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Abstract

The frequency of individual genetic mutations conferring drug resistance (DR) to Mycobacterium tuberculosis has not been
studied previously in Central America, the place of origin of many immigrants to the United States. The current gold
standard for detecting multidrug-resistant tuberculosis (MDR-TB) is phenotypic drug susceptibility testing (DST), which is
resource-intensive and slow, leading to increased MDR-TB transmission in the community. We evaluated multiplex allele-
specific polymerase chain reaction (MAS-PCR) as a rapid molecular tool to detect MDR-TB in Panama. Based on DST, 67
MDR-TB and 31 drug-sensitive clinical isolates were identified and cultured from an archived collection. Primers were
designed to target five mutation hotspots that confer resistance to the first-line drugs isoniazid and rifampin, and MAS-PCR
was performed. Whole-genome sequencing confirmed DR mutations identified by MAS-PCR, and provided frequencies of
genetic mutations. DNA sequencing revealed 70.1% of MDR strains to have point mutations at codon 315 of the katG gene,
19.4% within mabA-inhA promoter, and 98.5% at three hotspots within rpoB. MAS-PCR detected each of these mutations,
yielding 82.8% sensitivity and 100% specificity for isoniazid resistance, and 98.4% sensitivity and 100% specificity for
rifampin resistance relative to DST. The frequency of individual DR mutations among MDR strains in Panama parallels that of
other TB-endemic countries. The performance of MAS-PCR suggests that it may be a relatively inexpensive and technically
feasible method for rapid detection of MDR-TB in developing countries.
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Introduction

Tuberculosis (TB) remains a global scourge, causing 8.8 million

new infections and 1.45 million deaths in 2010 [1]. The

emergence of multidrug-resistant TB (MDR-TB), defined as

resistance of Mycobacterium tuberculosis to the first-line drugs

isoniazid (INH) and rifampin (RIF), poses a serious threat to

global TB control. MDR-TB treatment requires second-line drugs,

which are less effective, more expensive, and more toxic [2].

Accordingly, MDR-TB is associated with higher treatment failure

rates, as well as increased transmission and mortality. The World

Health Organization estimated that approximately 650,000 of the

12 million prevalent TB cases in 2010 represented MDR-TB [1].

In Central America, the annual number of confirmed MDR-TB

cases, likely a gross underestimate, ranged from 0–50 per country

in 2008–2010, with the exception of Guatemala, which reported

230 MDR-TB cases in 2009 [1]. In Panama, of the approximately

1800 prevalent TB cases in 2010, 75 underwent drug susceptibility

testing and 10 were confirmed to have MDR-TB [1].

Although the frequency of individual genetic mutations

conferring drug resistance (DR) has been reported for some South

American countries [3,4,5], their frequency has not been studied

in Central America. Central Americans represent the fastest

growing sector of the Latin American population in the U.S. over

the last decade [6], and pose an elevated risk of TB relative to the

U.S.-born population [7]. As particular mutations are associated

with varying degrees of resistance [8], the mutation profile of

MDR-TB strains originating from this region could help guide

therapeutic decisions and aid in developing rapid molecular assays

for diagnosing MDR-TB.

INH resistance mutations are primarily found in katG, encoding

the catalase-peroxidase enzyme responsible for activating INH [9],

inhA, which encodes the molecular target InhA of the activated

drug, and the promoter region of the mabA-inhA operon, resulting
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in InhA overexpression [10]. Mutations in katG and inhA account

for 50–95% and 15–34%, respectively, of INH-resistant clinical

isolates [10]. The substitution S315T comprises the majority of

katG-associated mutations and confers high-level INH resistance

(MIC.5 mg/ml), while the 215CRT mabA-inhA promoter

mutation accounts for the majority of inhA-associated mutations

[10] and confers low-level resistance (MIC,1 mg/ml).

RIF resistance is primarily caused by mutations in rpoB, which

encodes the b-subunit of RNA polymerase targeted by RIF [10].

Approximately 95% of RIF-resistant clinical isolates contain point

mutations clustered in an 81 bp RIF resistance-determining region

(RRDR) between codons 507–533, with the three most common

mutations located at codons 516, 526 and 531 [10]. The frequency

at each codon exhibits substantial geographic variation. For

example, the substitutions H526Y and S531L account for 32%

and 29% of RIF-resistant clinical isolates in the U.S., while the

same mutations represent 12% and 47% of predominantly foreign

RIF-resistant isolates [10].

As MDR-TB is difficult to treat, rapid diagnosis and prevention

of MDR-TB transmission within the community is imperative.

The gold standard to diagnose MDR-TB is culture-based drug

susceptibility testing (DST), which significantly delays diagnosis

given the slow replication time of M. tuberculosis. Due to cost and

the requirements for appropriate laboratory infrastructure and

technical expertise, DST is not routinely performed in resource-

limited settings, but only when DR is suspected based on previous

treatment history, lack of clinical response to the standard first-line

regimen, or documented exposure to MDR-TB patients. Recently,

better understanding of the genetic mechanisms underlying M.

tuberculosis DR and technological advances have stimulated the

development of rapid molecular diagnostics. Multiplex allele-

specific PCR (MAS-PCR) permits simultaneous detection of the

most common INH and RIF resistance-associated genetic

mutations at relatively reduced cost and need for technical

expertise [11].

In this study, we report the frequency of the most common INH

and RIF mutations among 67 archived MDR-TB clinical isolates

from Panama. We also evaluated the ability of the relatively

inexpensive and technically feasible method of MAS-PCR to

detect these mutations.

Results

Drug susceptibility
Of the 98 isolates, 31 were susceptible to INH and RIF, and 67

were MDR (Figure 1). No isolate was monodrug-resistant.

Multiple DR was detected as follows: 25/67 were resistant to

only INH and RIF, 24/67 had additional resistance to strepto-

mycin, and 18/67 were resistant to INH, RIF, streptomycin and

ethambutol.

DNA Sequencing
DNA sequencing detected point mutations in katG codon 315 in

47/67 (70.1%) isolates: 1 isolate contained an S315G

(AGCRGGC) mutation, while 46 isolates had the more common

S315T mutations (45 AGCRACC and 1 AGCRACA). A

215CRT mutation in the mabA-inhA operon was identified in

13/67 (19.4%) strains, and four of these isolates (6.0%) had

mutations at both locations. RIF resistance-associated mutations

were located in the RRDR: 53/67 (79.1%) had S531L mutations,

9/67 (13.4%) had H526D/Y mutations, and 4/67 (6.0%) had

D516F/V mutations. No isolate was mutated at more than one of

these three loci. Together, mutations at these three loci accounted

for 66/67 (98.5%) of RIF-resistant isolates (Figure 2). When

compared to the current gold standard DST in detecting dug

resistance, DNA sequencing of these five loci yielded 83.6%

sensitivity and 100% specificity for INH resistance, and 98.5%

sensitivity and 100% specificity for RIF resistance (Table 1).

As 11/67 INH-resistant isolates lacked mutations at the two loci

mentioned, their DNA sequences were examined for other

potential resistance-conferring mutations. One isolate had a large

deletion that extends into katG, removing the last 320 bases (i.e.,

14.4% of the C-terminal end of the predicted protein); two isolates

had non-sense mutations at codons 198 and 722, which are

predicted to truncate the 740-amino acid KatG; two other isolates

contained both AhpC P44R and KatG D94G mutations; and

finally, one isolate had a large duplication of approximately

500 kb (Rv3177-Rv3573c).

Performance of MAS-PCR
Evaluation of MAS-PCR performance against DNA sequencing

and DST was based on 95 isolates, since insufficient DNA was

available after genomic sequencing for 3 MDR strains. Distinct

banding patterns were obtained for different mutation profiles at

the five targeted loci (Figure 3). When compared to sequencing,

MAS-PCR had 100% sensitivity and specificity in detecting the

common mutations (Table 1). When compared to DST, MAS-

PCR had 82.8% sensitivity and 100% specificity for detecting

common INH resistance mutations, and 98.4% sensitivity and

100% specificity for detecting common RIF resistance mutations

(Table 1). The MAS-PCR results were highly reproducible with

the exception of one isolate, for which the MAS-PCR identified an

RpoB H526D mutation in some technical replicates but failed to

detect this mutation in other replicates, even though the same

mutation was consistently detected by MAS-PCR when present in

other isolates.

Discussion

The current study is the first to report the frequency of

individual genetic mutations associated with DR among MDR-TB

isolates in Central America. It also evaluated the performance

characteristics of MAS-PCR as a rapid molecular assay that may

decrease delays in diagnosis and treatment of MDR-TB.

We found that 70.1% of the INH-resistant isolates had a KatG

S315T/G mutation, and 19.4% had a 215CRT mutation in

mabA-inhA operon, together accounting for 83.6% of INH-resistant

strains in our MDR samples. Our data are concordant with those

of similar studies in diverse geographic regions, which documented

a frequency of 60.4–93.6% for katG codon 315 mutations and 1.8–

50% for mutations in the 215 position of the mabA-inhA operon

[5,12,13,14,15,16,17,18,19,20]. Among Panamanian MDR-TB

isolates, rpoB codon 531 was the most frequently mutated site

(79.1%), consistent with other studies reporting a mutation

frequency ranging from 40.1–82.4% at this site in MDR-TB

isolates from Mexico, Brazil, Cape Town, China, Russia, Korea,

Georgia, Vietnam, India, East Asian countries, and South Africa

[5,12,13,14,15,16,17,18,19,20]; rpoB mutations at codons 516

(6.0%) and 526 (13.4%) accounted for most of the remaining RIF-

resistant strains in our study, similar to what was reported for these

sites (2.9–16.7% and 5.9–40%, respectively). The agreement of

our results with those derived from highly disparate geographical

areas may reflect the international origin of the population of

Panama, which lies on a major maritime trade route and whose

economy depends heavily on international trade.

MAS-PCR showed excellent performance characteristics,

including 100% concordance with DNA sequencing results, as

well as 82.8% and 98.4% sensitivity in detecting INH and RIF

MAS-PCR to Detect MDR-TB in Panama

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e40456



resistance, respectively. Furthermore, since MAS-PCR experi-

ments were performed in triplicate in two separate labs blinded to

the sequencing results, we are confident of the reproducibility of

our assay.

MAS-PCR using the original set of katG primers [11] failed to

detect INH resistance in one isolate containing a S315G mutation

(AGCRGGC), leading us to redesign the katG allele-specific

primer by extending one base at the 39 end in order to detect this

mutation. Importantly, our modification did not decrease the

detection rate for the more common AGCRACC/ACA muta-

tions. Extending this reasoning, we modified the allele-specific

primer at rpoB codon 516 so that RpoB D516E mutations

(previously reported in [21]) could potentially be identified,

although none of our isolates harbored this mutation. Notably,

our modification did not reduce detection of the more common

RpoB D516F/V mutations.

Since RIF monoresistance is rare and .90% of RIF-resistant

M. tuberculosis are also INH-resistant [22], RIF resistance is

commonly used as a surrogate for MDR-TB, including in the

recently developed Xpert MTB/RIF assay [23]. Interestingly,

MAS-PCR detected an RpoB H526D mutation in some, but not

all, technical replicates of one particular isolate, although the

identical mutation was always accurately and consistently detected

in five other isolates. Since MAS-PCR did accurately identify this

mutation in some replicates of the isolate in question, it was

counted as a hit instead of as a miss. However, if we were to

assume that MAS-PCR failed to detect this mutation, our assay

still would have detected 98.4% (62/63) of isolates containing

mutations in rpoB, and would have identified correctly 96.9% (63/

64) of RIF-resistant isolates. It is possible that this isolate

comprised a heterogeneous population of organisms with both

wild-type and mutated alleles in the rpoB gene at codon 526,

leading to amplification of the corresponding wild-type PCR

product. Whole-genome sequencing data also revealed heteroge-

neity for this isolate, since among the 91 reads covering this site,

Figure 1. Flow-chart showing available drug susceptibility testing (DST), sequencing, and multiplex allele-specific PCR (MAS-PCR)
results for the 98 archived isolates from Panama.
doi:10.1371/journal.pone.0040456.g001

Figure 2. Frequency of the five most common INH and RIF resistance mutations among 67 Panamanian MDR-TB isolates.
doi:10.1371/journal.pone.0040456.g002
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only 86% purity was achieved for the nucleotide, much lower than

the 99–100% purity achieved for most of the other nucleotides.

DNA sequencing did not reveal any of the common mutations

in 16.4% and 1.5% of INH-resistant and RIF-resistant isolates.

However, several isolates contained alternative genetic mutations

that might account for INH resistance. Three isolates contained

mutations that were predicted to yield truncated KatG proteins:

one isolate contained a 320 bp deletion at the 39 end of katG (total

length of gene: 2223 bp); two isolates had a non-sense mutation at

katG codons 198 and 722 respectively. The KatG protein C-

terminus has been implicated in enzymatic function [9,24], and a

truncation of the C-terminal 41 amino acids inactivated KatG

[24]. Although INH resistance has been attributed to KatG

truncation [25], the minimum protein length required for INH

activation remains uncharacterized. We postulate that truncation

of the C-terminal 19 amino acids is sufficient to interfere with

subunit-subunit interactions and thus confer INH resistance.

Additionally, two other isolates contained a D94G mutation

within the KatG protein. This mutation has not been associated

with INH resistance except in one report by Gagneux et al.[26], in

which the isolate also contained a 34GRA mutation in the ahpC

promoter. Both isolates here contained both KatG D94G and

AhpC P44R mutations. Although AhpC does not appear to

directly confer INH resistance, as ahpC overexpression in a wild-

type reference strain of M. tuberculosis does not appreciably increase

the MIC of INH, mutations in the ahpC promoter region may

serve as a useful marker for detecting INH resistance [10].

Whether the KatG D94G mutation leads to inactivation of KatG,

and the AhpC P44R mutation compensates for loss of catalase-

peroxidase activity requires further study.

Finally, one isolate has a large genomic duplication of

approximately 500 kb spanning Rv3177-Rv3573c. The duplica-

tion contains the nat gene (Rv3566c), whose product has been

implicated in inactivating INH, and whose increased expression

confers INH resistance [27,28]. The duplication may lead to an

increased expression of nat in this isolate, increasing N-acetyl-

transferase activity and INH inactivation. However, experimental

verification of this hypothesis is required.

Five MDR isolates had no obvious mutation that could account

for INH resistance. One of these also contained no mutation in

katG, inhA and rpoB (except for a synonymous substitution in rpoB),

suggesting the possibility of alternative DR mechanisms.

One of the limitations of our study was its retrospective nature,

which does not allow us to calculate the true prevalence of each

Table 1. Pairwise comparisons of the three drug resistance detection techniques (DST, DNA sequencing, and MAS-PCR) in
detecting INH and RIF resistance.

DNA Sequencing vs. DST (total 98 strains)

DNA Sequencing results DST results Sensitivity Specificity

No. resistant No. susceptible

INH resistance

Detected 56 0 83.6% 100%

Not detected 11 31

RIF resistance

Detected 66 0 98.5% 100%

Not detected 1 31

MAS-PCR vs. DNA Sequencing (total 95 strains)

MAS-PCR results DNA sequencing results Sensitivity Specificity

No. mutated No. wild-type

INH resistance

Detected 53 0 100% 100%

Not detected 0 42

RIF resistance

Detected 63 0 100% 100%

Not detected 0 32

MAS-PCR vs. DST (total 95 strains)

MAS-PCR results DST results Sensitivity Specificity

No. resistant No. susceptible

INH resistance

Detected 53 0 82.8% 100%

Not detected 11 31

RIF resistance

Detected 63 0 98.4% 100%

Not detected 1 31

doi:10.1371/journal.pone.0040456.t001
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resistance mutation among MDR-TB patients in the general

population. However, since the Mycobacteriology Lab at the

Gorgas Institute serves as the only referral lab for DST in Panama,

and since all archived MDR samples were evaluated in this study,

we do not believe there was a selection bias. Because archived

samples were used, MAS-PCR could only be evaluated from

cultured isolates and could not be evaluated directly on patient

sputum samples. Future studies will evaluate the limit of detection

of MDR-TB among clinical isolates and assess the performance of

MAS-PCR directly on sputum samples relative to DST in a

prospective manner.

In conclusion, our study shows that the frequency of individual

genetic mutations associated with INH and RIF resistance among

Panamanian MDR-TB isolates tested closely approximates that of

MDR-TB isolates in other geographic locations. The high

sensitivity and specificity of MAS-PCR in detecting MDR-TB,

along with its low cost relative to other rapid molecular assays and

ease of use make it an attractive alternative for rapid detection of

MDR relative to DST. Further analysis of the available whole-

genome sequences of these archived MDR-TB isolates could

reveal novel mutations associated with INH and RIF resistance, as

well as mutations that confer resistance to pyrazinamide and

second-line drugs. These findings could then be used to further

Figure 3. Distinct band patterns indicate drug resistance profile of isolates. A. Loci where each allele-specific primer binds are indicated,
along with the expected product size if the locus is wild-type. The two common mutations that confer resistance to INH and the three common
mutations that confer resistance to RIF are boxed separately. B. Band patterns indicate drug resistance profile of isolates. Expected PCR products have
been color-coded in the same way as in A. Lane 1: H37Rv reference strain (wild-type at all 5 loci); Lane 2: mabA-inhA 215CRT and RpoB D516F
double mutant; Lane 3: KatG S315T and RpoB H526Y double mutant; Lane 4: KatG S315G and RpoB 531L double mutant; Lane 5: mabA-inhA
215CRT, KatG S315T and RpoB H526D triple mutant; lane 6: mabA-inhA 215CRT, KatG S315T and RpoB S531L triple mutant; Lane 7: Molecular
ladder.
doi:10.1371/journal.pone.0040456.g003

Table 2. Primers for MAS-PCR to detect INH and RIF resistance.

Detection
targets Allele-specific primers (59 – 39) Paired primers PCR product

katG gene (at S315) katG5R ATACGACCTCGATGCCGCT katG0F* GCAGATGGGGCTGATCTACG 293 bp

mabA-inhA:-15 inhAP-15* CACCCCGACAACCTATCG inhAPF2* GCGCGGTCAGTTCCACA 270 bp

rpoB gene (at D516) rpoB516 CAGCTGAGCCAATTCATGGAC RIRm* TTGACCCGCGCGTACAC 218 bp

rpoB gene (at H526) rpoB526* CTGTCGGGGTTGACCCA RIRm* Same as above. 185 bp

rpoB gene (at S531) rpoB531* CACAAGCGCCGACTGTC RIRm* Same as above. 170 bp

*Primers adopted from [11].
doi:10.1371/journal.pone.0040456.t002
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refine the MAS-PCR assay and improve detection of DR in M.

tuberculosis clinical isolates.

Materials and Methods

Ethics statement
This study was approved by the Institutional Review Board of

the Johns Hopkins University School of Medicine and the Comité

Nacional de Bioética of Panama. The study qualified for an

exemption under the DHHS regulations and patient informed

consent was not obtained since archived cultures were used, which

had been de-identified from any clinical source data.

M. tuberculosis isolates
Ninety-eight archived clinical isolates collected between 2002

and 2011 at the Department of Mycobacteriology at ICGES,

Panama, were studied. DST revealed 67 isolates were MDR-TB

and 31 isolates were susceptible to INH and RIF. MAS-PCR was

performed on 95 isolates, as 3 isolates had insufficient genomic

DNA sample remaining after sequencing (Figure 1).

Characterization and drug susceptibility test
Sputum samples were decontaminated using a modified version

of Petroff’s methodology according to the specifications of the Pan-

American Health Organization [29]. Decontaminated samples

were cultured on Lowenstein-Jensen agar, and an AccuProbe

hybridization assay (Gen-Probe) was used to confirm that colonies

represented M. tuberculosis complex. The isolates were further

classified as M. tuberculosis using biochemical assays, including

nitrate reduction, niacin production, and catalase inhibition at

686C [29]. DST was performed on all isolates using Canetti’s

multiple proportions method [29,30] with Lowenstein Jensen

media and the following antibiotic concentrations: 0.2 mg/ml

INH, 40 mg/ml RIF, 4 mg/ml streptomycin, and 2 mg/ml

ethambutol.

Genomic DNA extraction
Genomic DNA from cultured isolates was extracted using the

QIAamp DNA Mini Kit (Qiagen). DNA yield was quantified by

absorbance (A260) using a spectrophotometer (Thermo Fisher

Scientific).

DNA Sequencing
The double-stranded DNA samples were sonicated (Covaris,

Inc) to generate fragments, which were converted into blunt ends

using T4 DNA polymerase and Klenow enzyme. Next, Klenow

Exo was used to extend blunt ends to facilitate ligation to the

adaptors (Illumina TruSeq kit, or NuGen). Ligated DNA was size-

selected on a 2% agarose gel: fragments of 250–350 bp were

excised and recovered with QIAquick Gel Extraction Kit

(Qiagen), and PCR-amplified to produce the final DNA library.

Samples were multiplexed at 6–12 per lane, and 5 pmol of DNA

was loaded onto an additional lane of the sequencing chip for

cluster generation. QX174 DNA served as a control. The

sequencer was operated in paired-end mode, with the reaction

running for enough cycles to generate two reads (51–54 bp each)

and a multiplexing barcode for each fragment. Each tile on the

chip was imaged at different wavelengths to excite the base-specific

fluorophores. Image analysis and base-calling was done with the

Illumina Offline Basecaller software v1.8, which generated 5–10

million reads per sample.

Comparative genome assembly similar to that described in [31]

was performed, using M. tuberculosis H37Rv genome as the

reference sequence. The reads generated for each strain were

mapped against the reference sequence (allowing up to 2

mismatches and no gaps). Paired-end constraints were applied,

requiring both reads of a fragment to map to within 500 bp of

each other. We identified sites where the consensus base from

overlapping reads differed from the expected base in the reference

sequence, and sites where coverage was low or had heterogeneous

bases, before using a contig-building algorithm to construct local

sequences of approximately 200 bp spanning each site to resolve

the sites into single nucleotide polymorphisms or insertion-

deletions.

Multiplex allele-specific PCR (MAS-PCR)
A MAS-PCR assay [11] was adapted to detect the five most

common INH and RIF-associated mutations, which are located at

katG codon 315, mabA-inhA:-15, and rpoB codons 516, 526 and 531

[32,33,34]. Five allele-specific primers and three paired primers

(Table 2) were combined into a single PCR reaction to yield

distinct PCR banding patterns that can accurately detect

mutations confirmed by DNA sequencing. In order to improve

sensitivity, two allele-specific primers were extended by a base

each, placing the most common point mutation at the second base

from the 39 end. If the targeted location is wild-type, the allele-

specific fragment is amplified, yielding a visible band. Conversely,

a mutation at the targeted location prevents allele-specific

amplification. An INH- and RIF-susceptible isolate will yield five

bands (293 bp, 270 bp, 218 bp, 180 bp, and 175 bp), while

mutations at any of the five locations will result in missing bands

(Figure 3).

The reaction mix contained the following primers: rpoB516

(1 pmol), rpoB526 (5 pmol), rpoB531 (32.5 pmol), RIRm

(30 pmol), katgOF (1 pmol), katg5R (1 pmol), inhAP-15 (6 pmol)

and inhAPF (6 pmol). The other reagents were 106PCR reaction

buffer (2.5 ml), 50 mM MgCl2 (2 ml), 10 mM dNTP mixture

(0.5 ml), 5 U/ml Taq Polymerase (0.1 ml), DNA template (20 ng),

and PCR-grade water to obtain a final volume of 25 ml. The

thermocycling parameters consisted of an initial denaturation at

966C for 3 min, 25 cycles of 956C for 50 s, 686C for 40 s, and

726C for 60 s, and a final extension at 726C for 7 min. The PCR

products were examined for banding patterns by 2.5% UltraPure

Agarose (Invitrogen) gel electrophoresis in 16Tris-Borate-EDTA

buffer under UV light.

Evaluation of the MAS-PCR assay
DST, DNA sequencing, MAS-PCR results were compared to

determine how each technique performed in detecting INH and

RIF resistance. Sensitivity and specificity were calculated for each

pairwise comparison. The reproducibility of MAS-PCR was also

evaluated by performing the assay at each institution in triplicate

for each isolate.
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