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Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular
multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied
indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms’ performances on the
neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-
line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments.
The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification
algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting “building blocks” into a Matlab-
based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The
framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs.
Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of
the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different
options for spike sorting towards more accurate off-line and on-line MEA data analysis.

1. Introduction

Simultaneous multisite recordings using Microelectrode
Arrays (MEAs) coupled to cultured neuronal networks are a
widely applied approach in the field of in vitro electrophys-
iology [1–3]. This technology overcomes the drawbacks of
single-cell recording techniques, by sampling the electrical
activity of a neuronal culture from multiple sites in a non-
invasive way. This allows long-term studies of extracellular
neuronal action potentials (i.e., spikes) and high frequency
sequences of spikes (i.e., bursts) recorded at each electrode.
Moreover, neuronal dynamics at the network level, such
as array-wide bursts barrages (i.e., network bursts), can be
observed thanks to the multiple sites of recording [1]. Given
that typical electrode diameters are comparable to cells size
or bigger (i.e., 20–30𝜇m), each electrode is able to sense the
extracellular activity of multiple cells simultaneously. As a
consequence, specific signal processing methods (i.e., spike

sorting algorithms) are needed to identify the network activ-
ity at a single-cell level, before proceeding with the analysis
of spike trains (e.g., burst and network burst detection). Spike
sorting algorithms are designed to address this task, based on
the assumption that the coupling between an individual cell
and its respective electrode creates a unique spike shape [4, 5].
Applications where the focus is on the spike timing analysis
[6] or that require discrimination between the activities of
neurons of different origin [7–9] are examples of studies that
particularly benefit from spike sorting.

Many algorithms with different levels of complexity and
automaticity have been proposed to sort neuronal spikes [5].
Most of the methods start with a feature extraction step,
where prominent spike waveform features are computed.
After an optional dimensionality reduction, a clustering step
is applied on the extracted spike features to identify groups
of spikes belonging to the same cell [5, 10]. Other methods
rely on the temporal matching or on the correlation of
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Table 1: Overview of spike sorting algorithms.

Reference Feature extraction Clustering
Letelier and Weber [14] Wavelet Fuzzy-𝐶-means
Harris et al. [15]a PCAc Expectation maximization
Zouridakis and Tam [16] Waveforms Fuzzy-𝐶-means
Hulata et al. [17] Wavelet 𝐾-means
Egert et al. [18]a PCA Manual cluster cutting
Shoham et al. [19] PCA Expectation maximization
Quiroga et al. [20]a Wavelet packet coefficients Superparamagnetic clustering
Rutishauser et al. [11]a — Template matching
Cho et al. [21] LDAd Fuzzy-𝐶-means
Adamos et al. [22] PCA Expectation maximization
Awais and Andrew [23] Zero crossing 𝐾-means
Biffi et al. [24] PCA Hierarchical clustering
Takekawa et al. [25] Wavelet Bayes
Gibson et al. [13] Discrete derivative Fuzzy-𝐶-means
Cheng et al. [26, 27] PCA Density-based clustering
Liu et al. [28] PCA Valley-seeking
Lai et al. [29] Wavelet Gray relation analysis
Bestel et al. [4] PCA, wavelet, geometrical features Expectation maximization
Yuan et al. [12] Wavelet 𝐾-means, template matching
Oliynyk et al. [30]a PCA Fuzzy-𝐶-meansf

Kwon et al. [31]a DWTe, PCA, peak-to-peak Expectation maximization, 𝐾-means, fuzzy-𝐶-means,
manual cluster cutting

Englitz et al. [32]a Geometrical features 1D clusteringf

Paraskevopoulou et al. [33] FSDE 𝐾-means
Nick et al. [34]a PCA, DWT, geometrical features Expectation maximization
MCRack (Multi Channel Systems
GmbH)b — Manual amplitude windowf

Spike2 (Cambridge Electronic
Design Ltd.)b PCA Template matchingf

Manual cluster-cutting, 𝐾-means, Gaussian mixture models
Off-Line Sorter (Plexon Inc.)b PCA Expectation maximization, 𝐾-means, valley-seeking
Overview of the literature about spike sorting algorithms, including published papers about methods, custom toolboxes, and commercial software. aCustom
toolbox available to the community. bSoftware coupled to a commercial acquisition platform. cPrincipal component analysis. dLinear Discriminant Analysis.
eDiscreteWavelet Transform. fOn-line mode. Keywords used for literature search were “spike sorting”, “spike detection”, “spike classification”, “in vitro”, “real
time/on-line”, “Microelectrode arrays”, and “toolbox” (PubMed and Google Scholar).

spike waveforms with spike templates, without the feature
extraction phase [11, 12].

Despite many efforts to tackle the spike sorting problem,
it is still difficult to identify the best algorithm with large
generality and also to define which spike sorter is the most
appropriate under specific circumstances [13]. As reported
earlier, the experimental protocol, the acquisition setup, the
culture type, and the unique coupling of cells and electrodes
within the same culture shape the electrode data in a peculiar
way, making it inevitable to use data-centric methods for
the classification of neuronal spikes [10]. Table 1 reports the
heterogeneity of some of the spike sorting algorithms found
in the literature and in custom or commercial software [14–
34]. Except for a few instances [31], these tools do not
incorporate alternative methods for spike sorting process
(i.e., feature extraction and clustering) but usually apply one
method indiscriminately to all the electrodes [20, 33]. This

prevents an immediate comparison of different algorithms on
the same data.

Neuronal spikes recorded with MEAs can be sorted with
two different approaches: (i) off-line, whichmeans that spikes
are sorted after the acquisition and storage of raw voltage
traces, or (ii) on-line, whichmeans that spikes are sorted dur-
ing data acquisition. In the first case, the information about
the spikes collected throughout the recording is available to
the algorithm; in the other case, only information available up
to the current point in time can be exploited to sort a spike.
Although in off-line modality spike waveforms are classified
with a better accuracy [4], an extensive amount of time,
together with a massive data transmission rate and storage
space, is often required for this task [11]. An immediate data
analysis is crucial not only in closed-loop situations (on-line
real-time processing) [35] but also for open-loop long-lasting
and/or high-throughput experiments, taking into account



Computational Intelligence and Neuroscience 3

First 3 
components

AdaBandFlt

O-sort

Preprocessing

Spike time stamps 
Class ID

Feature extraction

Dimensionality reduction

Spike detection

Maximum
difference

Clustering

Feature #1
Feature #2

Fe
at

ur
e #

3

K-means | FCM | DBC

PCA | DWT | GEO | FSDE

1ms

30 s
30𝜇m

−0.1
0

0.1
−0.05

0.05
0.15
−0.1

0

0.1

Feature #1
Feature #2

Fe
at

ur
e #

3

−0.1
0

0.1
−0.05

0.05
0.15
−0.1

0

0.1

Figure 1: Scheme of the spike sorting processing algorithms incorporated in this work. For each electrode the raw signal is preprocessed before
the subsequent spike detection by a threshold-based algorithm (i.e., AdaBandFlt [24]). The feature extraction can be performed with four
different methods (i.e., principal component analysis (PCA), Discrete Wavelet Transform (DWT), geometric features (GEO), and First and
SecondDerivative Extrema (FSDE)) followed by a dimensionality reduction step that retains the relevant features.Three clustering algorithms
are implemented to automatically cluster spike features (i.e., 𝐾-means, fuzzy-C-means (FCM), and density-based clustering (DBC)). As an
alternative, a template matching algorithm (O-sort) groups the spikes as soon as they are detected.

that standard MEAs can generate tens of gigabytes of raw
data per day [24, 36]. Moreover, this approach facilitates
for experimental scientists having a glance at the results
of their ongoing experiment. On-line spike classification
methods have been incorporated into few commercial (e.g.,
McRack software by Multi Channel Systems GmbH, Spike2
by Cambridge Electronic Design Ltd.) or custom acquisition
software [30, 32], as shown in Table 1. However, as stated
for the vast majority of the off-line toolboxes, the available
on-line implementations do not allow the user to select the
appropriate algorithms to apply from a pool of methods.This
aspect may be detrimental for sorting accuracy, due to the
poor generality of spike sorting methods.

To our knowledge it is difficult to find a spike sorting
framework that incorporates alternative methods for all the
spike sorting processing steps and that allows on-line analysis
with any selected method. To this aim, in this work different
spike sorting methods proposed in the literature and suitable
for on-line analysis have been selected and integrated within
a software environment familiar to the MEA users, that is,

Matlab.The tool is to provide the users with the possibility to
select a method according to the data set at hand, optionally
different for each electrode of the same MEA. Here, the
working principle of each algorithm is described together
with metrics and the evaluation flow used to assess the
performance of each method. To validate the tool, accuracy
performances of the implemented methods on neuronal
signals (both simulated and real recordings) are reported and
discussed. Finally, the work reports a comparison of runtimes
of the implemented spike sorting algorithms during MEA
data acquisition with a test-bed setup, showing that on-line
operations are feasible.

2. Materials and Methods

2.1. Algorithms. An overview of the processing blocks and
implemented methods is presented in Figure 1.

2.1.1. Spike Detection and Alignment. To attain accurate spike
sorting, spike waveforms have to be properly detected and
aligned. The most common methods to detect spikes apply
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Table 2: Properties of the selected feature extraction methods.

Domain Percentage of publications
(with respect to Table 1) Need of training before on-line FE

Principal Components Analysis (PCA) Time 36% Yes
First and Second Derivative Extrema (FSDE) Time 3% No
Geometric features (GEO) Time 13% Yes
Discrete Wavelet Transform (DWT) Time/scale 26% Yes
Other methods — 22% —
The “domain” column refers to the analysis domain in which each method works, for example, time domain or time/scale domain. The “percentage of
publications (with respect to Table 1)” is the ratio between the number of publications dealing with a certain FE method and the total number of analyzed
publications (reported in Table 1). To esteem this parameter, works dealing with𝑁methods were counted as𝑁 different works in the denominator. Different
works of the same authors using the same FE method were counted as 1. The “need of training before on-line FE” column indicates whether a preliminary
training phase on a first set of acquired spikes is needed in order to run the method in on-line mode.

a threshold to the voltage of the input signal, computed
as a multiple of the standard deviation of the signal over
a predefined window. In this work, spike waveforms data
provided as inputs to spike classifiers were obtained by
means of an adaptive threshold-based algorithm, that is,
“AdaBandFlt,” fully described in [24]. This method updates
the current noise level esteem every 1 second and detects
spikes by comparison with both a positive and negative
threshold (set as ±4 times the noise level), with appropriate
checks to avoid detecting twice a single event [24]. When a
sample crosses the threshold, a 3ms window (1ms before the
threshold crossing and 2ms after it) is applied to the signal
and the result is saved as a spike. Spikes are then aligned to
the point of the maximum amplitude [5, 20, 37].

2.1.2. Algorithms for Building Blocks of Spike Sorting Pro-
cess. Four feature extraction algorithms, coupled to suitable
dimensionality reduction methods and to three feature clus-
tering methods, and one waveform clustering method (i.e.,
without a feature extraction phase) have been selected for
implementation (Figure 1).

(1) Feature Extraction (FE). The aim of FE step is to extract
representative features from a set of events to judge the
differences between spike waveforms. The following cluster-
ing is facilitated if spikes are projected into compact and
distant groups in the feature space [5]. Table 2 reports details
about the four FE methods included in this work, pertaining
their analysis domain, their occurrence in spike sorting
publications, and the need of an off-line training phase before
the on-line application of the methods.

(a) Principal Component Analysis (PCA). Principal compo-
nent analysis is the benchmark feature extraction method in
spike sorting of neural signals [38]. To obtain spike features,
eigenvalue decomposition of the covariance matrix of the
data (i.e., spike waveforms) is computed. Then, eigenvectors
associated with the directions onto which projected data
display the largest variance are used as the “principal com-
ponents” (PCs). Each spike is represented by a series of PC
coefficients 𝑐

𝑖
:

𝑐
𝑖
=

𝑁

∑

𝑛=1

PC
𝑖 (𝑛) ∗ 𝑠 (𝑛) , (1)

where 𝑠(𝑛) is the waveform of the spike, PC
𝑖
is the 𝑖th PC, and

𝑁 is the number of samples contained in a spike waveform.
The dimensionality is usually reduced by only keeping the
first few PCs, thus decreasing the computation time of PC
coefficients calculation [5]. The computation of PCs matrix
is usually performed using the entire set of acquired spikes.
However, the method can be applied on-line by computing
the PCs on a first set of acquired spikes (training set) and then
performing a dot product between the PCs matrix and each
new incoming waveform [5, 30].

(b) First and Second Derivative Extrema (FSDE). A feature
extraction method based on the first and second deriva-
tive calculation of the incoming spike profile was recently
proposed as an efficient and low computational complexity
solution [33]. The derivatives are computed as the difference
between successive sample points, according to (2) for the
first derivative (FD) and (3) for the second derivative (SD).
Consider

FD (𝑛) = 𝑠 (𝑛) − 𝑠 (𝑛 − 1) , (2)

SD (𝑛) = FD (𝑛) − FD (𝑛 − 1) , (3)

where 𝑠(𝑛) is the waveform of the spike. The positive peak
of the first derivative (FDmax) and the negative and the
positive peaks of the second derivative (SDmin and SDmax)
are then extracted as spike features. This method does
not require a training phase or a dimensionality reduc-
tion step, which makes it very suitable for on-line opera-
tion.

(c) Geometric Features (GEO). Geometric features relate to
the shapes of the spike waveforms and usually require low
complexity operations [4]. In this work, seven geometric
features have been considered, including (i) the positive
amplitude, (ii) the negative amplitude, (iii) the peak-to-peak
amplitude, (iv) the positive area, (v) the negative area, (vi)
the ratio between the positive and negative area, and (vii) the
maximum slope. After feature computation, a dimensionality
reduction step determines which subset of features best
represents the differences among waveforms. As for PCA,
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Table 3: Properties of the implemented and evaluated clustering algorithms.

Input Percentage of publications
(with respect to Table 1) Automaticity Parametric Need of training before

on-line clustering
𝐾-means Spike features 30% Yesa Yes —
Fuzzy-𝐶-means (FCM) Spike features 25% Yesa Yes Yes
Density-based (DBC) Spike features 4% Yes No Yes
O-sort Spikes 11% Yes Yes No
Other methodsb — 30% — — —
The “percentage of publications (with respect to Table 1)” is the ratio between the number of publications dealing with a certain clustering method and the total
number of analyzed publications (reported in Table 1). “Automaticity” refers to the possibility not to define a number of clusters a priori. “Parametric” refers
to the need to set one or more threshold values for parameters involved in the algorithm.The “need of training before on-line clustering” column refers to the
necessity of an off-line phase to train the algorithms on data before an on-line classification can be performed. aThe optimization of a proper index during
training phase is needed. bIncluding nonautomatic methods (e.g., manual methods) and methods not suitable for on-line mode.

on-line GEO feature extraction can be computed after a
training step on a first set of spikes.

(d) Discrete Wavelet Transform (DWT). The DWT is a mul-
tiresolution technique which provides good time resolution
at high frequencies and good frequency resolution at low
frequencies. It has been shown to have the potential of
outperforming PCA when spikes differ mainly in small
details which are not captured by the few first components
[39]. As in PCA, performing the DWT on a spike waveform
provides a set of coefficients which can then be reduced
and clustered to achieve spike classification. The coefficients
obtained are the result of subsequent high- and low-pass
filtering of the spike waveform at 𝑗 different scales (i.e., filter
bandwidths). The spike waveforms can then be described
with a vector V:

V = {𝑎
−𝑗
, 𝑑
−𝑗
, 𝑑
−(𝑗−1)

, . . . , 𝑑
−1
} , (4)

where 𝑎
−𝑗

is the output of the low-pass filter (approximation
coefficients) at the 𝑗th scale and 𝑑

−𝑗
, 𝑑
−(𝑗−1)

, . . . , 𝑑
−1

are the
outputs of the high-pass filter at each scale (detail coefficients)
[40]. In this work,Haarwavelet has been chosen as the default
wavelet option, thanks to its computational efficiency and
similarity to biphasic spike shapes [5, 20]. Sincethe DWT
yields the same number of coefficients as samples in the
original spike, a dimensionality reduction step is needed. As
for PCA and GEO, the DWT-based FE can be applied on-
line: the best subset of coefficients is chosen on a training data
set and then these coefficients are retrieved from the DWT of
incoming new spikes.

(2) Dimensionality Reduction. Dimensionality reduction is
a critical step in spike sorting. Indeed, adding dimensions
improves the accuracy of the subsequent clustering only
up to a certain point, after which adding more dimensions
can cause the performance of the clusterer to degrade [5].
One reason for this may be that dimensions along which
the data points are not well separated introduce noise or
confusion into the clusterer. In this work, after PCA, the
first three PCs are retained to reduce dimensionality, which
were known to capture most of the spike waveform vari-
ance [13]. To select the most suitable combination of both
GEO and DWT features we implemented the “maximum

difference” method proposed by Gibson and colleagues [13].
This method provided good accuracy and low complexity,
thus reducing the time needed for data reduction. Briefly,
given a vector containing features from an incoming spike,
this algorithm computes the element by element difference
between this vector and the vector related to the previous
spike and memorizes the indices corresponding to the three
largest difference values.The coefficients which presented the
highest variability over a training set of spikes are identified
as the coefficients that will be given as input to the clustering
phase.

(3) Spike Clustering. An ideal clustering algorithm for on-
line analysis should be (i) automatic (i.e., no need to set
the number of clusters a priori), (ii) nonparametric (i.e.,
the user does not have to set arbitrary threshold values for
algorithm parameters), and (iii) able to classify the incoming
spikes without a priori knowledge. In this work, we selected
for implementation two feature clustering methods (fuzzy-
C-means and density-based clustering) and one template
matching method (O-sort) fulfilling most of these require-
ments and the𝐾-means, a benchmark off-line feature cluster-
ing method. Table 3 summarizes the features of the selected
methods.The following section details the implementation of
each method in the proposed framework.

(a) K-Means. 𝐾-means clustering assigns a data point to
a cluster according to the minimum Euclidean distance
between the point and the centroid of the cluster. The main
benefit of using this method in spike sorting is that it is a
very simple and fast algorithm [5], yet it is supervised, since it
requires inputting the number of clusters, usually unknown
in advance. Different approaches have been proposed to
automatically determine the number of clusters [41, 42]. Here
we chose to maximize a structural index, that is, the “PBM
index”:

PBM (𝑘) = (
1

𝐾
∗
𝐸
1

𝐸
𝑘

∗ 𝑆
𝑘
)

2

, (5)

where 𝐾 is the number of clusters; 𝑆
𝑘
is the maximum

separation (i.e., distance) between cluster centers; 𝐸
1
is the

sum of distances between all the points and the cluster center
when 𝑘 = 1; 𝐸

𝑘
is the sum of distances between the feature
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points and the 𝑘th cluster center [42]. In principle, it would be
possible to adapt the algorithm for on-line operation, includ-
ing a training period which defines the cluster centroids on a
set of spikes and determines the number of clusters, followed
by an on-line classification, which computes the distance
of each new spike from the centroids. However, this would
only be appropriate for stationary data because of its “hard”
clustering [5].

(b) Fuzzy-C-Means (FCM). In fuzzy clustering, every spike
belongs to all possible classes, with different degrees of
membership. The higher the membership of a spike to a
given class is, the more likely the spike belongs to that
class. Thus, the classification is performed according to the
membership values of a spike to each cluster, which depends
on the Euclidean distance from the cluster centroid and on
the degree of fuzziness [43]. In the defuzzification phase,
a spike is labeled according to the maximum membership
value, provided that it overcomes a minimum threshold,
otherwise the spike is not classified [16]. Unlike the 𝐾-
means clustering, the “fuzziness” of the classification makes
the method more suitable for on-line clustering, because
it accounts for the varying nature of the data and does
not classify outliers (noise) thanks to defuzzification. After
a training period in which the centers of the cluster are
identified, it is possible to perform the classification of the
incoming spike by defuzzification [30]. To automatically
define the number of clusters (𝐶) during the training, the
classification can be performed with different values of 𝐶
and then, for each cluster configuration, the fuzzy clustering
validity (𝑆) is computed andminimizedwith respect to𝐶 [16].
This index is expressed as the ratio between the compactness
and the separation of the clusters and can be explicitly written
as in

𝑆 =

∑
𝑐

𝑖=1
∑
𝑁

𝑗=1
𝜇
𝑚

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑐
𝑖
− 𝑠
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑁 ∗min
𝑖𝑘

󵄩󵄩󵄩󵄩󵄩
𝑐
𝑖
− 𝑐
𝑗

󵄩󵄩󵄩󵄩󵄩

2
, (6)

where 𝜇𝑚
𝑖𝑗
is the membership value of spike 𝑗 belonging to

cluster 𝑖, 𝑚 is the degree of fuzziness (𝑚 > 1), 𝑁 is the
total number of spikes, and 𝑐

𝑖
and 𝑠
𝑗
are the center of cluster

𝑖 and the position of spike 𝑗, respectively. In this work, the
membership threshold for defuzzification was empirically set
to 1/𝐶 + 0.1 (e.g., if 𝐶 = 2 and the maximum membership
value of a spike is lower than 0.6, the spike is not classi-
fied).

(c) Density-Based Clustering (DBC). This feature clustering
method was proposed by Cheng and colleagues [26, 27]
as a classification method suitable for on-line operation
and not requiring the setting of any threshold value (i.e.,
nonparametric). Moreover, in contrast to FCM and𝐾-means
algorithms, which provide round shaped clusters due to the
Euclidean metric, no assumption on the shape of the cluster
is made by DBC. The algorithm starts with a training phase
in which a density distribution is built from the feature
space. To this aim, each dimension of the feature space is
firstly quantized into 𝑁 different levels; then the feature
space is divided into 𝑁

𝑑 cells (𝑑 = dimensionality of the

features). When a spike is detected, the density value of the
cell containing the projected spike and of its surrounding
cells increases according to a discrete spatial kernel. After
computing the density distribution of the training spikes, a
label is given to the cells corresponding to a local maximum
of the density and to their surrounding cells. As the result,
the entire density map is divided in an unsupervised way
into several clusters corresponding to the local peaks of the
density. Then, a further step can be introduced to merge the
initial clusters [26, 27]. In the proposed implementation, two
clusters are merged if the distance between their peaks and
the peak density values are below a threshold. During on-line
classification, an incoming spike is classified immediately by
the look-up-table, provided that it falls within the mapped
volume of the feature space (otherwise it is not classified).

(d)O-Sort. O-sort is a templatematching algorithmpresented
by Rutishauser and colleagues [11]. The method is unsu-
pervised, automatic, and designed to run in on-line mode,
without the need of a training phase. The distance between
an incoming spike and the already stored mean waveforms is
computed. Then, the minimum of this distance indicates the
class of the spike, provided that this is lower than a value (𝑇

𝑀
),

otherwise a new cluster is introduced. If the distance between
any cluster pair is lower than a value (𝑇

𝑆
), the clusters are

merged into a single one. The authors use 𝑇
𝑀
= 𝑇
𝑆
= 𝑁⟨𝜎⟩

2

to compute the thresholds, where𝑁 is the number of samples
for each spike and ⟨𝜎⟩2 is the variance of the data computed
over a sliding window (∼1min). Moreover, they suggest to
multiply 𝑇 by a correction factor, 𝑐, to take into account
systematic changes of spike shapes [11]. Different from FCM
and DBC, which may not include a new spike in any class,
O-sort assigns a class to every input spike. To evaluate the
method we discarded clusters with a number of spikes lower
than a threshold (i.e., 5 spikes in 1-minute long signal),
in order to account for the presence of small clusters of
noise.

2.2. Test Data. To validate the implemented code, the meth-
ods have been applied to simulated signals and real MEA
recordings.

(1) Simulated Data. Simulated raw data traces were generated
by using average spikewaveforms obtained from spontaneous
activity recorded at 25 kHz from hippocampal and cortical
dissociated cultures in our laboratory (see [44] for a reference
about culturing and recording protocol), as done in [13, 20,
31]. In order to have a “ground truth” against which algo-
rithm outcomes were compared, each waveform had been
previously labeled according to the classification performed
by experienced researchers. To simulate background noise,
MEA signals without spikes were randomly selected from a
set of 42 electrodes raw data. Noise was band-pass-filtered
(2nd order Butterworth filter) between 200Hz and 3000Hz,
and then it was normalized and overlapped to the simulated
waveforms. Each signal contains waveforms belonging to
either 2 or 3 different groups and a number of spikes between
∼600 and 1000 over 60 seconds (i.e., average firing rate of
single units between 3Hz and 8Hz, to mimic real recordings
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1ms

Figure 2: Features of the simulated data set. Spike waveforms were selected from a database of averaged spike waveforms obtained from
spontaneous activity recorded in hippocampal and cortical in vitro neuronal networks by MEA. For each group of waveforms depicted in the
figure, signals with three different SNR (4, 3, and 2) were simulated, obtaining a total of 36 signals. Each set of waveforms is associated with
an ID name (e.g., S2(A)), the ordinal position in the data set (e.g., #1-2-3), and the mean Bray-Curtis similarity (BCS) between the waveforms
(e.g., [0.52]).

[44]). The occurrence of spikes were determined randomly
from a uniform distribution, setting a refractory period of
2ms. Three different levels of signal-to-noise ratio (SNR)
were simulated (i.e., 2, 3, and 4 [20, 24]) rescaling the noise
on the simulated signal to mimic the realistic levels of in vitro

MEA recordings. SNR was defined as the ratio between the
mean amplitude of the spike waveforms in the signal and the
mean of the peak-to-peak amplitude of noise calculated over
a 1-second window. A total of 36 data sets were thus obtained,
whose features are reported in Figure 2, together with the
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Figure 3: Performance assessment flow. (a) Scheme of the performance assessment procedure employed to evaluate the simulated data set
in presence of “ground truth,” obtaining the cluster validity index and the classification accuracy. (b) Scheme of the performance assessment
procedure employed to evaluate the set of real signals without a “ground truth,” obtaining the intracluster variance and parameters judged
by visual inspection.

Bray-Curtis similarity index, a measure of the similarity
among the waveforms in each data set (see (7)). Consider

BCS (𝑥, 𝑦) = 1 −
∑
𝑖

󵄨󵄨󵄨󵄨𝑥 (𝑖) − 𝑦 (𝑖)
󵄨󵄨󵄨󵄨

∑
𝑖
|𝑥 (𝑖)| −

󵄨󵄨󵄨󵄨𝑦 (𝑖)
󵄨󵄨󵄨󵄨

, (7)

where 𝑥 and 𝑦 are the two spike waveforms being compared
and 𝑁 is the number of sample points. BCS is computed
between all the possible neuron pairs and then averaged.
BCS lies in the range (0-1), with 1 corresponding to identical
signals [33].

(2) Real Data. To test the algorithm performances in a
realistic scenario, where the “ground truth” is unavailable,
data sets of real MEA recordings were used. Extracellular
recordings from hippocampal and cortical cultures grown
on 60-channel MEAs (Ti200/30iR, Multi Channel Systems
GmbH) had been previously carried out with a 60-channel
MEA acquisition system (MEA1060 and USB-ME64, Multi
Channel Systems GmbH) [44]. Recordings were sampled at
25 kHz and filtered (200Hz–3 kHz, 2nd order Butterworth)
before spike detection. The data set used in this work is
composed of waveforms from 10 signals 120 seconds long.

2.3. Implementation of the Framework. The algorithms were
implemented and evaluated in Matlab (version R2008b, The

Mathworks). Scripts are inMatlab native language apart from
part codes written in C language and running in Matlab
as MEX-files. Source code for MEX-files was written using
Microsoft� Visual C++ 2008 Express Edition. Graphical
user interfaces (GUI) were designed using the graphical
user interface development environment (GUIDE) ofMatlab.
To convert the file format generated by the acquisition
software of our commercial acquisition platform (∗.mcd)
to Matlab format (∗.mat), the “Neuroshare” API library of
functions has been employed (freely downloadable at http://
neuroshare.sourceforge.net/), as done in other MEA analysis
frameworks [45].

2.4. Performance Evaluation. Theevaluation scheme adopted
to assess the performance of the algorithms on simulated and
real signals is depicted in Figure 3. For methods requiring
a training phase, the training was performed on the first
detected spikes (∼1/3 of the total number of spikes) for each
signal, and then spikes were classified on the fly.

2.4.1. Indexes of Performance. To test the effectiveness of
spike sorting methods on simulated data sets, two indexes
were employed:

(1) Cluster validity (CV), which is the ratio of the
between-cluster to thewithin-cluster distance.This indexwas
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calculated as in (8) using the “ground truth” labels of the data
points:

CV =
min
𝑖=1⋅⋅⋅𝐾, 𝑗=𝑖+1⋅⋅⋅𝐾

󵄩󵄩󵄩󵄩󵄩
CC
𝑖
− CC
𝑗

󵄩󵄩󵄩󵄩󵄩

2

(1/𝑁)∑
𝐾

𝑖=1
∑
𝐴∈𝑁𝑖

󵄩󵄩󵄩󵄩𝐴 − CC
𝑖

󵄩󵄩󵄩󵄩

2
, (8)

where CC
𝑖
is the center of cluster of spikes produced by

neuron𝑁
𝑖
,𝑁 is the total number of spikes, 𝐾 is the number

of neurons simulated in the recording, and 𝐴 is the feature
vector. The higher the cluster validity, the better the classes
separation, which eases the task of the following clustering
step [42].

(2) The rate of classification accuracy (CA) is defined as
the percentage of the number of correctly classified spikes
over the total number of input spikes [29], as in

CA% =
number of correctly classifies events

total number of spikes
∗ 100 (9)

The accuracy of the methods was evaluated without dis-
carding the false positives of the detection (total number
of spikes = true positives + false positives). In this way, we
tried to mimic the real condition, where unavoidably a small
percentage of the detected spikes represents noise. Thus, CA
could reach 100% only if all true spikes are correctly clustered
and if no false positives exist or all the false positives are left
unclassified by the sorter.

To compare algorithm performances on real signals, two
measures were used:

(1) Intracluster variance (ICV), given by the following
[12]:

ICV =
1

𝑁
𝑖

𝑁𝑖

∑

𝑗=1

(V
𝑗
− 𝜇
𝑖
)
2

, (10)

where V
𝑗
is the 𝑗th spike in the 𝑖th cluster, 𝜇

𝑖
is its mean

template, and 𝑁
𝑖
is the number of spike in the cluster 𝑖.

Thus, the lower the value of ICV (meaning that the cluster
is compact), the lower the probability of misclassification in
each cluster.

(2) Comparison with expert’s visual inspection of the
results [46], for which two parameters were defined. An
expert was requested to judge the number of true spike
clusters in each raw data set, before classification, and the
number of identified clusters containing evidently similar and
spike-like waveforms. The ratio of the latter over the first
number (between 0 and 1) was used as an indication of the
ability to group together true similar spikes, leaving false
spikes into isolated clusters or outlier points (which could be
excluded in a later off-line analysis). A second parameter was
the number of unlabeled data points (i.e., spikes not assigned
to any group).

2.4.2. Statistical Analysis. A statistical analysis has been car-
ried out to highlight relevant differences in the performance
of the differentmethods on the data sets bymeans of Statistica
(StatSoft Inc.). Each group presented as input to the statistical
analysis consisted in the values of a performance index

(Section 2.4.1) obtained after applying a certain method to
all signals. Having assessed nonnormality of distributions
(the Lilliefors test), a nonparametric multiple dependent
comparison of the different groups has been performed
(Friedman’s test with Wilcoxon’s matched pair test as post
hoc) [42]. The significance level was established at 𝑝 < 0.05

for Friedman’s test and 𝑝 < 0.01 for Wilcoxon’s test. Data
are given as median and its variation is stated as differences
between 75th and 25th percentile (i.e., interquartile range,
IQR).

2.5. Runtime Evaluation. Runtimes of the different spike
sorting algorithms were compared in Matlab on the same
dedicated desktop computer (quad-core 3.3 GHz CPUs with
4GBRAM runningWindows 7 64-bit). The algorithms were
launched from a custom script including code for the real-
time communication with a MEA A/D device (USBME-
64, Multi Channel Systems GmbH), through a proprietary
dynamic-link library distributed by Multi Channel Systems
(“McsUsbNet.dll”). Thus, it was possible to evaluate the
effective feasibility of an on-line implementation, taking into
account the time required for rawdata reading, filtering, spike
detection, spike sorting, and storage of results. Runtimes
were computed in a worst-case scenario, simulated by the
occurrence of a high frequency spiking signals simultane-
ously in all the 60 channels (i.e., 250Hz [44]).The evaluation
was performed with a sampling frequency of 25 kHz and
with varying the length of serially transmitted data blocks
from the A/D device (i.e., 100ms–3 s). Simulated signals were
repeatedly loaded in the code at each new iteration. Time
needed to perform the training for spike sorting (i.e., in every
method apart from FSDE and O-sort) was not considered in
this evaluation, supposing performance of the training off-
line on a first data stream. Runtimes were computed with the
Matlab functions “tic” and “toc.”. Reported data are averaged
over 100 repetitions and related to one Matlab process
running on one CPU (i.e., no parallel Matlab processes) [47].

3. Results

3.1. Graphical User Interface. The algorithms described in
Section 2.1 were incorporated into a GUI to speed up and
ease the application and the evaluation of the methods by
nonexpert users. Figure 4 sums up the main functionalities
of the GUI. The GUI is fully described in the guide pro-
vided as Supplementary Material available online at http://
dx.doi.org/10.1155/2016/8416237.

From amainmenu (Figure 1 of SupplementaryMaterial),
two different modalities can be selected: (i) test data and
(ii) real data. The “test data” interface is dedicated to the
application and evaluation of spike sorting algorithms on
simulated signals (Figure 2 of Supplementary Material).
Specifically, the user can build a simulated signal giving as
inputs the number of sources in the signals, the neurons
average firing rates, and the SNR. The “real data” modality is
dedicated to the analysis of real MEA data off-line (Figures 5,
6, and 7 of Supplementary Material) or on-line (Figure 10 of
Supplementary Material). Both the test data and the real data
“off-line” GUI allow selecting which algorithms to apply and
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Figure 4: Structure and functionalities of the graphical user interface. Structure and functionalities of the GUI, which is composed of a “test
data” section (intended for the analysis of simulated signals) and a “real data” section that can be used for either off-line or on-line analysis.

setting all the necessary parameters for algorithm functioning
(default values are the ones used in this work and reported in
Section 2). After loading a signal, it is possible to perform a
training on an arbitrary chosen number of spikes or to load
the results of a previously performed clustering and use them
for classification.

Besides manual selections of the methods, the GUI
embeds an automatic routine which runs all the possible
combinations of spike sorting blocks on a selected signal
and displays the performance indexes (i.e., CV and CA for
simulated data, ICV and CV for real data) (Figure 4 of
Supplementary Material).

For a selected method, the GUI shows the performance
indexes, the spikes projected and clustered in the feature
space, the aligned spike waveforms, color-coded according to
the clustering results, and the raster plots of each identified
unit, as shown in Figure 5(a). A ∗.txt file can be generated
as a report of the analysis, together with ∗.JPEG figures of
spike sorting results (e.g., raster plots of one or multiple
electrodes, grouped spike waveforms superimposed to the
MEA layout, and interspike-interval histograms for each
source) as in Figures 5(b) and 5(c) (see also Figures 3, 8,
and 9 of Supplementary Material). The real data “on-line”
GUI (Figure 10 of Supplementary Material) allows the user
to select the length of data flow blocks and the sampling
frequency, establishes an on-line communication with the
A/D device, and performs on-line spike detection, sorting,
and data storage.

The GUI and the scripts were written with Matlab
R2008b, but they are compatible with all the following re-
leases up to version R2014a.The framework is freely available
upon request to alessandra.pedrocchi@polimi.it.

3.2. Spike Sorting Accuracy

3.2.1. Simulated Data Sets

(1) Feature Extraction. Figure 6(a) shows an example of the
projection of simulated neuronal spikes on different feature
spaces (i.e., PCA, DWT, GEO, and FSDE). Concerning the
DWT-based feature extraction method, DWT with 3, 4,

or 5 decomposition levels was performed and the feature
extraction performance in terms of cluster validity (CV) was
evaluated projecting 3, 4, or 5 coefficients in the feature
space. Since three and four decomposition levels provided
statistically highest CV values, the three-level DWT algo-
rithm has been selected to keep a lower complexity.The same
consideration led us to the selection of a 3D feature space
for the GEOmethod.Thus, results reported here about DWT
and GEO method were obtained with the above-mentioned
settings.

The FE effectiveness assessed on each signal with the
different feature extraction methods is shown in Figure 6(b).
Overall, the DWT method yielded the best performance on
12 signals (including 5 signals with SNR = 4, 3 signals with
SNR = 3, and 4 signals with SNR = 2). Also the GEOmethod
provided good results at different noise levels, being the best
method on 14 signals including 4 with SNR = 4, 6 with SNR =
3, and 4 with SNR = 2. The PCA yielded the best separability
for 9 signals (2 with SNR = 4, 3 with SNR = 3, and 4 with
SNR = 2). Finally, the FSDE method yielded the poorest
performance, being susceptible to the noise corrupting the
extracted waveforms. But it was the best solution for 1 high
SNR signal (i.e., signal #10).

All the methods showed a similar trend of reduced per-
formance when the noise level was increased (Figure 6(c)). In
particular, CV values yielded by PCA decreased by 30%when
the SNR was lowered from 4 to 2, while CV values yielded by
the other FE methods decreased by 40%.

For PCA, DWT, and FSDE FE methods, the waveforms
similarity index (see Section 2.2) was not a distinguishing
factor to obtain a good separability. This parameter yielded
a visible impact on the GEO method, whose CV values
dropped in cases of high waveforms similarity (e.g., signals
#7-8-9 and #25-26-27).

Overall, the DWT and the GEO feature selection yielded
a comparable CV (𝑝 > 0.01), higher than the temporal
PCA feature selection and the FSDE method (𝑝 < 0.01), as
shown in Figure 6(d). The application of the most effective
feature extraction method for each signal resulted in the
statistically highest CV as compared to the application of
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Figure 5: Graphical user interface. (a) Screenshot of the GUI built for spike sorting on simulated data. (b) Example of graphical result of spike
sorting on multichannel MEA signals, representing the clustered spike waveforms for each electrode of the matrix. (c) Example of graphical
result of spike sorting on multichannel MEA signals, representing the spike trains collected by each electrode, with spikes colored according
to the signal source.

the same method to all the signals (Figure 6(d), black box-
plot).

(2) Clustering. Besides the specific clustering algorithm, the
accuracy of a clustering method depends on the separability
of features and their distribution/shape in the feature space.
To first focus on the effect of the previous FE step, all the
considered FE algorithms were coupled to the benchmark
𝐾-means clustering and then compared. As an example of
this, Figure 7(a) illustrates the classification performed by
𝐾-means on the same data set of Figure 6(a) in each of

the feature spaces. Figure 7(b) shows the trend of classifi-
cation accuracy (CA) yielded by 𝐾-means coupled to the
4 FE methods across all the simulated data sets. 𝐾-means
coupled to both DWT and PCA achieved statistically the
highest and comparable classification performances (𝑝 >

0.01). The high accuracy of DWT+𝐾-means combination
is ascribable directly to the high separability provided by
DWT (Figure 6(d)). Even if PCA did not provide the best CV
values (Figure 6(d)), the high accuracy of the PCA+𝐾-means
combination can be explained by the almost spherical shapes
of clusters in the feature space (e.g., Figure 7(a)), which
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Figure 6: Comparison of the separability of simulated spikes in the feature space. (a) Example of projections of the spikes extracted from a
simulated signal (i.e., signal #10 of Figure 2) in each feature space (PCA: Principal Components Analysis, DWT: DiscreteWavelet Transform,
GEO: geometric features, and FSDE: First and Second Derivative Extrema), colored according to the real labels. (b) Cluster validity (CV)
values obtained after the application of the 4 feature extraction methods to the 36 simulated extracellular signals. (c) Cluster validity
dependence on different noise levels (median of CV values for each SNR group). (d) Box-plots (median and IQR with whiskers delimited
by the maximum and minimum nonoutliers values) of CV values on all the simulated signals (𝑁 = 36). The asterisks above each method
indicate statistically highest CV values of the current method compared to the method(s) coded by the asterisks’ color (Wilcoxon’s matched
pair test with 𝑝 < 0.01).

best matches the 𝐾-means classification. On the contrary,
𝐾-means clustering applied on GEO features yielded poor
accuracy, most likely because the clouds of spikes created
in the GEO feature spaces, even if compact (Figure 6), have
no spherical shapes (e.g., in Figure 7(a)). Clustering of FSDE
features provided the worst results when compared to any
other method, due to the poor separability already shown in
Figure 6.

Asmentioned earlier, part of the results shown in Figure 7
depends on the specific properties of the𝐾-means clustering.
We have compared the classification accuracy of all the tested

FEmethods combinedwith different clusteringmethods, and
obtained the performances shown in Table 4.

The performances of FCM clustering are shown with
respect to two different degrees of fuzziness (i.e., 𝑚 = 1.1

and 𝑚 = 3). Overall, FCM with 𝑚 = 3 provided statistically
higher or comparable accuracy compared to FCM with 𝑚 =

1 (i.e., a value which makes FCM similar to the 𝐾-means
method [43]). The performances of the DBC method are
reported in the case of two different resolution levels of the
3D-LUT (i.e., 𝑁 = 16 and 𝑁 = 32) and of resolution
𝑁 = 32 with an additional automatic cluster merging step.
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Table 4: Classification accuracy of all the tested methods.

𝐾-means FCM DBC O-sort
𝑚 = 1.1 𝑚 = 3 𝑁 = 16 𝑁 = 32 𝑁 = 32 automatic merging

PCA 97.16∗ (4.09) 98.46∗ (9.64) 97.11∗ (6.45) 94.76 (12.15) 91.04 (27.45) 97.66∗ (5.92) —
DWT 96.42∗ (4.78) 77.18 (31.08) 95.29∗ (8.81) 93.60 (12.68) 76.13 (24.47) 93.90 (13.39) —
FSDE 68.42 (29.64) 69.83 (14.07) 63.66 (33.26) 67.01 (25.22) 36.97 (50.62) 56.71 (21.24) —
GEO 79.57 (17.82) 72.25 (28.26) 77.43 (28.63) 82.35 (19.77) 84.99 (18.29) 88.10∗ (20.04) —

— — — — — — 94.37 (4.75)
Spike sorting classification accuracy, CA (%), on the simulated data sets for all the possible combinations of FE (rows) and clustering algorithms (columns)
and for O-sort. CA is presented as median and (IQR) over the different signals (𝑁 = 36). For each FE method (i.e., first 4 rows of the table) the asterisk points
out the clustering method with the statistically highest CA performance (𝑝 < 0.01, the Friedman + Wilcoxon test). Accuracies lower than 70% (e.g., FSDE
method) were not considered acceptable.
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Figure 7: Comparison of classification accuracy on the simulate data sets with the benchmark𝐾-meansmethod. (a) Example of projections of
the same data set (i.e., number 10 of Figure 2) in each FE space and results of𝐾-means clustering of the features. Spikes are colored according
to the real label. Superimposed circles are the clusters found by𝐾-means. (b) Classification accuracy values for the 36 simulated signals.

The highest accuracy levels were obtained in the third
configuration. The lower resolution of the density map led
also to acceptable clustering, but very close clusters could
not be distinguished. The worst performance was obtained
building the LUT with 𝑁 = 32 without the cluster merging
step. In this case the outcome is affected by overclustering,
since a lot of little clusters were identified.

Results of the statistical comparison of clustering meth-
ods applied after a given FE method are presented in Table 4.
After PCA, the application of DBC or FCM provided an
accuracy comparable to the benchmark 𝐾-means clustering
(median CA > 97%). Concerning DWT, the combination
with FCM yielded accuracy values comparable to 𝐾-means

(median CA > 95%). GEO features achieved the best results
(median CA > 88%, statistically higher than CA achieved
with 𝐾-means) if coupled to DBC, which is suitable to
identify the clusters even if they have no spherical shapes.
Only the FSDEmethod could not reach satisfactory accuracy
with any of the clustering methods (median CA < 70%) on
our data.

The statistical analysis applied to all the possible combi-
nations of methods confirmed the absence of a unique
method outperforming the other when applied indiscrimi-
nately to all the signals. Indeed, PCA+𝐾-means, PCA+FCM,
DWT+𝐾-means, DWT+FCM, PCA+DBC, and O-sort
yielded a comparable accuracy (Figure 8). However, these
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Figure 8: Classification accuracy on the simulated data sets. (a) Indication of which method yielded the highest classification accuracy
(CA) for each data set (marked by the red box). (b) Box-plots (median and IQR with whiskers delimited by the maximum and minimum
nonoutliers values) of classification accuracy provided by all the methods on all the data sets (𝑁 = 36).The statistically significant differences
are indicated as the numbers above each box-plot, the box-plot being marked with “1” referring to the method with highest CA compared
to all the others and the box-plot marked with “8” referred to the method with the lowest CA compared to all the others (Friedman’s test
followed by Wilcoxon’s matched pair test, 𝑝 < 0.01).
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Figure 9: Performances of themethods on real data. (a) Outcome of the visual inspection on the results of themethods, where the percentage
of nonclassified spikes and the ratio between the number of correctly identified clusters and the real number of clusters are reported. Each
symbol represents a combination of algorithms, as indicated by the legend and annotations in the graph. 𝐾-means is not represented since
it does not provide unclassified spikes. (b) Box-plots (median and IQR with whiskers delimited by the maximum and minimum nonoutliers
values) of the intracluster variance (ICV) for each of the FE and clustering combinations and O-sort applied to all the real signals (𝑁 = 10).
The statistically significant differences are indicated as the numbers above each box-plot, the box-plot being marked with “1” referring to the
methods with lowest ICV compared to all the others and the box-plot marked with “4” referred to the methods with highest ICV compared
to all the others (Friedman’s test followed by Wilcoxon’s matched pair test, 𝑝 < 0.01).

performances were statistically lower compared to the
utilization of the best clusterer for each signal (Figure 8(a)),
as illustrated by box-plots in Figure 8(b) (box-plot on the
right).

3.2.2. Real Data Sets. Spike sorting performances measured
on real data by visual inspection and by quantitative assess-
ment (i.e., intracluster variance, ICV) were proven to be
in good agreement with results on simulated signals. For
each combination of FE and clustering algorithms and O-
sort, Figure 9(a) shows the scatter plot of the percentage
of unclassified spikes and the ratio between the number of
identified clusters containing evidently similar and spike-
like waveforms and the true number of clusters (mean
values across 𝑁 = 10 signals). DWT and PCA features,

combined with both FCM and DBC, provided the best
performances, since they lie in the upper left area of the
graph. GEO features of real spikes combined to either DBC or
FCM performed worse than PCA and DWT. Finally, cluster
methods combined with FSDE features could not correctly
identify almost any cluster, mostly because real spikes and
noise were merged inside poorly compact clusters.The figure
also shows that DBC left a higher number of unclassified
spikes than FCM. Indeed, if the shape of the spikes changes
after the definition of the LUT, due to bursting events or
an increase of the noise [48], the incoming spikes could be
not labeled at all. Also O-sort provided a high percentage of
unclassified spikes, due to the tendency to overclustering (i.e.,
creating many small clusters). As shown in Figure 9(b), 𝐾-
means andDBC clusterers coupled to PCA andDWT yielded
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Table 5: Computational effort and runtime to process a single spike.

Method Number of
additions

Number of
multiplications

Number of
if-operations

Time (𝜇s)

PCA∗a 3𝑛
e

3𝑛 0 5.8 ± 3.3

DWT∗b 4𝑛 6𝑛 0 64 ± 33

FSDE∗ 2𝑛 − 3 0 2(𝑛 − 1) 5.2 ± 4.3

GEO∗c 2𝑛 1 6𝑛 − 2 6.5 ± 3.9

FCM 5𝐶
f

6𝐶 𝐶 27 ± 0.6

DBC 0 0 6𝑁
g 7.3 ± 0.2

O-sortd 6𝐶𝑛 + 2𝑛 6𝐶𝑛 + 2𝑛 + 1 8 210 ± 200

Computational requirements to classify a single spike (3ms waveform
sampled at 25 kHz). Columns from 2 to 4 indicate the number of operations
for each spike included into the implemented Matlab code, showing their
dependence on algorithms parameters.The last column reports the resulting
execution times (averaged over 100 repetitions and reported as mean ±
standard deviation). Times are for Matlab running on a quad-core 3.3 GHz
CPUs desktop computer with 4GB RAM and Windows 7 64-bit. Asterisks
in the first column indicate methods for which an implementation in C
language with MEX-files was performed.
aProjection onto 3 principal components.
b3-level wavelet decomposition.
cExtraction of 7 geometric features from the spike waveform.
dWorse case in which all the cycles/iterations involved in O-sort method are
entered.
e
𝑛: number of samples per spike (𝑛 = 75 in the numerical time example).

f
𝐶: number of clusters or templates (𝐶 = 4 in the numerical time example).
g
𝑁: resolution of the look-up-table for density-based clustering method
(𝑁 = 32 in the numerical time example).

a statistically lower ICV than FCM, but higher than O-sort,
which created the most compact clusters, comparable to the
application of the best method for each signal. FSDE and
GEO coupled to any clusterers resulted in the worse (i.e.,
highest) ICV.

3.3. Spike Sorting Runtimes. An evaluation aimed at compar-
ing Matlab execution time relative to the feature extraction
and clustering steps was performed. Parameter values set for
this evaluation were the ones which allowed the best per-
formance for each method (see Section 3.2). Table 5 reports
the number of operations (i.e., additions, multiplications, and
if-operations) required to process on-line a single spike in
the implemented Matlab code and the resulting runtimes in
Matlab.

Extraction of features fromeach input spike takes on aver-
age a comparable time for PCA, FSDE, and GEO methods
(i.e., 5-6𝜇s). In spite of the higher number of additions and
multiplication compared to the other methods, PCA is time
effective thanks to the absence of comparison operations.The
DWT-based method requires a time one order of magnitude
higher (i.e., 64 𝜇s) because of the significantly highest number
of operations.

FCM classification of one spike is fourfold slower than
DBC classification (i.e., 27𝜇s versus 7𝜇s). This difference is
ascribable to the fact that DBC requires only the consultation
of a look-up-table. O-sort algorithm takes a higher time (on
average 210 𝜇s per spike), since its implementation involves
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Figure 10: Evaluation of runtimes of the spike sorting algorithms.
Runtimes measured in the experimental setup, for different lengths
of input data block (ms) sent from the acquisition device to
Matlab. Runtimes were measured in a worst-case scenario of high
firing activity simultaneously occurring at all the 64 channels.
Values related to raw data reading, filtering, spike detection, and
classification with all the possible methods are reported. The
runtime is related to input data block length (i.e., the time available
for processing before the buffer update) and is expressed as its
percentage (e.g., a runtime percentage equal to 60% for a 1 second
blockmeans that there is amargin of 400ms for further operations).
Times are forMatlab running on a quad-core 3.3 GHzCPUs desktop
computer with 4GB RAM andWindows 7 64-bit.

not only arithmetic operations but also large amounts of
memory and control logic.

3.4. On-Line Feasibility Evaluation. The experimental test
performed with the setup described in Section 2.5 showed
that an on-line processing of MEA signals is possible using
the implemented framework. To allow that, the Matlab
execution time spent to process a data block containing
64-channel raw data should be lower than the length of
serially transmitted data blocks from the A/D device. The
most time effective coding turned out to be a sequential
processing over the channels. Given as input data buffer, each
channel is filtered before being scanned for spikes; then each
detected spike is given as input to the feature extractor and
classifier. Figure 10 reports the runtimes for the processing of
64 channels in a worst-case input scenario (i.e., 1 spike every
4ms at every channel). The runtime is related to input data
block length (i.e., the time available for any processing before
the buffer update) and is expressed as its percentage (e.g., a
runtime percentage equal to 60% for a 1-second block means
that there is a margin of 400ms for further operations).
Runtimes include the time for raw data reading, filtering,
and saving (gray dashed line), plus spike detection (black
dashed line), plus feature extraction and clustering (lines
colored according to the combinations of the algorithms). In
the example, reported spike detection runtime relates to a
negative threshold-based spike detection method. Generally,
“AdaBandFlt” takes more time (i.e., up to 4-fold in the case
of maximum data block length), due to its higher complexity,
suggesting that further optimization is needed.
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In the simulated scenario of high spiking frequency
simultaneously in all the channels, all the feature extraction
methods (apart from DWT), coupled to both clustering
methods, can process data before buffer overwriting, if the
data block length is higher than∼300ms.When using shorter
data blocks, the operation of raw data reading from the
acquisition device (black dashed line in Figure 10) takes the
highest percentage of the available time, so that the only
feasible processing operation is spike detection (gray dashed
line).When using data blocks as long as 1 second, the runtime
of all the methods (except DWT) is lower than 600ms (i.e.,
60% of data block length), indicating that further operations
are feasible. As expected from evaluations on single-spike
runtimes, theDWT-based feature extraction, although highly
accurate in many cases, is hard to be performed on-line in
the actual implementation. The tests showed that, only in
the case of data block length between ∼700 and ∼1500ms, a
classification with DWT coupled to DBC was possible in the
worst-case scenario but leaving a poor margin (lower than
10%) for additional operations. Finally, the O-sort method
could not run on-line in the proposed implementation, as
expected from results on single-spike runtimes reported in
Table 5.

4. Discussion and Conclusions

4.1. Usefulness of the Present Work. The present work
addressed two important issues in the field of spike sorting
of neuronal signals collected by means of MEAs, which are
the very limited availability of data-centric and on-line spike
sorting tools. Our aimwas to provide a framework for an easy
comparison of different spike sorting algorithms on the same
data which would be suitable for off-line and on-line data
analysis. Rather than proposing a new sophisticated algo-
rithm, we exploited the modularity of existing spike sorting
processes, that is, the presence of several steps and different
techniques that can be mixed and matched to adjust the
process to the data set. Therefore, the implemented toolbox
integrates different spike sorting blocks (i.e., four feature
extraction methods, three feature clustering methods, and
one template matching clustering), which have been selected
from the literature. Thus, it provides the possibility to choose
the algorithm that optimally performs on a specific channel
data most suitably, in contrast to commonly used tools which
apply one predefined method to all electrodes. The pool of
algorithms integrated in the framework presents features of
automaticity and simplicity that are important requirements
in spike sorting and facilitate on-line implementations [31].

Besides themodular software tool, thework has presented
an extensive evaluation of the different combinations of
feature extraction and clustering methods integrated in the
framework. In order to help the users in the selection of
their best methods for data processing and to guide the
evaluation of multiple algorithms on other data sets, the
algorithms were tested both on simulated data sets (as most
commonly done to assess the performance of spike sorting
methods [13, 20]) and on real multiunit recordings from
neuronal dissociated cultures, that is, in more realistic condi-
tions [24, 46]. As expected, the selection of channel-centric

methods (i.e., the best method for each channel) provided
the statistically highest accuracies level.These results support
the usefulness of different spike sorting options in the same
framework. Furthermore, the realized framework lends itself
to be exploited also to explore possible associations between
signal features (e.g., waveforms similarity and SNRvalue) and
the accuracy of spike sorting methods.

4.2. Advantages of the Matlab Framework for Spike Sorting.
Matlab has been primary chosen because the MEA users
often share algorithms written in Matlab language, which
can facilitate the utilization and extension of the framework.
Despite existing open-source alternatives (e.g., Python),Mat-
lab is still a very common framework for neurophysiologists
and research institutions working with MEAs [49, 50]. The
spike sorting codes implemented in this work could thus
be easily tested and incorporated into existing Matlab-based
frameworks offered by the community and dedicated to
different kinds of analysis of MEA data (e.g., “Spycode” [45],
“Find” [51], “Wave clus” [20], “NeuroQuest” [31], “DrCell”
[34], “SigMate” [50], “QSpike tools” [52], and “Manta” [32]).

For running in the off-line mode, the GUI integrates the
Neuroshare API library, which is a community-supported
vendor-neutral library. Therefore, it would be possible to
import into Matlab neural data files acquired by different
platforms from the one we used (Multi Channel Systems
GmbH) with minor modifications. For running in the on-
line mode, actually two types of acquisition boards from
Multi Channel Systems were tested (i.e., USB-ME64/128
and MEA2100). However, the framework is expected to be
compatible with other acquisition boards provided that an ad
hoc communication interface is built in Matlab. This would
be easily performed exploiting the Data Acquisition toolbox
ofMatlab, which allows acquiring data from a variety of DAQ
hardware [32].

4.3. Discussion of On-Line Spike Sorting Operations. Taking
into consideration that Matlab is slower in performing some
operations compared to low level languages [52] and thus it
is not the best choice for real-time analysis (e.g., closed-loop
MEA experiments), we explored its potentiality to run MEA
data classification (including also the preceding filtering and
spike detection) during on-line open-loop recordings. We
demonstrated that the realized implementation (60 channels)
was able to respect the time constraints running most
of the evaluated spike sorting algorithms in a worst-case
realistic scenario, where simultaneously a high firing activity
is collected by all the channels. The runtime evaluation took
into account also times for accessing data sent by the A/D
device that we use in our lab and showed that a good temporal
margin is achievable with data blocks length longer than
500ms. However, considerations about the length of data
blocks reported in Section 3 can be generalized to any A/D
board which sends dataflow to the acquisition computer
by means of data blocks. Clearly, a much lower data block
length would reduce the delay between acquisition and
processing, but this issue is not relevant when the aim is to
speed up analysis of open-loop recordings. Moreover, a too
short data buffer would increase the probability of splitting
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spike waveforms or burst events into two different time
epochs.

4.4. Future Work. Further code optimization activity will be
performed to reduce the time for spike sorting blocks cur-
rently requiring too long computational runtime. To this aim,
a more careful optimization of codes, an implementation of
MEX-files of all the spike processing steps, and the resorting
to the Parallel Computing toolbox [49] will reveal the easiest
options to provide improvements over the numbers reported
here. If this is not suitable, we plan to exploit the Parallel
Computing toolbox to access the graphical processing unit
(GPU) of the computer [34, 53].

Moreover, an issue of the current implementation is that
on-line parallel data visualization is not possible, due to speed
limits of Matlab graphics [32]. Possible solutions could be to
test a range of efficient coding strategies to speed up data
plotting [32] or to integrate a plotting pluginwritten in a faster
GUI programming language such as C# [31, 35].

Besides improvements centered on shortening algorithm
runtimes, a future activity will be focused on the automatiza-
tion of the training phase. To this aim, an evaluation of the
time needed to train the data (e.g., acquire a data fragment
until a minimum number of spikes have been detected)
and the most reasonable frequency of the training during
acquisition will be performed. A repetition of the training
would be preferred especially for long-lasting experiments
since (i) only neurons which fire during the learning phase
can be classified and (ii) the physical relations between
neurons and electrodes may change due to cell growth
(nonstationarity). A possible solution could be to perform
a training step whenever a metric referring to the goodness
of clustering detects the fact that data have changed their
features to a considerable extent, as suggested by a recent
work [30].

Furthermore, a possible enrichment of the tool would be
to provide the possibility to combine heterogeneous features
extracted from the spikes (e.g., DWT, PCA, and GEO)
allowing taking advantage of the strengths of each feature
extraction method to achieve better performances [4]. This
implementation would likely require a longer time for the
initial training phase and, during on-line mode, the compu-
tation of several features within the time constraints. Thus, it
will be incorporated after the afore-mentioned optimization
steps. Finally, the integration of methods to resolve the issue
of spike overlapping [19, 54] may be considered.
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