
Sapropterin Treatment Prevents Congenital Heart Defects Induced by
Pregestational Diabetes Mellitus in Mice
Anish Engineer, BMSc; Tana Saiyin, MSc; Xiangru Lu, MD; Andrew S. Kucey, MSc; Brad L. Urquhart, PhD; Thomas A. Drysdale, PhD;
Kambiz Norozi, MD; Qingping Feng, MD, PhD

Background-—Tetrahydrobiopterin is a cofactor of endothelial NO synthase (eNOS), which is critical to embryonic heart
development. We aimed to study the effects of sapropterin (Kuvan), an orally active synthetic form of tetrahydrobiopterin on eNOS
uncoupling and congenital heart defects (CHDs) induced by pregestational diabetes mellitus in mice.

Methods and Results-—Adult female mice were induced to pregestational diabetes mellitus by streptozotocin and bred with normal
male mice to produce offspring. Pregnant mice were treated with sapropterin or vehicle during gestation. CHDs were identified by
histological analysis. Cell proliferation, eNOS dimerization, and reactive oxygen species production were assessed in the fetal heart.
Pregestational diabetes mellitus results in a spectrum of CHDs in their offspring. Oral treatment with sapropterin in the diabetic
dams significantly decreased the incidence of CHDs from 59% to 27%, and major abnormalities, such as atrioventricular septal
defect and double-outlet right ventricle, were absent in the sapropterin-treated group. Lineage tracing reveals that pregestational
diabetes mellitus results in decreased commitment of second heart field progenitors to the outflow tract, endocardial cushions, and
ventricular myocardium of the fetal heart. Notably, decreased cell proliferation and cardiac transcription factor expression induced
by maternal diabetes mellitus were normalized with sapropterin treatment. Furthermore, sapropterin administration in the diabetic
dams increased eNOS dimerization and lowered reactive oxygen species levels in the fetal heart.

Conclusions-—Sapropterin treatment in the diabetic mothers improves eNOS coupling, increases cell proliferation, and prevents
the development of CHDs in the offspring. Thus, sapropterin may have therapeutic potential in preventing CHDs in pregestational
diabetes mellitus. ( J Am Heart Assoc. 2018;7:e009624. DOI: 10.1161/JAHA.118.009624.)
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C ongenital heart defects (CHDs) are the most common
structural birth defect, occurring in 1% to 5% of live

births, making them the leading cause of death in the first
year of infant life.1,2 The prevalence of CHDs has been rapidly
increasing,3 and it is estimated that �2.4 million Americans,
including 1 million children, are living with a congenital
malformation of the heart.2 CHDs are formed when complex

cellular and molecular processes underlying embryonic heart
development are disturbed. The heart is developed from 3
pools of progenitor cells: the first heart field (FHF), the second
heart field (SHF), and the cardiac neural crest (CNC).4 The FHF
progenitors initially form the primary heart tube. SHF cells are
then added to the heart tube to form the right ventricle (RV)
and produce myocardial and endothelial cells of the outflow
tract (OFT) and semilunar valves, as well as the vascular
smooth muscle cells at the base of the aorta and pulmonary
trunk. The CNC cells contribute to septation of the OFT and
remodeling of semilunar valves, whereas the left ventricle (LV)
is mainly formed from FHF progenitors. The SHF is particularly
significant to CHDs because many common cardiac abnor-
malities, including atrial and ventricular septal defects (VSDs),
cardiac valve malformation, double-outlet RV, and truncus
arteriosus, are caused by defects in SHF progenitors.4

Pregestational diabetes mellitus (type 1 or 2) in the mother
increases the risk of a CHD in the child by >4-fold.5,6 Although
good glycemic control in diabetic mothers lowers the risk, the
incidence of CHDs in their children is still higher than in the
general population.7,8 The prevalence of pregestational
diabetes mellitus has nearly doubled from 0.58% to 1.06%
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from 1996 to 2014 in Northern California,9 and has reached
4.3% in Saudi Arabia.10 As the prevalence of pregestational
diabetes mellitus further increases in women during their
reproductive age, more individuals will be born with CHDs,
inevitably placing a large burden on the healthcare
system.11,12

Uncontrolled maternal diabetes mellitus is not conducive
to proper gestation. Hyperglycemia leads to cellular oxidative
stress through numerous pathways,13 which include
increased electron transport chain flow, resulting in mito-
chondrial dysfunction, nonenzymatic protein glycosylation,
and glucose auto-oxidation, all contributing to reactive oxygen
species (ROS) generation.14,15 Increased oxidative stress can
lead to the inactivation of many molecules and proteins
necessary for proper heart development. Endothelial NO
synthase (eNOS) is intimately regulated by oxidation-reduc-
tion balance within the cell and is vital for cardiogenesis.16

eNOS expression in the embryonic heart regulates cell growth
and protects early cardiac progenitors against apoptosis.17

The importance of eNOS in heart development has been
demonstrated in eNOS�/� mice by a spectrum of cardiovas-
cular anomalies, such as VSDs, valvular malformations, and
hypoplastic coronary arteries.17–19

Tetrahydrobiopterin has antioxidant properties and is a
critical cofactor for eNOS function.20 It is required for eNOS
dimer stabilization and is an allosteric modulator of arginine
binding to the active site.21 In states of oxidative stress,

tetrahydrobiopterin levels decline, and eNOS is uncoupled,
resulting in decreased NO synthesis and increased superoxide
production, perpetuating the oxidative environment of the
cell.22 The production of ROS is amplified by this feedback
loop, further inducing eNOS uncoupling. Treatment with
tetrahydrobiopterin has been shown to recouple eNOS and
improve vascular endothelial function in diabetes
mellitus.23,24 However, the potential of tetrahydrobiopterin
to reduce the severity and incidence of CHDs is not known.
Sapropterin dihydrochloride (Kuvan) is an orally active,
synthetic form of tetrahydrobiopterin and a US Food and
Drug Administration–approved drug for the treatment of
phenylketonuria.25 The present study was aimed to examine
the effects of sapropterin in mice with pregestational diabetes
mellitus. We hypothesized that sapropterin treatment during
gestation recouples eNOS, improves cell proliferation in SHF-
derived cells, and reduces CHD incidence in the offspring of
mice with pregestational diabetes mellitus.

Methods
The data, analytic methods, and study materials will be
available from the corresponding author on reasonable
request to other researchers for purposes of reproducing
the results or replicating the procedure.

Animals
All procedures were performed in accordance with the
Canadian Council on Animal Care guidelines and approved
by the Animal Care Committee at Western University. C57BL/
6 wild-type and Rosa26mTmG mice were purchased from
Jackson Laboratory (Bar Harbor, ME). Mef2ccre/+ embryos
were obtained from the Mutant Mouse Regional Resource
Center (Chapel Hill, NC) and rederived. All animals were
housed in a 12-hour light/dark cycle and given ad libitum
access to standard chow and water. A breeding program was
established to generate embryonic, fetal, and postnatal mice.

Induction of Diabetes Mellitus and Sapropterin
Treatment
A study flow chart in Figure 1 illustrates timelines of saline or
streptozotocin injection, breeding, sapropterin or insulin
treatment, and assessments of fetal hearts in 5 groups of
mice. Female C57BL/6 mice, 8 to 10 weeks old, were made
diabetic through 5 consecutive daily injections of streptozo-
tocin (50 mg/kg body weight, IP; Sigma) freshly dissolved in
sterile saline. Mice were randomly assigned to streptozotocin
(n=37) or saline treatment (n=19) groups. One week after the
last streptozotocin injection, nonfasting blood glucose levels

Clinical Perspective

What Is New?

• Sapropterin treatment in the diabetic dams lowers the
incidence of congenital heart defects in their offspring.

• Pregestational diabetes mellitus reduces the commitment of
second heart field progenitors to the outflow tract, endo-
cardial cushions, and ventricular myocardium of the fetal
heart.

• Sapropterin treatment in the diabetic dams improves cell
proliferation and cardiac transcription factor expression in
the fetal heart.

• Sapropterin treatment in the diabetic dams improves
endothelial NO synthase function and lowers reactive
oxygen species levels in the fetal heart.

What Are the Clinical Implications?

• Sapropterin (Kuvan) is an orally active synthetic form of
tetrahydrobiopterin and a US Food and Drug Administra-
tion–approved drug to treat phenylketonuria. Our study
suggests that sapropterin may also have therapeutic
potential in women with pregestational diabetes mellitus
to prevent congenital heart defects in their children.
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were measured with a tail snip procedure using a glucose
meter (One Touch Ultra2; LifeScan, Burnaby, BC, Canada).
Mice were categorized as diabetic if blood glucose measure-
ments exceeded 11 mmol/L and were subsequently bred to
10- to 12-week-old C57BL/6 male mice. In the morning, when
a vaginal plug was observed indicating embryonic day (E) 0.5,
the female diabetic mouse was placed in a separate cage with
littermates. A cohort of diabetic and control female mice was
treated with sapropterin dihydrochloride (Kuvan; BioMarin
Pharmaceutical Inc) at a dose of 10 mg/kg body weight per
day during gestation. Sapropterin was dissolved in water and
mixed with a small amount of peanut butter in a weigh boat,
ensuring it was fully consumed by the mouse. At the time of
feeding, mice were separated and individually housed in cages
for �15 minutes until the sapropterin or vehicle containing
peanut butter mixture was fully consumed under an investi-
gator’s watch (A.E.). All mice were fed in the morning, once
per day. Nonfasting blood glucose levels were monitored
throughout pregnancy. To prevent hyperglycemia, a long-acting
form of insulin (Lantus; Sanofi Aventis) was administered SC to
a cohort of diabetic dams (n=3) at a dose of 0.5 U/d.

Histological and Immunohistochemical Analysis
Fetal samples were harvested at E10.5, E12.5, and E18.5 for
histological and immunohistochemical analysis. To diagnose
CHDs in E18.5 hearts, fetuses were decapitated, and the
isolated thorax was fixed overnight in 4% paraformaldehyde,
dehydrated in ethanol, and paraffin embedded. Samples were

divided into section (5-lm slices), and they were stained with
hematoxylin/eosin or toluidine blue to visualize morphological
characteristics. Images were taken and analyzed using a light
microscope (Observer D1; Zeiss, Germany). Embryonic sam-
ples at E10.5 and E12.5 were fixed in 4% paraformaldehyde
for 1 and 2 hours, respectively, and processed as previously
described. Immunostaining to analyze cell proliferation at
E10.5 using anti–phosphohistone H3 antibody (1:1000;
Abcam) and sex determination at E18.5 using anti–sex-
determining region Y protein antibody (1:200; Santa Cruz)
were performed after antigen retrieval in citrate buffer
(10 mmol/L, pH 6). This was followed by incubation with
biotinylated goat anti-mouse IgG (1:300; Vector Laboratories)
secondary antibody. The signal was amplified by the ABC
reagent (Vector Laboratories), allowing for visualization
through 3-30 diaminobenzidine tetrahydrochloride (Sigma)
with hematoxylin as a counterstain. Blinded phosphohistone
H3–positive cell counts within the OFT were taken from at
least 3 heart sections per heart and normalized to OFT length.

Lineage Tracing the SHF
Fate mapping of SHF progenitors was performed using the
SHF-specific Mef2ccre/+ transgenic mouse and the global
double fluorescent Cre reporter line Rosa26mTmG that has
LoxP sites on either side of a tomato-red fluorescence
membrane protein cassette, which is proceeded by a green
fluorescent protein (GFP) cassette. In the Mef2cCre/+ trans-
genic line with C57BL/6 background, elements of the Mef2c

Figure 1. Experimental design to examine the effects of sapropterin (tetrahydrobiopterin) on congenital
heart defects induced by pregestational diabetes mellitus. A study flow chart illustrates timelines of saline
or streptozotocin injection, breeding, sapropterin or insulin treatment, and assessments of fetal hearts in 5
groups of mice. BG indicates blood glucose; E, embryonic day; eNOS, endothelial NO synthase; IP,
intraperitoneal injection; OFT, outflow tract; PO, oral administration; ROS, reactive oxygen species.
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promoter drive Cre recombinase expression in all SHF-derived
cells. When crossed with the Rosa26mTmG mice, this results in
a GFP signal that is detected in all SHF-derived cells.26,27 In all
other tissues, the absence of the Cre results in membrane
protein expression and red fluorescence. Diabetes mellitus
was induced in homozygous Rosa26mTmG females (8–
10 weeks old) by streptozotocin, as previously described.
Hyperglycemic Rosa26mTmG female mice were crossed with
Mef2ccre/+;Rosa26mTmG males to generate E9.5 and E12.5
Mef2ccre/+;Rosa26mTmG embryos, which were fixed, embed-
ded, and divided into sections in the same manner as
previously described. Immunostaining for membrane-bound
GFP was conducted using an anti-GFP (1:500; Abcam) primary
antibody, followed by biotinylated goat anti-rabbit IgG (1:300;
Vector Laboratories) secondary antibody using 3-30

diaminobenzidine tetrahydrochloride for visualization. The
SHF-derived cells, which are GFP+, were blindly quantified
and compared between control and diabetic groups.

Analysis of Superoxide Levels
Hearts collected from E12.5 fetuses from all 4 groups were
cryosectioned (CM1950; Leica, Germany) into 8-lm-thick
slices and placed onto slides. A subset of cryosectioned
embryonic hearts from untreated and sapropterin-treated
diabetic dams was incubated with either 300 lmol/L Nx-
nitro-L-arginine methyl ester (Sigma), a NOS inhibitor, or
100 U/mL superoxide dismutase (Sigma), a recombinant
antioxidant enzyme for 30 minutes. Samples were then
probed with 2 lmol/L dihydroethidium (Invitrogen Life Tech-
nologies, Burlington, ON, Canada) for 30 minutes in a dark
humidity chamber at 37°C. After cover glass was mounted,
dihydroethidium fluorescence signals were visualized using a
fluorescence microscope (Observer D1; Zeiss, Germany). A
total of 5 to 8 images from each sample were captured at
fixed exposure times for all groups, and the fluorescence
intensity per myocardial area was blindly quantified using
AxioVision software.

Measurement of Cardiac Function
Pregnant dams were anesthetized, and M-mode echocardiog-
raphy images of E18.5 embryonic hearts were recorded using
the Vevo 2100 ultrasound imaging system with an MS 700
transducer (VisualSonics, Toronto, ON, Canada), as previously
described.18,19 Briefly, an incision was made to the abdominal
wall of the pregnant dam to expose the uterine sacs containing
the E18.5 fetuses. The transducer was aligned to the uterine
sac to obtain a short-axis view of the fetal heart. The end-
diastolic LV internal diameter and end-systolic LV internal
diameter weremeasured from the short-axisM-mode images to
calculate LV ejection fraction and fractional shortening.

Western Blotting for eNOS Dimers and Monomers
Ventricular myocardial tissues from E12.5 hearts were
dissected in PBS and used for measurement of eNOS
dimerization. To not disrupt the dimer, proteins were isolated
from 3 pooled hearts from each group via sonication using a
nonreducing lysis buffer, on ice.28 Protein lysates without
boiling were run on 8% SDS-PAGE at 4°C, followed by
transferring to a nitrocellulose membrane, and immunoblotted
with anti-eNOS polyclonal antibody (1:3000; Santa Cruz). This
technique resulted in 2 distinct bands at 260 and 130 kDa,
representing the eNOS dimer and monomer, respectively.28

Proteins isolated from cultured coronary artery microvascular
endothelial cells were boiled and separated with the sample,
acting as an eNOS monomer size control.

Real-Time Reverse Transcription–Polymerase
Chain Reaction
Total RNA was isolated from E12.5 hearts using TRIzol reagent
(Invitrogen). A total of 200 ng of RNA was synthesized into
cDNA with Moloney murine leukemia virus reverse transcrip-
tase and random primers. Real-time PCR was conducted on
cDNA using Evagreen qPCR MasterMix (Applied Biological
Systems, Vancouver, BC, Canada). Primers were designed for
Gata4, Gata5, Nkx2.5, Tbx5, Notch1, GTP cyclohydrolase 1
(GCH1), and dihydrofolate reductase (DHFR) using the Primer3
software v 4.1.0. The primer sequences are listed in Table 1.
Eppendorf Realplex (Eppendorf, Hamburg, Germany) was used
to amplify samples for 35 cycles. Values were normalized to
28S ribosomal RNA, and mRNA levels were extrapolated
through a comparative threshold cycle method.19

Determination of Biopterin Levels
Tissue and plasma biopterin levels were determined using
ultraperformance liquid chromatography coupled to mass
spectrometry. Briefly, dams were anesthetized with an
intraperitoneal injection of ketamine and xylazine cocktail at
E12.5. Whole embryos were harvested, followed by blood
collections from the dams for ultraperformance liquid chro-
matography analysis. About 1 mL of blood was collected via
cardiac puncture using a 23-gauge heparinized needle inserted
into the beating LV of the dam. Plasma samples were then
diluted 1:4 with 150 lL of acetonitrile containing internal
standard (100 lmol/L aminopimelic acid and 2.5 lmol/L
chlorpromazine) before injection into the ultraperformance
liquid chromatography instrument. Total tetrahydrobiopterin
and 7,8-dihydrobiopterin levels were assessed using a Waters
Acuity I Class ultraperformance liquid chromatography system
coupled to a XEVO G2-S quadrupole time-of-flight mass
spectrometer (Waters Corporation, Milford, MA), as previously
described.29
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Statistical Analysis
Data are presented as the mean�SEM. Statistical analysis
was performed using GraphPad Prism, Version 5 (GraphPad
Software, La Jolla, CA). For comparisons between 2 groups, an
unpaired Student t test was used. Multiple group comparisons
between diabetic and control dams with and without
sapropterin treatment, and their interactions, were conducted
using 2-way ANOVA, followed by the Bonferroni post hoc test.
Two-way repeated-measures ANOVA, followed by the Bonfer-
roni post hoc test, was used to analyze blood glucose
differences over time between control and diabetic dams with
or without sapropterin treatment. The incidence of CHDs was
assessed with Fisher’s exact test. Differences were deemed
significant at P<0.05.

Results

Effects of Sapropterin on Blood Glucose, Fertility,
Litter Size, and Biopterin Levels in Pregestational
Diabetes Mellitus
This study was conducted in the same pregestational diabetes
mellitus model we recently used.30,31 One week after the final
administration of streptozotocin, female mice with random
blood glucose levels >11 mmol/L were bred with normal
adult males. During gestation, blood glucose levels in the
diabetic dams were progressively increased from E0.5 to
E18.5 compared with both sapropterin-treated and untreated

control mice (Figure 2A). Treatment with insulin, but not
sapropterin, in the diabetic mice restored blood glucose to
normal levels. Diabetic dams had a significant lower fertility
rate (38%) compared with controls (82%; P<0.05), which was
improved to 64% by sapropterin treatment (Figure 2B).

Diabetic dams had a significantly smaller litter size
(P<0.01), which was improved by sapropterin treatment
(Figure 2C). Indeed, absorbed or dead fetuses were more
commonly seen in utero in diabetic dams. Fetal body weight
was significantly lower from diabetic dams than controls
(P<0.001), and was restored to normal weight with saprop-
terin (P<0.001, Figure 2D). To assess biopterin levels after
oral sapropterin administration, maternal blood and embryos
were collected at E12.5. Our data show that sapropterin
treatment significantly increased plasma 7,8-dihydrobiopterin
levels in the diabetic mothers (P<0.01, Figure 2E). 7,8-
Dihydrobiopterin levels in E12.5 embryos from sapropterin-
treated dams were elevated by 91.3% (P=0.0537, Figure 2F),
and tetrahydrobiopterin levels in E12.5 embryos of diabetic
dams were significantly increased (P=0.0433, Figure 2G).

Sapropterin Prevents CHDs Induced by
Pregestational Diabetes Mellitus
CHDs were observed in 59.4% of offspring from diabetic dams
(Table 2 and Figure 3). Normal control heart sections are
shown in Figure 3A through 3C. Septal defects constituted a
large proportion of the anomalies, with 47.4% atrial septal

Table 1. Specific Primer Sequences Used in Real-Time PCR Analysis

Gene Accession No. Product Size Primer Sequence

Gata4 NM_008092.3 134 Forward: GCCTGCGATGTCTGAGTGAC

Reverse: CACTATGGGCACAGCAGCTC

Gata5 NM_008093.2 167 Forward: ACCCCACAACCTACCCAGCA

Reverse: GCCCTCACCAGGGAACTCCT

Nkx2.5 NM_008700.2 162 Forward: GACAGCGGCAGGACCAGACT

Reverse: CGTTGTAGCCATAGGCATTG

Tbx5 NM_011537.3 103 Forward: AGGAGCACAGTGAGGCACAA

Reverse: GGGCCAGAGACACCATTCTC

Notch1 NM_008714.3 142 Forward: CAGCTTGCACAACCAGACAGA

Reverse: TAACGGAGTACGGCCCATGT

Gch1 NM_008102.3 117 Forward: TCAAGAGCGCCTCACCAAAC

Reverse: TTCTGCACGCCTCGCATTAC

Dhfr NM_010049.3 153 Forward: GAATCAACCAGGCCACCTCA

Reverse: TTGATGCCTTTTTCCTCCTG

28S NR_003279.1 178 Forward: GGGCCACTTTTGGTAAGCAG

Reverse: TTGATTCGGCAGGTGAGTTG

PCR indicates polymerase chain reaction.
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defects (Figure 3D) and 37.8% VSDs (Figure 3E). The diagnosis
of atrial septal defects was based on a complete or partial
absence of the septum secundum and/or primum in multiple
serial heart sections. Hypoplastic left heart was seen in 21.1%
of offspring from diabetic dams. One fetus had an atrioven-
tricular septal defect. OFT defects were also common in
offspring from diabetic mothers. A double-outlet RV was
present in one of the offspring (Figure 3F), and truncus

arteriosus was seen in another fetus (Figure 3G). Maternal
diabetes mellitus also resulted in cardiac valve defects, with
37.8% thickened aortic valves (Figure 3H) and 29.7% thickened
pulmonary valves (Figure 3I). Finally, 24.3% of hearts from
diabeticmothers displayed a narrowing aorta (Figure 3H versus
3B). Treatment with sapropterin to diabetic dams during
pregnancy significantly decreased the overall incidence of
CHDs to 26.5% (Table 2). Specifically, offspring from
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Figure 2. Blood glucose levels of pregnant mice, percentage of successful plugs, litter size, fetal
body weight, and biopterin levels. A, Nonfasting blood glucose levels from before mating (basal) to
embryonic day (E) 18.5 during pregnancy in streptozotocin-treated and control female mice with
and without sapropterin (tetrahydrobiopterin) administration (n=4–8 mice per group). B, The
percentage of successful pregnancies. The numbers in the parentheses indicate the number of
successful pregnancies at the day of fetus harvest/total plugs. C, The offspring litter size
measured at the day of fetus harvest (n=5–11 litters per group). D, Fetal body weight at E18.5
(n=5–8 fetuses per group). E through G, Levels of 7,8-dihydrobiopterin in maternal plasma, and
fetal 7,8-dihydrobiopterin and tetrahydrobiopterin levels at E12.5 with or without tetrahydro-
biopterin treatment in the diabetic dams (n=3–9 mice per group). Two-way repeated-measures
ANOVA (A) or two-way ANOVA (C and D), followed by Bonferroni post hoc test, was used. B was
analyzed by Fisher’s exact test. E through G were analyzed by unpaired Student t test. Data are
means�SEM (A and C through G). *P<0.05, ***P<0.001 vs corresponding controls; ††P<0.001 vs
untreated diabetes mellitus.
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sapropterin-treated diabetic mothers show a significantly lower
incidence of atrial septal defects and thickened aortic valves,
and did not display any VSD, atrioventricular septal defect,
truncus arteriosus, double-outlet RV, or hypoplastic left heart
(Table 2, Figure 3J through 3O). Cardiac anomalies were seen
in all litters from diabetic dams, and every dam in the
sapropterin treatment group had at least one offspring with a
CHD. No CHDs were seen in diabetic dams who received a daily
dose of insulin to maintain normal blood glucose levels,
indicating that CHDs seen in the diabetic offspring were
induced through hyperglycemia (Table 2, Figure 3P through
3R). The incidence of CHDs was significantly higher in males
than females (65% versus 47%; P<0.05). Furthermore, saprop-
terin treatment was more effective in reducing the incidence of
CHDs to 16% in females compared with 35% in males (P<0.05,
Figure 3S). Cardiac function of E18.5 fetuses was assessed
through echocardiography. LV fractional shortening and ejec-
tion fraction were significantly decreased in offspring of
diabetic dams, and were recovered by sapropterin treatment
(P<0.001, Figure 3T and 3U). In addition, anterior wall thick-
ness of the fetal heart during systole and diastole was reduced
in offspring of diabetic dams, which was restored after
sapropterin treatment (P<0.01, Figure 3V and 3W). Pregesta-
tional diabetesmellitus also induced neural tube defects (NTDs)
in our model. A case of exencephaly in the offspring of a mother
with pregestational diabetes mellitus is shown in Figure 3X.

Sapropterin Prevents Myocardial and Valvular
Abnormalities Induced by Pregestational
Diabetes Mellitus

The free walls of the RV and LV at E18.5 were measured at
the midventricular region (Figure 4A). The RV and LV
myocardium was thinner in the offspring of diabetic mothers
compared with those of control offspring, which was
prevented by sapropterin treatment (P<0.001, Figure 4B
and 4C). Additionally, because valve leaflets were thickened
(Figure 3H and 3I), we assessed glycosaminoglycans, a
component of extracellular matrix in the cardiac valves using
toluidine blue staining. Our data show that glycosaminogly-
cans occupied a greater space in the leaflets of aortic and
pulmonary valves (light purple color) from E18.5 fetal hearts
of diabetic mothers compared with controls (Figure 5A and
5B). Treatment with sapropterin decreased these extracellu-
lar polysaccharides in both aortic and pulmonary valves
(P<0.01, Figure 5D and 5E). There was no significant
difference in glycosaminoglycan content in the mitral valve;
however, the distal tip of the mitral valve was thicker in the
offspring of diabetic dams (P<0.01, Figure 5C and 5F).
Notably, the area of aortic orifice and the diameter of the
pulmonary artery were significantly smaller in hearts from
diabetic mothers compared with controls (P<0.01, Figure 5G
and 5H).

Table 2. Rate of CHDs in the Offspring of Diabetic and Control Mothers With and Without Sapropterin (Tetrahydrobiopterin)
Treatment

Control Streptozotocin Tetrahydrobiopterin Streptozotocin+Tetrahydrobiopterin Streptozotocin+Insulin

N Dams N Dams N Dams N Dams N Dams

14 3 38 9 23 4 34 5 20 3

n % n % n % n % n %

Normal 14 100 16 40.6** 23 100 25 73.5† 20 100

Abnormal 0 0 22 59.4** 0 0 9 26.5† 0 0

ASD 0 0 18 47.4** 0 0 9 26.5 0 0

VSD 0 0 14 37.8* 0 0 0 0.0† 0 0

Truncus arteriosus 0 0 1 2.7 0 0 0 0.0 0 0

AVSD 0 0 2 5.4 0 0 0 0.0 0 0

DORV 0 0 1 2.7 0 0 0 0.0 0 0

Pulmonary valve stenosis 0 0 14 37.8* 0 0 0 0.0† 0 0

Aortic valve stenosis 0 0 11 29.7* 0 0 1 2.9† 0 0

RV hypertrophy 0 0 9 24.3 0 0 0 0.0† 0 0

Hypoplastic left heart 0 0 8 21.1 0 0 0 0.0† 0 0

Narrowing of the aorta 0 0 9 24.3 0 0 0 0.0† 0 0

Data were analyzed using Fisher’s exact test. ASD indicates atrial septal defect; AVSD, atrioventricular septal defect; CHD, congenital heart defect; Dams, litter numbers; DORV, double-
outlet right ventricle; N, total number of fetuses; RV, right ventricular; VSD, ventricular septal defect.
*P<0.05, **P<0.001 vs control, †P<0.001 vs streptozotocin.
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Effects of Sapropterin on OFT Length and Cell
Proliferation in the Fetal Heart
Because offspring of diabetic mothers show OFT defects, we
aimed to investigate changes in cell proliferation at a critical stage
in OFT formation. At E10.5, sagittal sections of whole embryos
reveal a shortenedOFT in hearts fromdiabeticmothers compared
with control (P<0.001, Figure 6A), which was restored with
sapropterin treatment (P<0.05, Figure 6E). To further analyze this
change, phosphorylated histone H3, a marker for the mitotic
phase of cell division, was used to compare the levels of
proliferating cells in the OFT at E10.5 using the same hearts
(Figure 6B through 6D). Embryos from mice with pregestational
diabetes mellitus had a significantly lower number of proliferating
cells in the OFT (P<0.01, Figure 6F and 6G). Sapropterin
treatment was able to prevent impaired cell proliferation in the
OFT in hearts from diabetic dams (P<0.001, Figure 6F and 6G).

Fate Mapping of SHF-Derived Cells in the Fetal
Heart of Diabetic Mothers
To better understand the spectrum of malformations induced
by maternal diabetes mellitus seen at birth, embryonic lineage
tracing of the SHF was performed. Fate mapping using Mef2c-
Cre and the global double-fluorescent Cre reporter line
Rosa26mTmG identified all SHF-derived cells as GFP+. At
E9.5, the number of GFP+ SHF cells and the total number of
cells in the heart were significantly less than in control
(P<0.01, Figure 7A, 7D, and 7E). Furthermore, significantly
less GFP+ SHF cells were infiltrated into the endocardial
cushion at E12.5 in diabetic embryos compared with control
(P=0.0476, Figure 7B and 7F). Additionally, E12.5 hearts from
diabetic mothers had thinner ventricular walls with signifi-
cantly less myocardial cell layers than controls (P<0.01,
Figure 7C and 7G).

Diabetes Diabetes + BH4 Diabetes 
+ InsulinControl

E

F

H

I

K

L

N

O

Q

RA
LA

RV
LV

Ao

PA

RV
LV

RV

RA

LA
Ao

Ao

Ao

RV

RA

LAPA

RV
LV

RA LA

RV LV

RV
LV

AoRA

LA

PA

Ao

RV

Ao Ao

RV

Ao
LA

PA

RA

RV
LV

RA

LA

R

RV

Ao

LAPA
RA

Ao

RV

LAPA

RA

RV
LV

RA LA
D G J M P

C

A

B

Ao

Figure 3. Effects of sapropterin (tetrahydrobiopterin) on congenital heart defects (CHDs) induced by pregestational diabetes mellitus.
Representative histological sections of embryonic day (E) 18.5 hearts from offspring of diabetic mothers with and without
tetrahydrobiopterin treatment. A through C, Heart sections from controls. Pregestational diabetes mellitus resulted in atrial septal defect
(D), ventricular septal defect (E), double-outlet right ventricle (F), truncus arteriosus (G), and thickened aortic (H) and pulmonary (I) valves. J
through O, Tetrahydrobiopterin treatment in diabetic dams shows normal heart morphological characteristics. P through R, Diabetic dams
receiving insulin therapy to control blood glucose levels show normal fetal heart morphological characteristics. Bar=200 lm. S, Incidence
of CHDs as percentage of offspring separated by sex at E18.5 from diabetic dams with or without tetrahydrobiopterin treatment. *P<0.05
vs streptozotocin group of corresponding sex; †P<0.05 vs corresponding males. T through W, Left ventricular (LV) fractional shortening
and ejection fraction and anterior wall thickness during systole (LVAWTs) and diastole (LVAWTd), assessed by echocardiography in E18.5
offspring (n=5–7 fetuses per group). *P<0.05, ***P<0.001 vs corresponding controls; ††P<0.001 vs untreated diabetes mellitus. X, An
exencephaly was seen in the offspring of a mother with pregestational diabetes mellitus. A normal control fetus is shown on the right
panel. Fetuses are harvested at E13.5. S through W were analyzed by 2-way ANOVA, followed by Bonferroni post hoc test. Data are
means�SEM (T-W). LA indicates left atrium; PA, pulmonary artery; RA, right atrium; RV, right ventricle.
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Sapropterin Prevents Maternal Diabetes
Mellitus–Induced Downregulation of Regulators
of Heart Development
Pregestational diabetes mellitus induces changes in gene
expression in the developing heart.32 To determine if key
transcriptional regulators of heart development were altered
under maternal diabetes mellitus and with sapropterin
treatment, quantitative polymerase chain reaction analysis
was performed from E12.5 hearts. Our data show that the
mRNA levels of Gata4, Tbx5, Nkx2.5, Gata5, Bmp10, and
Notch1 were significantly lower compared with controls
(P<0.05, Figure 8A through 8F). Treatment with sapropterin
significantly improved mRNA levels of these transcription
factors (P<0.001, Figure 8A through 8F). Additionally, gene
expression of tetrahydrobiopterin biosynthesis enzymes,
including Gch1 and Dhfr, was significantly decreased in
embryonic hearts from diabetic mothers (P<0.05, Figure 8G
and 8H). Sapropterin treatment completely recovered the
expression of Dhfr (P<0.001, Figure 8H).

Sapropterin Decreases Oxidative Stress and
Improves eNOS Dimerization in Fetal Hearts of
Pregestational Diabetes Mellitus
To examine the effects of sapropterin on ROS in the
developing heart, a dihydroethidium probe was used to label
the oxygen radical. Quantification of red fluorescence inten-
sity indicates that superoxide generation was significantly
elevated in embryonic hearts from mice with pregestational
diabetes mellitus compared with control (P<0.05, Figure 9A
and 9B). Sapropterin treatment significantly reduced myocar-
dial ROS levels to basal conditions (P<0.05, Figure 9B).
Pretreatment with Nx-nitro-L-arginine methyl ester, an NOS
inhibitor, and superoxide dismutase, an antioxidant enzyme,
significantly decreased dihydroethidium fluorescence in
embryonic hearts from diabetic dams, indicating eNOS
uncoupling and superoxide generation, respectively (P<0.05
Figure 9B). Finally, eNOS uncoupling has been implicated as a
mechanism for endothelial dysfunction in diabetes mellitus.23

To assess the effects of sapropterin on eNOS coupling, eNOS
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dimerization was analyzed using Western blotting in nonre-
ducing conditions, which yields 2 bands at 260 and 130 kDa,
representing the intact dimer and monomer of eNOS,
respectively. Figure 9C shows a representative blot of the
dimer and monomer of eNOS. In control conditions, there was
a higher level of eNOS dimers than monomers, indicating a
functional eNOS enzyme. However, embryonic hearts from
diabetic dams show a significant decrease of dimer/monomer
ratios compared with controls (P<0.05, Figure 9D), which was
restored by sapropterin treatment (P<0.01, Figure 9D).

Discussion
The present study used a clinically relevant model of CHDs
induced by pregestational diabetes mellitus that we recently
established.30,31 Consistent with our previous studies, a
spectrum of CHDs was observed in the offspring of diabetic
mothers. The CHDs range from atrial septal defects, VSD, and
valve thickening, to major malformations, including atrioven-
tricular septal defects, double-outlet RV, truncus arteriosus,
and hypoplastic left heart, as clinically categorized by
Hoffman et al.33 Sapropterin treatment was able to prevent
all major defects and significantly reduce the overall level of
defects induced by pregestational diabetes mellitus. Other
changes in the fetal heart, such as thinner ventricular
myocardium, thickened valves, stenosis of the aorta and
pulmonary artery, impaired cardiac function, and decreased
cell proliferation and gene expression induced by maternal
diabetes mellitus, were normalized with sapropterin treat-
ment. Furthermore, sapropterin administration in the diabetic
dams increased eNOS dimerization and decreased ROS levels
in the fetal heart. Our study suggests that sapropterin
improves eNOS coupling and prevents CHDs in pregestational
diabetes mellitus in mice (Figure 10).

In this model, streptozotocin was used to induce hyper-
glycemia in female mice at least 7 days before they were bred
with normal healthy males. Because streptozotocin has a short
plasma half-life of 10 minutes in rodents,34 it is unlikely that
streptozotocin would cause any teratogenic effects in the fetus.
To confirm that hyperglycemia is the cause of CHDs in this
model, a group of mice were treated with insulin to lower
glucose levels in diabetic dams. Our data show that insulin
treatment abrogated CHDs in pregestational diabetes mellitus,
which is consistent with clinical studies that show that good
glycemic control in women with pregestational diabetes
mellitus lowers the incidence of CHDs.7 The incidence of CHDs
found in the diabetic groups with or without sapropterin
treatment at E18.5 may be an underestimate because fetuses
may have been absorbed in utero at �E12.5. To study the
effects of sapropterin on maternal diabetes mellitus, blood
glucose levels were assessed during pregnancy. Our data show
that sapropterin treatment in the diabetic dams had no effect on

the hyperglycemic state of the animal, suggesting that the
beneficial effects of sapropterin on fertility (or percentage
successful pregnancy), litter size, and heart development under
pregestational diabetes mellitus are independent of blood
glucose levels. In humans, sex-related differences in the
prevalence of CHDs have been reported. In a recent large
cohort study with 9727 cases of CHDs, the male/female ratio
was 55%:45%, indicating a significant predisposition of CHDs in
the male sex.35 In agreement with clinical studies, our data
show a male dominance of CHDs in the offspring of diabetic
mothers. Notably, sapropterin treatment appears to be more
effective in preventing CHDs in females than in males.

We have recently shown that defects in SHF signaling
result in thin myocardium, septal defects, and OFT
defects.26,36 The defective SHF progenitor contribution may
explain most heart malformations in the OFT, cardiac septum,
and cardiac valves induced by pregestational diabetes mel-
litus. Because sapropterin treatment significantly prevented
these CHDs in the offspring of diabetic dams, it is likely that
impairment in SHF progenitors will be diminished by maternal
sapropterin treatment, which still needs to be confirmed in
future studies. Considering the presence of hypoplastic left
heart and OFT septation defect (truncus arteriosus), it is
possible that pregestational diabetes mellitus also impairs
FHF and CNC cells in our model. Notably, these defects were
all prevented in diabetic dams treated with sapropterin. These
findings are consistent with previous studies showing that
oxidative stress during diabetic pregnancy disrupts CNC
migration and causes OFT defects in rodents,37,38 which are
prevented by treatment with vitamin E, an antioxidant.39 Our
results suggest that sapropterin treatment improves the
function of both SHF and non-SHF (FHF and CNC) progenitors
in pregestational diabetes mellitus (Figure 10).

Cell proliferation is critical to cardiac morphogenesis and
the growth of the fetal heart.40 Decreased cell proliferation
results in shortening of OFT length, thin myocardium, and
CHDs.36,41 In the present study, E10.5 hearts show less cell
proliferation and a shorter OFT in embryos from diabetic
dams. Furthermore, E18.5 hearts from diabetic dams are
notably smaller and their ventricular walls are significantly
thinner than control hearts. These abnormalities were all
prevented by sapropterin treatment. Previous studies have
shown that tetrahydrobiopterin increases DNA synthesis and
cell proliferation in erythroid cells.42 Additionally, tetrahydro-
biopterin mediates the proliferative effects of epidermal
growth factor and nerve growth factor in PC12 cells.43 We
have previously shown that eNOS promotes cardiomyocyte
proliferation.17,44 Because tetrahydrobiopterin increases
eNOS coupling, as shown by higher dimer/monomer ratios
in our study, it is possible that a normalized eNOS signaling
may contribute to the improved cell proliferation by
sapropterin treatment. Increases in cell apoptosis may also
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Figure 4. Effects of sapropterin (tetrahydrobiopterin) on fetal heart wall thickness of
pregestational diabetes mellitus at embryonic day 18.5. A, Representative images of myocardial
wall thickness in control and pregestational diabetes mellitus with and without tetrahydro-
biopterin treatment. Arrows indicate compact myocardium boundary from which measurements
were obtained. B and C, Quantification of left ventricular (LV) and right ventricular (RV)myocardial
thickness, respectively. n=6 per group from 3 to 6 litters. Bar=200 lm. Data are means�SEM
and analyzed using 2-way ANOVA, followed by Bonferroni post hoc test (B and C). ***P<0.01 vs
untreated control; †P<0.01 vs untreated diabetes mellitus.
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Figure 5. Effects of sapropterin (tetrahydrobiopterin) on aortic, pulmonary, and mitral valve defects induced by
pregestational diabetes mellitus at embryonic day (E) 18.5. A through C, Representative images of toluidine blue
staining of glycosaminoglycans in aortic, pulmonary, and mitral valves in E18.5 hearts. D, The ratio of
glycosaminoglycan-positive area/total valve leaflet area. E, Pulmonary valve leaflet thickness. F, Mitral valve leaflet
thickness. G, Total aortic orifice area. H, Pulmonary artery luminal diameter at the base of the orifice. Bars=50, 20,
and 20 lm (A, B, and C, respectively). n=4 to 7 hearts per group from 3 to 4 litters. Data are means�SEM and
analyzed using 2-way ANOVA, followed by Bonferroni post hoc test (B and C). LC indicates left cusp; LCC, left
coronary cusp; NCC, noncoronary cusp; RC, right cusp; RCC, right coronary cusp. **P<0.01 vs controls; †P<0.01,
††P<0.01 vs untreated STZ group.

DOI: 10.1161/JAHA.118.009624 Journal of the American Heart Association 12

Sapropterin Prevents CHD in Maternal Diabetes Mellitus Engineer et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



E

DiabetesControl
E

10
.5

 O
FT

 L
en

gt
h

Diabetes + BH4BH4
E

10
.5

 p
H

H
3+

C
el

ls

F G

Control Diabetes
0

200

400

600

800
-BH4
+BH4

***

†

O
FT

 L
en

gt
h 

( �
m

)

Control Diabetes
0

10

20

30

40

**

††

pH
H

3+
 c

el
ls

 / 
O

FT
 L

en
gt

h

Control Diabetes
0

5

10

15

20

**

††

pH
H

3+
ce

lls
 in

 V
en

tri
cl

e/
se

ct
io

n

A

B

C

D
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untreated control; †P<0.05, ††P<0.01 vs untreated diabetes mellitus.
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contribute to CHDs. However, we have previously shown that
the incidence of cell apoptosis in fetal hearts of diabetic
offspring is low (�1%) and was not affected by antioxidant
treatment, suggesting an insignificant role of apoptosis in our
model.31 We, therefore, did not assess cell apoptosis in the
present study.

Cardiac transcription factors, including Gata4, Gata5,
Nkx2.5, and Tbx5, are critical to normal heart development,
and genetic mutations of these transcription factors result in
CHDs in humans.45 Interestingly, both eNOS and ROS can
alter the expression of these transcription factors.16,31 For
example, deficiency in eNOS decreases the expression of
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Figure 7. Effects of pregestational diabetes mellitus on second heart field (SHF) progenitor contribution to embryonic day (E) 9.5 and E12.5
hearts. Fate mapping using the mT/mG reporter showing green fluorescent protein–positive (GFP+) cells expressing Cre recombinase under the
control of the anterior heart field–specific Mef2c transcription factor. Representative sections of outflow tract (OFT) of E9.5 (A) and E12.5 (B)
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E12.5 hearts. Quantification of SHF GFP+ cells (D) and total number of cells (E) in the OFT cushions at E9.5. Quantification of SHF GFP+ cells in
the OFT cushions (F) and number of cell layers in the RV myocardium (G) at E12.5. N=3 per group from 2 litters (D and E). N=5 per group from 2
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cardiac transcription factors, including Gata4, during embry-
onic heart development.19 Additionally, the expression of
cardiac transcription factors was downregulated in the fetal
heart of offspring of diabetic mothers, which was restored by

treatment with an antioxidant, N-acetylcysteine.31 In agree-
ment with our previous studies, we showed a downregulation
of Gata4, Gata5, Nkx2.5, and Tbx5 in fetal hearts of offspring
from diabetic mothers in the present study. Decreased
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Figure 8. Effects of sapropterin (tetrahydrobiopterin) on molecular regulators of heart development at
embryonic day (E) 12.5. Real-time reverse transcription–polymerase chain reaction (RT-PCR) of cardiac
transcription factors and regulators in E12.5 hearts of offspring from control and diabetic mothers. A
through F, The expression levels of Gata4, Tbx5, Nkx2.5, Gata5, Bmp10, and Notch1 were significantly
decreased under maternal diabetes mellitus and restored with tetrahydrobiopterin treatment. G and H, The
expression levels of Gch1 and Dhfr were significantly decreased with maternal diabetes mellitus.
Tetrahydrobiopterin treatment rescues expression of DHFR. n=4 to 7 hearts per group. Data are
means�SEM and analyzed using 2-way ANOVA, followed by Bonferroni post hoc test. *P<0.05, **P<0.01
vs untreated control; †P<0.05, ††P<0.01 vs untreated diabetes mellitus.
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expression was also seen in Bmp10, essential in cardiac
growth and chamber maturation.46 Importantly, sapropterin
administration to diabetic dams restored the expression

profile of these factors to normal levels. We also assessed the
expression of Gch1 and Dhfr, which are enzymes responsible
for de novo tetrahydrobiopterin biosynthesis and recycling of
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Figure 9. Effects of sapropterin (tetrahydrobiopterin) on superoxide production and endothelial NO
synthase (eNOS) dimer/monomer protein levels in embryonic day (E) 12.5 hearts. A, Representative images
of dihydroethidium staining in the ventricular myocardium of E12.5 hearts from control and diabetic dams
with and without tetrahydrobiopterin administration. A subset of heart sections from diabetic dams were
pretreated with Nx-nitro-L-arginine methyl ester (L-NAME; 300 lmol/L) or superoxide dismutase (SOD;
100 U/mL) for 30 minutes before dihydroethidium probing. B, Quantification of dihydroethidium
fluorescence signals. C, Representative Western blotting showing eNOS dimer and monomer bands of
E12.5 hearts from control and diabetic dams with and without tetrahydrobiopterin treatment. Denatured
endothelial cell lysate validates the size of the eNOS monomer band. D, Densitometric analysis of eNOS
dimer/monomer ratios. n=5 to 6 hearts per group from 2 to 4 litters. Data are means�SEM and analyzed
using 2-way ANOVA, followed by Bonferroni post hoc test. EC indicates endothelial cell. *P<0.05 vs
untreated control; †P<0.05, ††P<0.01 vs untreated diabetes mellitus.
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7,8-dihydrobiopterin back to tetrahydrobiopterin, respectively.
Both GCH1 and DHFR are sensitive to oxidative stress and NO
signaling.21,47 NO has been shown to stabilize DHFR protein
from ubiquitination and degradation by S-nitrosylation.48

During pregestational diabetes mellitus, GCH1 and DHFR
transcript levels in the fetal heart were downregulated, which
was normalized by sapropterin treatment. Our findings
indicate a possible gene regulatory mechanism governing
DHFR expression. Recent studies show a strong interaction
between eNOS and Notch1, promoting semilunar valve and
OFT development.49 Herein, we show that Notch1 mRNA is
decreased in embryonic hearts from diabetic dams, which is
rescued with sapropterin treatment. Our results indicate a
perturbed NO-Notch1 signaling pathway in the fetal hearts of
diabetic dams. Together, these effects are consistent with the
ability of sapropterin treatment to recouple eNOS and restore
ROS balance in the embryonic heart of diabetic dams. Neuronal
NOS and inducible NOS are dispensable for heart development
because neuronal NOS�/� and inducible NOS�/� mice do not
exhibit any developmental abnormalities of the heart.16

A major noncardiac malformation induced by pregesta-
tional diabetes mellitus is NTD, such as anencephaly,
exencephaly, and spina bifida.50 It has been reported that
25% to 40% of offspring of diabetic dams have NTDs when
the fetuses are examined at E10.5.51,52 To analyze cardiac
malformation, we examined the fetuses at E18.5 and may
have missed most of the NTDs, which are likely absorbed
beyond E10.5. This may be the reason that we only
observed one exencephaly in the present study and a low
incidence of NTDs (4.8%) in our previous study.31 Addition-
ally, tetrahydrobiopterin biosynthesis is important to neural
tube development. Inhibition of GCH1 activity, a rate-

limiting enzyme in the biosynthesis of tetrahydrobiopterin,
interrupts neural tube closure, which can be prevented by
tetrahydrobiopterin treatment in chick embryos.53 Further-
more, GCH1 haplotypes are significantly associated with a
higher risk of NTD in infants.54 It is possible that
sapropterin treatment may prevent NTD induced by preges-
tational diabetes mellitus, a hypothesis that needs to be
tested in future studies. Surprisingly, the GCH1 knockout
mice die at E13.5 because of bradycardia without any
structural anomalies.55 Apart from being a cofactor of
eNOS, tetrahydrobiopterin is also a substrate for aromatic
amino acid hydroxylases.56 Tetrahydrobiopterin treatment at
postnatal day 14 elevated dopamine levels in the brain and
fully restored the loss of tyrosine hydroxylase protein
caused by the tetrahydrobiopterin deficiency in infant
mice,57 indicating an important role of tetrahydrobiopterin
in the dopaminergic function of the brain. The effects of
pregestational diabetes mellitus and sapropterin treatment
on tyrosine hydroxylase expression and dopamine levels in
the fetal brain are beyond the scope of the present
investigation.

In summary, the present study demonstrates that treat-
ment with sapropterin (Kuvan), an orally active synthetic form
of tetrahydrobiopterin, during gestation improves eNOS
coupling, reduces ROS, and increases cell proliferation in
the embryonic heart of offspring of diabetic mothers. Notably,
sapropterin treatment prevents the development of major
CHDs induced by pregestational diabetes mellitus. Saprop-
terin is a US Food and Drug Administration–approved drug to
treat phenylketonuria, a genetic disorder attributable to
mutations of the phenylalanine hydroxylase (PAH) gene,
leading to low levels of phenylalanine hydroxylase.25 Our
study suggests that sapropterin may also have therapeutic
potential in preventing CHDs in offspring of women with
pregestational diabetes mellitus.
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