magnetic resonance
(1H-NMR) urinary profiles. Subsequent models were generated comparing extremes
of dietary habits, exercise, and the combined effect of both. Differences in metabolic
phenotypes and gut microbiome profiles between the two groups were assessed.
Each of the models pertaining to diet healthiness, physical exercise, or a combination
of both displayed a metabolic and functional microbial signature, with a significant
proportion of the metabolites identified as discriminating between the various pair-
wise comparisons resulting from gut microbe-host cometabolism. Microbial diversity
was associated with a combination of high adherence to healthy dietary habits and
exercise and was correlated with a distinct array of microbially derived metabolites,
including markers of proteolytic activity. Improved control of dietary confounders,
through the use of an objective dietary assessment score, has uncovered further
insights into the complex, multifactorial relationship between diet, exercise, the gut
microbiome, and metabolism. Furthermore, the observation of higher proteolytic activ-
ity associated with higher microbial diversity indicates that increased microbial diver-
sity may confer deleterious as well as beneficial effects on the host.

IMPORTANCE Improved control of dietary confounders, through the use of an objec-
tive dietary assessment score, has uncovered further insights into the complex, mul-
tifactorial relationship between diet, exercise, the gut microbiome, and metabolism.
Each of the models pertaining to diet healthiness, physical exercise, or a combina-
tion of both, displayed a distinct metabolic and functional microbial signature. A sig-
nificant proportion of the metabolites identified as discriminating between the vari-
ous pairwise comparisons result from gut microbe-host cometabolism, and the
identified interactions have expanded current knowledge in this area. Furthermore,
although increased microbial diversity has previously been linked with health, our
observation of higher microbial diversity being associated with increased proteolytic
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activity indicates that it may confer deleterious as well as beneficial effects on the
host.

KEYWORDS diet, exercise, metabolism, microbiome

Recent studies have shown that increased physical activity and aerobic fitness may
mediate some health benefits through modulation of the gut microbiome (1–4).

Human studies have shown differences in the gut microbiome, including increased di-
versity, in both habitual exercisers (5, 6) and professional athletes (7–10) compared to
more sedentary controls. Longitudinal studies have also found exercise-dependent
compositional and functional changes in the gut microbiome that result in altered lev-
els of a number of microbially derived bioactive metabolites such as short-chain fatty
acids (SCFA) as well as improved glucose homeostasis (7, 11, 12).

However, understanding the relationship between the gut microbiome, diet, and
exercise remains elusive in part because of the dietary adaptations that accompany ha-
bitual physical activity. Difficulties understanding this relationship are compounded by
inaccuracies in assessing dietary habits, with 30 to 88% misreporting using traditional
self-reported assessment tools (13–15). In an earlier report, taxonomic and functional
diversity were positively correlated with both dietary protein intake and physical exer-
cise in a population of athletes (7, 8). We hypothesized that more accurate dietary
assessment would help separate the contributions of diet and exercise to the modula-
tion of the gut microbiota and enhance our understanding of the contribution of diet
and exercise to the modulation of microbe-host cometabolism. To achieve this, we
applied metabolic profiling combined with a mathematical modeling strategy to pro-
vide objective evidence of adherence to World Health Organization (WHO) healthy
eating guidelines (increased fruits, vegetables, whole grains, and dietary fiber and
decreased fats, sugars, and salt) (16, 17). Our approach characterizes volunteers more
accurately according to physical activity and dietary status. By minimizing dietary varia-
tion in volunteer subsets the study has uncovered insights into the distinct influences
of physical activity and dietary status on host metabolism, the gut microbiome, and
subsequent gut microbiome-host cometabolism. In addition, we have explored the
functional and metabolic implications of higher microbial diversity, previously reported
in athletes (7, 8), on the host.

RESULTS

To assess the separate contributions of diet and exercise in modulating the gut
microbiota, we investigated urine and fecal samples from male athletes (n=40) in the
national Irish Rugby Football team that were collected while attending an intensive
training camp and healthy controls (n=46) matched for age and gender, as previously
described (8). We used a previously validated, metabolic profiling dietary assessment
tool (17) to objectively assess and score participants’ dietary habits (Fig. 1). Higher cal-
culated scores indicate more complete adherence to WHO dietary guidelines of
increased fruits, vegetables, whole grains, and dietary fiber and decreased fat, sugar,
and salt consumption. Briefly, the dietary profiling model was built using proton nu-
clear magnetic resonance (1H-NMR) global urinary metabolic profiles derived from
healthy participants that attended an inpatient randomized controlled crossover trial
and were assigned to diets with differing levels of adherence to WHO healthy eating
guidelines (16, 17) (see Materials and Methods).

As expected, controls had diverse adherence to a healthy diet, while professional
athletes were predominantly assigned scores that met or exceeded the healthy eating
guidelines with healthy eating scores of $100%, reflecting the known association
between habitual exercise and good dietary habits (18). The scores for healthy eating
behavior for the less active control participants ranged from 12.8% to 112.2%, with a
relatively even distribution between the two extremes, while those of the athletes
ranged from 15.7% to 112.5%, with only 5 of the 40 professional athlete participants
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falling below the 100% boundary. Individuals were then stratified according to their
score to construct comparative groups (Fig. 1). Participants with a scored adherence to
WHO healthy eating guidelines of $100% were considered healthy eaters. A cluster of
controls was observed with a healthy eating adherence score of ,35%. There is evi-
dence that those at the bottom third of a healthy eating scale have a 25% higher all-
cause mortality than those in the top third, as well as a 40% higher mortality from car-
diovascular disease (19). Therefore, 35% was chosen as the cutoff to define unhealthy
eaters. We used these groupings to construct a variety of models to statistically mea-
sure the differences in host metabolism, the gut microbiome, and their subsequent
cometabolism between various groups (Fig. 1). Model 1 (healthy diet effect) was con-
structed comparing controls with a ,35% adherence (n=19) versus controls with a
$100% adherence to healthy eating (n=11); model 2 (exercise effect) compared con-
trols with a $100% adherence to healthy eating (n=11) versus athletes with a $100%
adherence to healthy eating (n=35); model 3 (combined healthy diet and exercise
effect) compared controls with a ,35% adherence to healthy eating (n=19) versus
athletes with a $100% adherence to healthy eating (n=35). Other lifestyle factors,
including smoking levels and alcohol consumption, were also measured. The were no
significant differences in these factors between groups.

Diet and exercise status were associated with distinct urinary and fecal
metabolomes. Based on these comparative groups, six statistically robust Orthogonal
Projections to Latent Structures Discriminant Analysis (OPLS-DA) models (Fig. 2A to F)
were obtained to assess the effects of diet, exercise, and the two in combination on
participants’ urinary and fecal metabolic profiles, measured by 1H-NMR. The urinary

FIG 1 Clustering of individuals according to exercise status and adherence to healthy eating guidelines. Predicted adherence to WHO healthy eating
guidelines calculated from 1H-NMR urinary profile of each individual using a validated metabolic profiling tool (see Materials and Methods for dietary
assessment methodology). Individuals were subsequently clustered to form comparative models. Model 1 (healthy diet effect): comparing controls with a
,35% adherence versus controls with a $100% adherence to WHO healthy eating guidelines. Model 2 (effect of exercise): controls with a $100%
adherence versus professional athletes with a $100% adherence to WHO healthy eating guidelines. Model 3 (combined diet and exercise effect): controls
with a ,35% adherence versus athletes with a $100% adherence to WHO healthy eating guidelines.
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model characterizing the combined effect of diet healthiness and exercise was strong-
est (model 3; Fig. 2C, R2Y = 0.94, Q2

Y = 0.74), but statistically robust urinary models were
also obtained defining the impact of diet healthiness (model 1; Fig. 2A, R2Y = 0.97,
Q2

Y = 0.55) and exercise alone (model 2; Fig. 2B, R2Y = 0.92, Q2
Y = 0.45). With regard to

fecal profiles, the strongest model was that defining the effect of exercise (model 2;
Fig. 2E, R2Y = 0.92, Q2

Y = 0.45). The combination of diet healthiness and exercise pro-
duced a relatively robust model (model 3; Fig. 2F, R2Y = 0.91, Q2

Y = 0.39), while investi-
gation of diet alone showed the least impact (model 1; Fig. 2D, R2Y = 0.95, Q2

Y = 0.21).
For each pairwise OPLS-DA model built with the global 1H-NMR metabolic profiles,

a number of metabolites discriminating between the two classes were identified from
the model coefficients. These are listed in Table S1 (urine) and Table S2 (feces). As
expected, in model 1 (healthy diet effect), urinary metabolites with well-known dietary
associations such as proline-betaine (found in citrus fruit, particularly oranges [20]) and
hippurate (associated with the consumption of fruits and vegetables) were significantly
higher in the group with healthier eating scores, whereas markers of oxidative stress
(2-hydroxybutyrate) and anaerobic metabolism (lactate) were found in lower concen-
trations. Fecal metabolic profiles in subjects with healthier diet scores were associated
with lower concentrations of 2-aminobutyrate and 2-hydroxybutyrate and higher
levels of markers of cruciferous vegetable intake (S-methyl-L-cysteine-sulfoxide deriva-
tives). In the exercise effect model (model 2), the athlete group was characterized
by a number of urinary metabolites derived from the gut microbiome, such as

FIG 2 1H-NMR metabolic phenotyping, SCFA, and microbial diversity results. (A to F) Cross-validated OPLS-DA score plots, generated with one predictive
(Tcv) and one orthogonal (Tocv) component, of 1H-NMR urinary profiles comparing (A) controls with a ,35% adherence (red) to controls with a $100%
adherence (light blue) to WHO healthy eating guidelines (model 1, healthy diet effect), (B) controls with a $100% adherence to healthy eating (light blue)
to professional athletes with a $100% adherence to healthy eating (dark blue) (model 2, exercise effect), (C) controls with a ,35% adherence to healthy
eating (red) versus professional athletes with a $100% adherence to healthy eating (dark blue) (model 3, combined effect), and 1H-NMR fecal profiles
comparing (D) model 1, healthy diet effect, (E) model 2, exercise effect, and (F) model 3, combined effect. (G to I) Bar charts of mean SCFA levels measured
through quantitative GC-MS comparing (G) model 1, healthy diet effect, (H) model 2, exercise effect, and (I) model 3, combined effect. (J to L) Box plots
showing mean Shannon diversity index levels of taxa described by 16S profiling comparing (J) model 1, healthy diet effect, (K) model 2, exercise effect, and
(L) model 3, combined effect. The 95% confidence intervals shown. Significant results (pFDR, ,0.05) are marked with *.
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phenylacetylglutamine (PAG) and 3-indoxyl sulfate (3IS), as well as the ketone body
acetoacetate and markers of red meat intake and fatty-acid (FA) metabolism (carnitine,
O-acetyl carnitine). In contrast, markers of oxidative stress (allantoin [21]) and tricarbox-
ylic acid (TCA) cycle intermediates (succinate and citrate) were higher in the control
group. Analysis of fecal metabolites revealed higher concentrations of the short-chain
fatty acids (SCFAs) acetate, propionate, butyrate, and valerate and lower levels of the
amino acids glycine, phenylalanine, and tyrosine in the athlete group compared to
controls consuming a comparatively healthy diet. Model 3 (combined effect) consisted
predominantly of metabolites derived from models 1 and 2. Healthy eating, exercise,
and the combined effect of both (models 1 to 3) were all characterized by higher
markers of choline metabolism, with higher urinary trimethylamine-N-oxide (TMAO). In
the exercise effect model (model 2), this corresponded with higher fecal methylamine
and trimethylamine and lower dimethylamine in athletes relative to controls.

Targeted gas chromatography-mass spectrometry (GC-MS) of SCFA in feces
revealed significantly higher levels of acetate (Benjamini-Hochberg false-discovery rate
[pFDR], 0.001), propionate (pFDR, 0.001), and butyrate (pFDR=0.006) in healthy eat-
ing athletes relative to healthy eating controls (model 2; Fig. 2H, exercise effect). In addi-
tion to propionate (pFDR=0.004) and butyrate (pFDR=0.019), valerate (pFDR=0.043)
was found in higher concentrations in healthy eating athletes relative to controls with
unhealthy eating profiles, while acetate was higher but not significant after Benjamini-
Hochberg (BH) multiple testing corrections (pFDR=0.056) (model 3; Fig. 2I, combined
effect). There were no significant differences in the diet healthiness model (model 1;
Fig. 2G) and no differences in isobutyrate or isovalerate concentrations in any model.

Targeted analysis of 10 organic acids in urine by GC-MS demonstrated lower levels of
lactate (pFDR=0.002) and 2-hydroxybutyrate (pFDR=0.014) in healthy eating controls ver-
sus controls with unhealthy eating habits (model 1, healthy diet effect). 2-Methylbutyrate
(pFDR=0.043) was lower in healthy eating athletes versus healthy eating controls (model
2, exercise effect). In contrast to the fecal SCFA model, urinary acetate (pFDR=0.006), pro-
pionate (pFDR=0.003), 2-methylbutyrate (pFDR=0.001), isovalerate (pFDR=0.001), and
lactate (pFDR, 0.001) were all lower in athletes with $100% adherence to healthy eating
versus controls with,35% adherence to healthy eating (model 3, combined effect).

Microbial diversity. No difference in gut microbial diversity was found between
comparative groups when investigating the effect of healthy eating (model 1; Fig. 2J)
or exercise (Model 2; Fig. 2K). However, there was increased diversity of genera
detected by 16S profiling in healthy eating athletes versus unhealthy eating controls,
both in richness and evenness (model 3; Fig. 2L, combined effect) using Shannon
(pFDR=0.012), Simpson (pFDR=0.020), whole-tree (phylogenic diversity [PD]; pFDR=
0.001), Chao1 (pFDR=0.025), and observed feature (pFDR=0.012) indices. Similar com-
parisons for each of the models with microbial metabolic pathways, species, and genera
identified with metagenomic sequencing were not significantly different despite having
similar trends (data not shown).

Linear regression analysis of 1H-NMR fecal water global profiles against Shannon,
Simpson, and PD diversity indices, corrected for confounding factors (age, lean mass,
and fat mass), revealed multiple metabolites associated with diversity (see Table S2). In
contrast, no metabolites from urinary 1H-NMR global profiles were found to signifi-
cantly correlate with measures of gut diversity. Fecal metabolites associated with
higher diversity included increased short/medium-chain FAs valerate and caproate;
branched SCFAs isobutyrate, isovalerate, and 2-methylbutyrate; branched-chain amino
acid (BCAA) degradation products 2-oxoisocaproate and 2-oxoisovalerate; as well as
products of phenylalanine (phenylacetate and 3-phenylpropionate), choline (dimethyl-
amine), proline (2-methylproline), and uracil (ureidopropionate) metabolism. Increased
diversity was also associated with lower glucose, isoleucine, asparagine, and histidine
levels. See Table S2 for corrected P values (pFDR).

Diet-gut microbiome-metabolome interactions. A total of 47 fecal and 27 urinary
metabolites of interest were subsequently quantified. Selection of these metabolites
was based on discriminatory capacity (model weighting) from models 1 to 3 and/or
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metabolites associated with microbial diversity. A number of correlation matrices were
generated using these quantified metabolites to explore gut metabolome-host metab-
olome interactions. First, fecal-urinary metabolome interactions were derived from
Spearman correlations between the two data sets (see Fig. 3). Findings included the
correlation of urinary 3IS with fecal SCFAs, urinary PAG with fecal phenylacetate, uri-
nary hippurate with fecal 3-phenylpropionate, and urinary TMAO with fecal trimethyl-
amine and methylamine. Second, Spearman correlations between metabolite levels
and relative abundance of (i) microbial species (Fig. S1) and (ii) microbial metabolic
pathways (Fig. 4) were explored, revealing numerous significant correlations
(pFDR, 0.01 = 257 and 58 correlations, respectively). These included the correlation of

FIG 3 Fecal-urinary metabolic interactions. Significant Spearman correlations (pFDR, ,0.05) between fecal and urinary metabolic data sets are shown,
shaded according to the strength of the correlation coefficient (Rho). Correlations are clustered according to Euclidean distances.
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urinary PAG levels with bacterial species from the Actinobacteria and Proteobacteria phyla
as well as a number of bacterial metabolic pathways, including those related to gluconeo-
genesis, anaerobic energy metabolism, and glutamate degradation to SCFAs. We found a
number of positive correlations between bacterial species and pathways with SCFAs,
including the correlation of acetate with Roseburia hominis, Streptococcus suis, and
Halobacteriovorax marinus, propionate with Leuconostoc citreum, and valerate with
Pyrococcus horikoshii, Simkania negevensis, and Streptococcus suis. We identified a large
number of species and pathways whose abundance correlated with fecal dimethylamine
(DMA) excretion but which did not appear to influence TMAO levels. Whereas the

FIG 4 Microbial metabolic pathway-metabolite interactions. Significant Spearman correlations (pFDR, ,0.01) between microbial metabolic pathways versus
fecal and urinary metabolic data sets are shown, shaded according to the strength of the correlation coefficient (Rho). Correlations are clustered according
to Euclidean distances.
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heterofermentative lactic acid bacterium Leuconostoc citreum did correlate with higher
TMAO levels. Interestingly, we also identified a number of lactococcal phages that corre-
lated with TMAO. Furthermore, lactococcal phage levels correlated with increased TMAO:
DMA and TMA:DMA ratios. Further correlations between dietary, metabolite, microbial
pathway, and microbial diversity data sets were also performed (Fig. S2 to S5). Fecal butyr-
ate correlated strongly with fiber intake, whereas propionate correlated most strongly
with protein intake. Diversity was correlated with a number of metabolites, including valer-
ate, medium-chain fatty acids (MCFA), branched SCFA, and branched-chain keto acids
(BCKA), as well as lower amino acid levels. Increased diversity also correlated with a num-
ber of microbial pathways, including higher amino acid, BCAA, and nicotinate degradation,
cofactor and amino acid biosynthesis, and gluconeogenesis pathways, along with a
reduced activity in starch degradation, methionine, and fatty acid biosynthesis pathways.

DISCUSSION

Models of diet healthiness, exercise, or both each displayed metabolic and func-
tional microbial signatures, with a number of discriminatory metabolites. Microbial di-
versity was associated with a combination of increased diet healthiness and exercise
and also correlated with distinct microbially derived metabolites. Our results suggest
that dietary changes alone did not significantly impact bacterial diversity, although
they did affect gut microbial metabolites in urine and feces.

Metabolic phenotype associated with diet and exercise. As expected, the effect
of adherence to WHO healthy eating guidelines was associated with higher markers of
fruit and vegetable intake (urinary proline-betaine, formate, and hippurate in addition
to lower sugar levels) (17, 22). Healthy eating was also characterized by lower urinary
levels of lactate and 2-hydroxybutyrate, markers of anaerobic respiration and oxidative
stress, respectively (22).

High levels of physical activity were linked with higher concentrations of O-acetyl
carnitine, a metabolite associated with the intake of animal protein. Although protein
consumption was higher in the athlete group and included whey protein supplemen-
tation in several individuals, higher O-acetyl carnitine may also have been due to
increased fatty acid mobilization and oxidation (23). In addition, there were lower con-
centrations of urinary succinate in athletes, likely due to increased systemic utilization
through the TCA cycle.

Diet and exercise induced alterations in gut microbe-host cometabolism.
Tryptophan metabolism. In control participants assigned high healthy eating scores
(model 1), we found lower levels of N-methylnicotinamide (NMND). NMND is gener-
ated from tryptophan metabolism through the kynurenine pathway in humans. The
resulting nicotinamide is methylated by nicotinamide N-methyltransferase (NNMT), to
form NMND, which is then further metabolized to 2-methyl-2-pyridone-5-carboxamide
(2PY) (24). Nicotinamide serves an important role in energy regulation. Indeed, NNMT
knockout in mice—resulting in higher nicotinamide and reduced NMND and 2PY—is
protective of diet-induced obesity (25). Thus, the lower levels of NMND seen here sug-
gest increased energy expenditure in healthy eaters.

Conversely, in the exercise effect model we find higher levels of urinary 2PY associ-
ated with physical activity (model 2). In addition, there is increased gut microbial me-
tabolism of tryptophan through the indole pathway, leading to increased 3IS. This is a
similar metabolic signature to that seen in malnourished children (24). Increased 2PY
can be explained through indoleamine 2,3-dioxygenase (IDO)-mediated activation of
the kynurenine pathway due to increased inflammation (8). Increased 3IS is likely due
to a shift toward proteolytic fermentation of increased colonic protein by gut bacteria
due to higher protein intake in healthy eating athletes relative to healthy eating controls
(median intake, 240 g/day versus 104 g/day; P, 0.001). We also found that urinary 3IS
was positively correlated with fecal SCFAs (Fig. 3), suggesting it was linked to increased
fermentation of other substrates, including dietary fiber and complex carbohydrates.

Phenylalanine metabolism. Higher physical activity (model 2) and the combined
effect of healthy diet and exercise (model 3) resulted in higher levels of urinary
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phenylacetylglutamine (PAG), produced through gut microbial conversion of phenylal-
anine to phenylacetate and subsequent conversion to PAG in the liver. In keeping,
fecal phenylacetate was positively correlated with urinary PAG (Fig. 3), and we
observed lower fecal phenylalanine and tyrosine concentrations in model 2. Consistent
with these findings, PAG has previously been associated with a lean phenotype (26).
Our study highlights a number of correlations between PAG levels and bacterial spe-
cies and metabolic pathways. The ketone body acetoacetate was similarly associated
with higher physical activity and the combined effect of healthy diet and exercise and
can also be produced through ketogenic metabolism of phenylalanine.

While PAG was positively associated with higher physical activity (model 2), the
more minor microbial phenylalanine metabolites 3-hydroxyphenylacetate (HPA) and 3-
(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA) were inversely correlated. Whereas
healthy eating (model 1) was positively correlated with HPA levels in urine. The biologi-
cal role of HPA and HPHPA is disputed. Some studies have associated HPA and HPHPA
with neurological disorders (27). Others, however, have shown the contrary (28), and
furthermore, HPA is thought to be a dietary marker of rutin intake, a flavonoid and
antioxidant.

Benzoate metabolism. An alternative metabolic route for phenylalanine and other
dietary aromatic compounds, such as catechin is via their metabolism to benzoate,
which is further glycine conjugated predominantly in the liver to form hippurate (29).
Here, we found higher urinary hippurate in individuals with a healthy diet score (model
1). Higher hippurate levels have been correlated with a lean phenotype and lower
blood pressure as well as fruit intake (30, 31). In this study, urinary hippurate levels cor-
related strongly with fecal 3-phenylpropionate (Fig. 3), suggesting that the main
source of hippurate production observed here was through microbial degradation of
catechin from the diet.

Choline metabolism. We found higher levels of TMAO in both those that adhered
to healthy eating guidelines (model 1) and those with high levels of physical activity
(model 2) in addition to the combination of both. Circulating TMAO is thought to pre-
dict cardiovascular disease (CVD), possibly through altered cholesterol metabolism and
oxidative stress (32, 33). However, the causative effect in humans is disputed and may
be due to confounders such as kidney function and poor metabolic control (34).
Furthermore, high concentrations of TMAO are present in the tissues of cold-water-
dwelling fish, where it acts as an antifreeze agent, and is consequently also found in
high levels in the urine of Japanese populations whose diet contains a high portion of
fish and who do not have high risk for CVD (30). Moreover, TMAO was recently found
to protect against impaired glucose tolerance and reduce endoplasmic reticulum stress
(35).

As expected, urinary TMAO levels correlated with fecal trimethylamine and methyla-
mine, although not with dimethylamine (DMA) (Fig. 3). Furthermore, TMAO correlated
with markers of protein intake: urinary carnitine, acetyl-carnitine, and urea (Fig. S5),
which is consistent with the higher reported intake of protein in the healthy eating
athletes represented in the exercise and combined models. The microbial abundance
data also demonstrated a dichotomy with respect to association between TMAO and
DMA. We identified a large number of species and pathways whose abundance corre-
lated with fecal DMA excretion but which did not appear to influence TMAO levels,
whereas the heterofermentative lactic acid bacterium Leuconostoc citreum did correlate
with higher TMAO levels. Intriguingly, the identification of a number of lactococcal
phages that correlated with TMAO raises the possibility that changes to the gut envi-
ronment, such as altered pH from changes to lactic acid bacteria, can alter levels of
TMA/TMAO-producing and -metabolizing bacteria, leading to subsequent changes in
host TMAO levels. Indeed, lactococcal phage levels also correlated with increased
TMAO:DMA and TMA:DMA ratios, suggesting they may influence bacterial TMA dehy-
drogenase or TMAO aldolase activity.

SCFA and branched-chain amino acid metabolism. Fecal SCFAs were found in
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higher concentrations in participants with increased physical activity (model 2) and
participants with combined healthy eating and increased exercise (model 3) relative to
controls. SCFAs are produced through the bacterial fermentation of dietary fiber and
complex carbohydrates. The most abundant SCFAs are acetate (C2), propionate (C3),
and butyrate (C4). Valerate and the branched SCFAs isobutyrate, isovalerate, and 2-
methyl-butyrate are produced by gut bacteria in smaller quantities (36). Butyrate is the
preferred source of energy for colonic epithelial cells (37), whereas propionate, along
with remaining butyrate, is used predominantly by hepatocytes for gluconeogenesis
(38). Acetate is mainly utilized by muscle cells to generate energy. Importantly, SCFAs
have been associated with reduced appetite and weight loss through stimulating
release of the anorectic gut hormones peptide YY (PYY) and glucagon-like peptide-1
(GLP-1) (36, 39). Interestingly, it has been reported that undigested proteins and amino
acids in the colon may serve as an additional substrate for SCFA production (40).
Indeed, in this cohort, we found that while fecal butyrate correlated strongly with fiber
intake, propionate correlated most strongly with protein intake, which is increased in
healthy eating athletes (Fig. S2). We found a number of positive correlations between
bacterial species and SCFAs (Fig. S1). These included the correlation of acetate with
Roseburia hominis, Streptococcus suis, and Halobacteriovorax marinus, propionate with
Leuconostoc citreum, and valerate with Pyrococcus horikoshii, Simkania negevensis, and
Streptococcus suis.

Medium-chain fatty acids (MCFA), branched SCFA, and branched-chain keto acids
(BCKA) were correlated with higher microbial diversity, seen after modeling the com-
bined effects of healthy diet and exercise. The branched SCFAs isobutyrate, isovalerate,
and 2-methylbutyrate are produced through the fermentation of BCAAs and have also
been shown to modulate energy metabolism (41). Here, isobutyrate and isovalerate
were both correlated with bacterial amino acid (glutamate) degradation pathways to
propionate and butyrate and had an inverse correlation to pathways encoding starch
degradation (Fig. 4). It is likely that bacteria were using similar pathways to ferment
BCAAs in place of glutamate. Further, in fecal samples with higher diversity, we
detected higher levels of 2-oxoisocaproate and 2-oxoisovalerate, BCKAs produced
through the catabolism of the BCAAs leucine and valine, respectively. This initial trans-
amination reaction, catalyzed by branched-chain aminotransferase, produces gluta-
mate (also higher in fecal samples with higher diversity) and the respective BCKA (42).
Subsequent leucine metabolism via 2-oxoisocaproate is ketogenic, while valine metab-
olism via 2-oxoisovalerate is glucogenic (43). This constellation of raised BCKAs, gluta-
mate, and branched-SCFAs suggests that the increased diversity observed here was
associated with an adaptation toward increased degradation of protein and amino
acids in the colon. Additionally, we observed lower glucose and amino acid levels (his-
tidine, asparagine, and isoleucine) with higher levels of diversity. It is not clear whether
these changes were a result of microbial adaptation to a high protein/low sugar envi-
ronment in the distal colon or if they were driven by an increase in microbial utilization
of amino acids. Intriguingly, the lower fecal amino acid levels, seen here with higher
microbial diversity, indicate that enhanced protein degradation increased beyond any
increased protein intake. Corresponding changes were also noted in microbial meta-
bolic pathways related to increased diversity, including higher abundance of higher
amino acid, BCAA, and nicotinate degradation pathways (Fig. S3).

In addition, SCFAs can also be utilized by bacteria for de novo amino acid biosynthe-
sis (44). Here, increased fecal valerate correlated with increased exercise (models 2 and
3) and microbial diversity and was positively correlated with bacterial phenylalanine
and tyrosine biosynthesis pathways (Fig. 4). Furthermore, increased fecal acetate also
correlated with increased exercise (models 2 and 3) and was positively correlated with
bacterial tryptophan biosynthesis pathways. Lastly, fecal acetate and valerate were
positively associated with guanosine ribonucleotide biosynthesis pathways. These cor-
relations suggest that SCFAs have an important role in enabling the biosynthesis of ar-
omatic compounds.
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Conclusion.We have shown that each exercise/diet group exhibited a distinct met-
abolic and functional microbial phenotype. The incorporation of an objective measure
of dietary habits into the models enabled us to more accurately reduce the confounding
effect of diet when investigating exercise and therefore better ascertain the individual bi-
ological sequelae of diet healthiness and exercise. Limiting the participants to males
removed confounders resulting from gender. However, further studies are needed to
confirm the reproducibility of these results in females. In addition, we were unable to iso-
late the effect of diet in participants with high physical activity levels due to a paucity of
athletes that follow an unhealthy diet.

Although increased microbial diversity has previously been linked with health
(45–48), increased diversity in the present cohort was associated with amplified pro-
teolytic fermentation by gut bacteria. Since protein metabolism within the gut has
been linked with the production of toxic compounds such as ammonia, amines, and
sulfides (49, 50), increased gut bacterial diversity may include deleterious as well as
beneficial effects on the host. This emphasizes the value of in-depth analysis at a meta-
bolic pathway and taxonomic level in future microbiome studies.

MATERIALS ANDMETHODS
Study population. Professional male athletes from the national Irish Rugby Football team (n= 40)

and healthy controls (n=46) matched for age and gender were enrolled in this study as previously
described (8). Exclusion criteria included receiving antibiotics within 2months before screening and
prior diagnosis with any cardiovascular, gastrointestinal, or immunological condition. Control subgroups
were established with body mass index (BMI) ranges matching the body types of the athletes. Approval
was granted by the Cork Clinical Research Ethics Committee. Urine and fecal samples were collected
from both groups and stored at 280°C until analysis.

Acquisition of clinical exercise and dietary data. Urine and fecal samples were collected from ath-
letes while they attended an intensive training camp and from healthy but less active controls. Activity
levels were validated using the EPIC-Norfolk questionnaire (51) and creatine kinase levels. Dietary intake
was calculated from food frequency questionnaires (FFQ) administered by a research nutritionist (8).

Gut microbiota analysis. As determined previously, 16S taxonomic profiles had more robust charac-
terization of taxa at and above the level of genus (7). Due to the removal of samples falling outside
healthy diet thresholds, species and strain-level designations were unreliably varied within the study
groups. As a result, the 16S data were used in order to more conservatively represent alpha diversity
above the species level, whereas metagenomic sequencing was used to establish species and pathway
data.

DNA preparation. Extraction and purification of DNA from fresh fecal samples were accomplished
with the QIAmp DNA stool minikit (Qiagen, UK). The manufacturer’s protocol for the extraction kit was
followed with the addition of a bead-beating step (30s � 3) to better disrupt cell walls. The resulting
DNA was initially stored at 220°C prior to 16S rRNA sequencing before being stored at 280°C until the
samples were prepared for shotgun metagenomics sequencing.

16S rRNA sequencing. The complete procedures used for 16S rRNA gene amplicon sequencing
were outlined previously (8). Briefly, 16S rRNA gene (v4) PCR amplicons were generated using a combi-
nation of universal 16S rRNA primers estimated to bind to 94.6% of all 16S genes. Sample-specific identi-
fier tags and 454 adaptor sequences were combined with the primers. The AMPure magnetic bead puri-
fication system was used to clean both 16S amplicons and shotgun metagenomics libraries (Beckman
Coulter; catalogue number 9A63880). The 16S amplicons were sequenced on a 454 genome sequencer
FLX platform at the Teagasc sequencing facility using the manufacturer’s protocols. The 16S sequencing
data were originally processed accordingly as follows: quality trimming of raw 16S sequences was done
with the Qiime (v1.2) (52) software suite, using the SILVA 16S rRNA database (v106) (53). Reads were dis-
carded from further analysis if they fell below a minimum quality score of 25 or were shorter than 150
bp. BLAST with default parameters was used with the SILVA database to generate input for
MEtaGenome ANalyzer (MEGAN v4.70.4), which assigned reads to taxonomies. Following read clustering
to operational taxonomical units (OTUs) and chimaera removal, Qiime was then used to generate meas-
ures of alpha diversity. Although the methods to process 16S sequencing data are continuously evolv-
ing, minimal changes have occurred with OTU assignment and the calculation of alpha diversity meas-
ures. Due to this, diversity indices as previously reported were used to describe alpha diversity above
the species level (8).

Shotgun metagenomic sequencing. As described previously (7), metagenomic library prepara-
tion was performed with the Illumina Nextera XT DNA library preparation kit (Illumina, Inc., USA) in
explicit accordance with the manufacturer’s protocol (15031942, Illumina). Prior to library prepara-
tion, DNA samples were normalized to 0.2 ng/ml using the Qubit v2.0 fluorometric quantification sys-
tem (Thermo Fisher Scientific). Library fragment size was assessed with the Agilent 2100 bioanalyzer
system (Agilent Technologies; catalogue number G2939BA). Finalized libraries were combined in
equimolar concentration (2nM) before sequencing. Metagenomic libraries were sequenced on the
Illumina HiSeq 2500 (chemistry v4.0) next-generation sequencing (NGS) platform by Eurofins Genetic
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Services Ltd. (Ebersberg, Germany) using the high-output run mode for 2� 125-bp paired-end reads with
the addition of a PhiX library (1%) to estimate sequence quality. Contaminant reads from humans were
removed from raw FASTQ sequence files with NCBI Best Match Tagger (BMTagger) software. Remaining
reads were quality checked with Picard and SAMTools software, removing duplicate and substandard-
quality reads. The resulting high-quality sequence data were subjected to functional profiling by the
Human Microbiome Project Unified Metabolic Analysis Network (HUMAnN2 v.0.5.0) pipeline (54). Here,
models of microbial metabolic pathways derived from the MetaCyc database were generated.
Metagenomic taxonomic profiling was performed with the Kraken software package (v0.10.6) (55).
Species-level shotgun metagenomics data were converted to relative abundance, and HUMAnN2 pathway
profiles were normalized to copies per million units prior to statistical analysis.

Metabolic profiling. Metabolic analyses of urine and fecal biofluids were conducted using estab-
lished 1H-NMR and GC-MS methods (56, 57), as previously described (7).

Global, untargeted 1H-NMR urine and fecal metabolic profiling analyses were performed on a 600-
MHz spectrometer (Bruker BioSpin, Germany) using established methods (56, 58). Briefly, urine and fecal
samples were prepared with a pH 7.4 phosphate buffer for 1H-NMR spectroscopy as described previously
and analyzed at 300 K using the following standard one-dimensional pulse sequence with saturation of
the water resonance: RD-gz1-90°-t1-90°-tm-gz2-90°-ACQ. The relaxation delay (RD) was set at 4 s, 90° repre-
sents the applied 90° radio frequency pulse, the interpulse delay (t1) was set to an interval of 4 ms, the
mixing time (tm) was 10ms, magnetic field gradients (gz1 and gz2) were applied for 1ms, and the acquisi-
tion period (AQA) was 2.7 s. Water suppression was achieved through continuous wave irradiation at
the water resonance frequency. Each spectrum was acquired using 4 dummy scans, 32 scans, and 64 K
time domain points.

Targeted analysis to quantify SCFAs was conducted using GC-MS as previously described (57), using
an Agilent 7890B gas chromatography system, equipped with an automatic liquid sampler, coupled to
an Agilent 7000C single quadruple mass selective detector (Agilent Technologies, USA).

Urinary and fecal quality control samples were used for the nuclear magnetic resonance (NMR) and
GC-MS analyses to ensure data quality.

Objective assessment of dietary intake.We applied a novel and validated mathematical tool ca-
pable of objectively assessing free-living individuals’ dietary patterns based on their urine composi-
tion, without the need to collect dietary data. The tool is based on a Monte Carlo cross-validated
PLS-DA model built from global urinary metabolic profiles derived from a highly controlled environ-
ment (inpatient randomized controlled crossover trial) to ensure that healthy participants were fully
adherent to four dietary interventions that reflected four different levels of adherence (25, 50, 75,
and 100%) to WHO healthy eating recommendations (increased fruits, vegetables, whole grains, and
dietary fiber and decreased fats, sugars, and salt) (17). The application of this model has been suc-
cessfully validated in free-living populations (17, 59). 1H-NMR urinary metabolic profiles from ath-
letes and controls were projected into the MCCV-PLS-DA model to calculate a predicted score for
each participant that reflected their adherence to healthy eating. We considered a score that is pre-
dicted at 100% or higher to be reflective of healthy eating; e.g., the global profile of such a score has
(on average) higher concentrations of biomarkers reflective of the 100% diet than trial participants
following the 100% diet.

Relationship between self-reported dietary intake and independent urinary metabolite
assessment. Based on the self-reported food frequency questionnaires (FFQ), there were no significant
differences in the frequency of citrus fruit or fruit and vegetable consumption comparing controls with a
#35% adherence to healthy eating versus controls with a $100% adherence to healthy eating (citrus
consumption, P = 0.96; fruits and vegetables, P = 0.67) or controls with a#35% adherence to healthy eat-
ing versus athletes with a $100% adherence to healthy eating (citrus consumption, P = 0.85; fruits and
vegetables, P = 0.77).

However, we and others have demonstrated the use of urinary biomarkers to independently
assess the consumption of specific food groups, including proline-betaine for citrus fruits (20, 60)
and hippurate for fruits and vegetables (31, 61). Investigation of urinary proline-betaine and hippu-
rate found higher intake of citrus and fruits and vegetables in the healthy eating athletes and con-
trols. This suggests a level of misreporting in the self-reported data that makes it difficult to inter-
pret. Therefore, participants’ dietary intakes were scored using the validated metabolic profiling
dietary assessment tool that relies on urinary metabolic profiles and dietary biomarkers instead of
self-reported FFQ (17).

Statistical analysis. 1H-NMR spectra were phased and digitized over the range d 0 · 5 to 9 · 5 and
imported into MATLAB to undergo median fold change normalization (62). Multivariate statistical
analysis was performed using SIMCA v14.1 (Umetrics) (62). The three comparative groups previously
defined were modeled using OPLS-DA: (i) controls with a ,35% adherence to healthy eating versus
controls with a $100% adherence to healthy eating (model 1), (ii) controls with a $100% adherence
to healthy eating versus athletes with a $100% adherence to healthy eating (model 2), and (iii) con-
trols with a ,35% adherence to healthy eating versus athletes with a $100% adherence to healthy
eating (model 3). The OPLS-DA models were established based on one predictive component and
one orthogonal component. Unit variance scaling was applied to 1H-NMR spectral data. The fit and
predictability of the models obtained were determined by the R2Y and Q2

Y values, respectively.
Significant metabolites differentiating between groups were obtained from 1H-NMR OPLS-DA mod-
els after investigating 1H-NMR signals with correlation coefficient values higher than 0.4. Jack-knifed
95% confidence intervals of the coefficients were used to confirm the significance of the variables.

Univariate statistical analysis (two-sided Mann-Whitney U test) was used to identify discriminatory
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metabolites in SCFA quantitative data sets. P values were adjusted for multiple testing using the Benjamini-
Hochberg (BH) false-discovery rate method (pFDR).

Linear regression analysis of 1H-NMR global spectra was performed against Shannon, Simpson, and
whole-tree bacterial diversity indices, corrected for confounding factors (age, lean mass, and fat mass),
using an in-house MATLAB (release 2014a) script. Metabolites with adjusted pFDR values of ,0.01, were
considered significant and were subsequently visualized in a Manhattan plot.

Finally, heat maps showing significant Spearman correlations between data sets were generated
using the ComplexHeatmap script in R (63). Spearman correlations were first calculated in MATLAB.
Correlations between metabolite-metabolite data sets with a pFDR ,0.05 were included. Due to the
large number of variables, a false-discovery rate of 1% was set for correlations, including microbiome
taxa and pathway data sets. Hierarchical clustering of correlations was performed using Euclidean
distances.

Metabolite identification. A combination of data-driven strategies such as such as SubseT
Optimization by Reference Matching (STORM) (64) and Statistical TOtal Correlation SpectroscopY
(STOCSY) (65) and analytical identification strategies were used to aid structural identification of signifi-
cant discriminatory metabolites. Specifically, a catalogue of 1D 1H-NMR sequences with water presatura-
tion and 2D NMR experiments such as J-Resolved spectroscopy, 1H-1H TOtal Correlation SpectroscopY
(TOCSY), 1H-1H COrrelation SpectroscopY (COSY), 1H-13C Hetero-nuclear Single Quantum Coherence
(HSQC) and 1H-13C Hetero-nuclear Multiple-Bond Correlation (HMBC) spectroscopy were performed.
Finally, when possible, metabolites were confirmed by in situ spiking experiments using authentic chem-
ical standards.

Metabolite quantification. Semiquantification of identified metabolites from 1H-NMR profiles was
performed using an in-house MATLAB script to annotate maximal intensity of median fold change nor-
malized spectral peaks. The highest-intensity spectral peak was identified for each measured metabolite
and precisely quantified for each individual. Manual annotation enabled precise marking of peaks, allow-
ing for variations in chemical shift in individual samples. Where spectral peaks overlapped with other
metabolites, the highest-intensity unambiguous spectral region was used.

Data availability. All presented data are tabulated and detailed in the main text and supporting
information. Codes used to analyze these data are referenced in the main text. Metagenomic
sequencing data are available at the European Nucleotide Archive repository (accession number
PRJEB15388). The 16S rRNA sequence reads are available from the Sequence Read Archive (accession
number PRJEB4609).
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