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Abstract
RNA-protein interactions play essential roles in regulating gene expression. While some

RNA-protein interactions are “specific”, that is, the RNA-binding proteins preferentially bind to

particular RNA sequence or structural motifs, others are “non-RNA specific.” Deciphering the

protein-RNA recognition code is essential for comprehending the functional implications of

these interactions and for developing new therapies for many diseases. Because of the high cost

of experimental determination of protein-RNA interfaces, there is a need for computational

methods to identify RNA-binding residues in proteins. While most of the existing computational

methods for predicting RNA-binding residues in RNA-binding proteins are oblivious to the char-

acteristics of the partner RNA, there is growing interest in methods for partner-specific predic-

tion of RNA binding sites in proteins. In this work, we assess the performance of two recently

published partner-specific protein-RNA interface prediction tools, PS-PRIP, and PRIdictor, along

with our own new tools. Specifically, we introduce a novel metric, RNA-specificity metric (RSM),

for quantifying the RNA-specificity of the RNA binding residues predicted by such tools. Our

results show that the RNA-binding residues predicted by previously published methods are

oblivious to the characteristics of the putative RNA binding partner. Moreover, when evaluated

using partner-agnostic metrics, RNA partner-specific methods are outperformed by the state-

of-the-art partner-agnostic methods. We conjecture that either (a) the protein-RNA complexes

in PDB are not representative of the protein-RNA interactions in nature, or (b) the current

methods for partner-specific prediction of RNA-binding residues in proteins fail to account for

the differences in RNA partner-specific versus partner-agnostic protein-RNA interactions,

or both.
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1 | INTRODUCTION

Protein-RNA interactions play crucial roles in regulating gene

expression.1–4 RNAs function by binding to proteins to form protein-

RNA complexes.5 The large numbers of proteins and RNAs in living

cells constitute complex networks of RNA-protein interactions.3 There

is growing evidence that aberrations or dysregulation of the expres-

sion of RNA-binding proteins (RBPs) are associated with diseases,

including neurodegeneration and cancer.4,6–8 Hence, deciphering the

RNA-protein recognition code is important for understanding the

sequence and structural determinants of the specificity and affinity of

RNA binding sites of RBPs, which is essential both for comprehending

the functional implications of protein-RNA interactions and for devel-

oping new therapeutic strategies for many diseases. Despite theYong Jung and Yasser EL-Manzalawy should be considered co-first authors
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progress in both experimental and computational strategies for under-

standing protein-RNA interactions, the nature of the protein-RNA

recognition code is far from well understood.

While roughly half of all RBPs bind preferentially to a particular

RNA sequence or structural motif, the rest appear to bind RNA in a

“nonspecific” manner.9 Sequence-specific RBPs typically recognize

their RNA binding partners by forming complex binding surfaces that

combine multiple modular RNA-binding motifs or domains (RBDs),10

examples include Cas9,11 Pumilio,12 and zinc finger proteins.13 Non-

specific RBPs include translation elongation and initiation factors, and

proteins involved in RNA degradation.14,15 Recent studies have called

into question the widely used classification of RBPs as specific versus

nonspecific9 and argue for a more nuanced characterization of the

RNA partner-specificity of RNA-protein interactions.

Determining the RNA binding sites, that is, the individual amino

acids (AAs) and ribonucleotides (rNTs) that form protein-RNA inter-

faces, is a necessary step in understanding protein-RNA interactions.

Experimental methods for identifying protein-RNA interfaces include

methods for solving the structures of protein-RNA complexes, for

example, x-ray crystallography,16 nuclear magnetic resonance (NMR)

spectroscopy,17 and individual nucleotide resolution UV crosslinking

and immunoprecipitation (iCLIP).18 However, because biophysical

methods for characterizing protein-RNA interfaces are particularly

challenging,19 there is an increasing reliance on computational

methods, including in particular, statistical machine learning methods,

for predicting RNA-binding sites in RBPs.20–28 Most of the existing

methods for predicting RNA-binding sites of RBPs are partner-

agnostic in that they do not take into account the characteristics of

the putative RNA binding partner.22,29,30 Several recent studies have

shown that the performance of protein-protein interface prediction

can be improved by incorporating information from the interacting

partner protein.31–36 Motivated by the success of such partner-

specific protein-protein interface prediction methods, several

methods for DNA or RNA partner-specific prediction of protein-

DNA/RNA interface residues in DNA-binding proteins (DBPs)/RBPs

have been proposed recently.37–39 However, it is unclear as to

whether predicted DNA/RNA-binding sites are indeed DNA/RNA

partner-specific.

Against this background, we focus on partner-specific protein-

RNA interface prediction methods. We show that the two existing

partner-specific methods, PS-PRIP39 and PRIdictor,38 with publicly

accessible web servers have lower performance compared to some

state-of-the-art partner-agnostic protein-RNA interface prediction

tools. Moreover, we demonstrate, using an independent test set of

24 protein-RNA interacting chains, that the predictions returned by

the “partner-specific” methods are unaffected by changes in the RNA

sequence. We introduce a novel metric, RNA-specificity metric (RSM),

for quantifying the RNA specificity of the protein-RNA interface pre-

dictions. Together with the standard machine learning performance

evaluation metrics, RSM offers a useful metric for assessing and com-

paring RNA partner-specific protein-RNA interface prediction

methods. This study underscores the importance of using appropriate

test sets and evaluation metrics, and sets the bar for future works on

partner-specific prediction of protein-RNA interfaces and by

extension, other types of macromolecular interfaces, complexes and

interactions.

2 | MATERIALS AND METHODS

2.1 | RNA partner-specific protein-RNA interface
predictors

The vast majority of protein-RNA interface prediction methods are

not RNA partner-specific, that is, they are partner-agnostic. Such

methods predict all RNA interface residues in a query protein. Alterna-

tively, RNA partner-specific interface prediction methods (eg, PRIdic-

tor38 and PS-PRIP39) take as input a protein and RNA pair and return

predicted interfaces specific for this interaction (Figure 1).

To the best of our knowledge, there are two sequence-based and

one structure-based RNA partner-specific protein-RNA interface pre-

dictors, PRIdictor,38 PS-PRIP39 and RPI-Bind,40 respectively. Only PRI-

dictor and PS-PRIP are accessible as online web servers. Although

RPI-Bind provides a set of their source codes, it is for the purpose of

reproduction against their own fixed datasets and features. Hence, we

excluded RPI-Bind in our analysis due to the difficulty of testing with

our benchmark dataset.

PRIdictor uses physicochemical properties, rNT and AA composi-

tion of binding partners, positional information, and the interaction

propensities of AA triplets to bind specific rNTs to train and evaluate

an SVM classifier for predicting RNA-binding residues in the given

RBP and the protein-binding residues in the given RNA. The dataset

consisted of 542 protein-RNA complexes (formed by 376 proteins

with 439 RNA binding partners) extracted from the Protein Data Bank

(PDB) in 2013. The dataset was split into a training set (formed by

284 RNA and 246 protein chains) and a test set (formed by 155 RNA

and 130 protein chains) such that similarity between any pair of RNA

sequences from training and test sets is less than 80% (the redun-

dancy cutoff for the protein similarity was unspecified). An rNT

(or AA) involved in at least one of the interactions was classified as a

protein-binding (or RNA-binding) site. PRIdictor consists of four sup-

port vector machine (SVM)41 predictors: (a) RP model for predicting

protein-binding sites in RNA using both protein and RNA sequences;

(b) RaP, a predictor of protein-binding sites in RNA using RNA

sequence alone; (c) PR, a predictor of RNA-binding sites in protein

using protein and RNA sequences; (d) PaR, a predictor of RNA-binding

sites in protein from protein sequence alone.

PS-PRIP39 simultaneously predicts RNA binding residues in the

protein sequence and protein binding rNTs in the RNA sequences

given a pair of interacting protein-RNA sequences. PS-PRIP used a

training set of 1637 interacting protein-RNA pairs, such that each pro-

tein sequence was at least 25 AAs in length and each RNA sequence

was at least 100 rNTs in length, Protein-RNA complexes with resolu-

tion better than 3.5 Å were extracted from PDB in 2015.39 PS-PRIP

makes predictions based on a lookup table of 55 154 protein-RNA

interacting motifs comprising 3275 unique 5-mer protein subse-

quence and 835 unique 5-mer RNA subsequences. A pair of protein

and RNA 5-mer subsequences are considered to be a protein-RNA

interacting motif if they appear in interacting protein-RNA chains and
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have at least one physical contact (< 5 Å) between a heavy atom in

any AA and a heavy atom in any rNT. Given a pair of protein and RNA

sequences, PS-PRIP searches for all protein-RNA interacting motifs. If

a motif is found, then the corresponding AA residues and rNTs in a

query protein-RNA pair are labeled as interfaces.

2.2 | RNA-specificity metrics

Let M be an RNA partner-specific protein-RNA binding site predictor.

In order to quantify the extent to which the RNA-binding residues in

the protein p predicted by M are specific to a putative interacting

RNA partner r, we proceed as follows.

Given a pair (p, r) of putative protein and RNA binding partners,

generate {r0, r1, …, rk} such that r0 corresponds to r, the putative RNA

partner in the complex (p, r) and r1, …, rk correspond to alternative

putative RNA binding partners as follows:

1. If M is an RNA partner-specific protein-RNA interface predictor

that does not utilize RNA structural features, r1, …, rk correspond

to randomly generated RNA sequences of the same length and

rNT composition as r.

2. If M is an RNA partner-specific protein-RNA interface predictor

that utilizes RNA structural features, and the RNA structures

r1, …, rk are obtained from a reference set of nonredundant

RNA structures (specifically, R213, described below, in our

experiments) such that they share the least sequence identity

with target RNA r.

Let Ip0, I
p
1,…, Ipk denote the sets of predicted interface residues of p

with putative RNA partners r0, r1, …, rk (respectively). Here, each such

set Ipj where 0 ≤ j ≤ k is a subset of indices {1, 2, � � �|p|} where |p|

denotes the length of the protein sequence p. RSM is defined as:

RSM M,p, rð Þ¼1
k

Xk
i¼1

g Ip0, I
p
i

� �

where

g Ip0, I
p
i

� � ¼ 1−
2 × Ip0 \ Ipi

�� ��
Ip0
�� �� + Ipi

�� �� if Ip0
�� �� + Ipi

�� �� 6¼ 0

0, otherwise

8><
>:

RSM assesses the partner-specificity of the RNA-binding residues

predicted by an RNA partner-specific protein-RNA interface predictor

M applied to a protein-RNA pair (p, r) by quantifying the changes in

the predicted RNA-binding residues when the RNA is replaced by

another. The RSM score is a real number x in the interval [0, 1] and is

interpreted as the expected percentage of overlap between the pre-

dicted binding sites in p for its RNA binding partner and alternative

potential binding partners is (1 − x) × 100%. For example, if an RNA

partner-specific predictor has an estimated RSM of 0.02 for a query

protein-RNA pair (p, r), then we expect the overlap between the

FIGURE 1 Difference between RNA partner-specific and partner-agnostic interface residue predictors. U1 small nuclear ribonucleoprotein A is

an example of an RNA binding protein with multiple binding sites. Two protein-RNA complexes are used for this illustration (PDB ID: 4 W90,
chains B and C, and 4YB1, chains P and R). A, An RNA partner-specific interface residue predictor takes as input a query protein and one or more
putative RNA partners and return predicted binding site for each RNA separately (highlighted using different colors). B, A partner-agnostic
interface residue predictor takes as input a query protein and returns all predicted RNA interface residues for that protein
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predicted interface of p with r, and different RNAs to be 98%. Loosely

speaking, an RSM score of 0 indicates that predictor is not RNA

partner-specific (ie, the predicted RNA-binding residues of the protein

are unaltered by the changes to the RNA binding partner under con-

sideration) whereas an RSM score of 1 indicates that the predicted

RNA-binding residues are maximally altered by the changes to the

RNA under consideration.

2.3 | Performance evaluation metrics

We evaluated the performance of different methods for predicting

protein-RNA interface residues as well as protein-RNA interfacial

pairs using four standard threshold-dependent metrics: sensitivity (Sn),

specificity (Sp), accuracy (ACC), Matthew's correlation coefficient

(MCC), as defined below42,43:

Sn ¼ TP
TP + FN

Sp ¼ TN
TN + FP

ACC ¼ TP + TN
TP + TN + FP + FN

MCC ¼ TP × TN−FP × FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ × TP + FNð Þ × TN + FPð Þ × TN + FNð Þp

In the case of prediction for RNA-binding residues in proteins, TP

and TN denote correctly predicted interface and non-interface protein

residues (respectively), while FP and FN denotes misclassified non-

interface and interface residues (respectively). In the case of protein-

RNA interfacial pair prediction, TP and TN represent correctly pre-

dicted interacting and noninteracting AA-rNT pairs, whereas FP and

FN represent misclassified noninteracting and interacting AA-rNT

pairs (respectively). We estimate TP, TN, FP, and FN counts for each

protein or protein-RNA pair in the test dataset, yielding the correspond-

ing protein or complex based performance estimates. They provide

estimated performance of the predictor on each protein or complex

tested. The results can then be summarized in a variety of ways,

including average performance over the entire test set. The resulting

protein or complex based performance estimates provide much more

useful measures of performance of binding site predictors than

residue-based estimates, which are obtained from TP, TN, FP, and FN

counts summed over the entire dataset of proteins (or protein-RNA

complexes) in the test dataset.44

We also report two threshold-independent area under curve

(AUC) metrics, area under receiver operating characteristic curve

(AUC [ROC]) and area under concentrated receiver operating charac-

teristic curve (AUC [CROC]). The receiver operating characteristic

(ROC) curve is a two-dimensional plot in which the true positive rate

is plotted against the false positive rate. The area under ROC curve,

AUC [ROC], is a summary statistic of the ROC curve and it is inter-

preted as the probability that a randomly chosen positive sample will

be ranked higher than a randomly chosen negative sample. Therefore,

any AUC [ROC] value higher than 0.5 is considered better than ran-

dom guessing. AUC [ROC] is not very useful when the data are highly

imbalanced.45,46 An alternative metric, called area under concentrated

receiver operating characteristic curve AUC [CROC] has been pro-

posed to assess early retrieval of positive samples.47 In such settings,

the important portion of the ROC curve is magnified by magnification

factor, /, and the area under this magnified curve is reported. In our

experiments, we set / = 7 which sends the point x = 0.1 in the ROC

curve onto x = 0.5. Using / = 7, the AUC [CROC] for a random gues-

sing classifier is 1
/ − e−/

1− e−/ ≈ 1
/ ¼ 0:14.

2.4 | Datasets

We retrieved 1590 protein-RNA complexes and 150 protein-DNA-

RNA complexes from the Protein Data Bank (PDB)48 in September

2015. We then selected protein-RNA pairs using the following cri-

teria: (a) complex resolution better than 3.5 Å; (b) protein sequence

length ranges from 40 to 500 AA residues and RNA sequence length

ranges from 25 to 300 rNTs; (c) the number of interface residues (AAs

as well as rNTs) is ≥3. An interface residue is determined using a cut-

off distance of 5 Å between any two pairs of atoms; (d) any two

protein-RNA pairs have neither their protein chains sharing greater

than 25% sequence identity nor their RNA chains sharing sequence

identity greater than 40%. These selection criteria resulted in a nonre-

dundant dataset of 172 protein-RNA interacting pairs. Then, we split

the dataset into training and test sets based on their release date.

Protein-RNA pairs extracted from complexes deposited into PDB

before January 1, 2014 were used to train our classifiers (PR122) and

the remaining 50 protein-RNA pairs (PR50) served as our independent

test set. Two more test sets, PR24 and PR30, were used in our experi-

ments. PR24 was derived from PR122 and PR50 by excluding protein-

RNA pairs with RNA chains of length less than 100 rNTs. The reason

is that the PS-PRIP server restricts submissions to protein-RNA pairs

with at least 100 rNTs. PR30 was derived from PR50 by excluding

protein-RNA pairs in which the protein sequence might share high

sequence similarity with any protein sequence in PR50. A summary of

the four datasets is provided in Table 1 and the PDB chain IDs for

TABLE 1 Protein-RNA datasets used in this study

Dataset No. interfacial pairs No. non-interfacial pairs No. interfacial residues No. non-interfacial residues

PR122 6429 1 786 901 3328 25 474

PR50 2662 608 602 1391 8664

PR24 1048 406 061 512 2702

PR30 1283 361 984 708 5580

PR122: A dataset for training, which consists of 122 protein-RNA complexes.
PR50: A dataset for independent testing, which consists of 50 protein-RNA complexes.
PR24: A dataset derived from PR122 and PR50 by excluding protein-RNA pairs where RNA length is less than 100 ribonucleotides.
PR30: A dataset derived from PR50 by excluding protein-RNA pairs where the protein sequence shares high sequence similarity (> 25%) with any protein
sequence in PR50.
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interacting protein-RNA pairs in the four datasets are also provided in

Supporting Information Tables S1-S4. Supporting Information Table S5

provides the partitioning of PR122 interacting protein-RNA pairs into

five subsets used for fivefold cross-validation experiments.

In addition to the datasets derived from protein-RNA complexes

in PDB, we assembled a dataset of RNAs to be evaluated as putative

binding partners for proteins to obtain the RSM of RNA binding resi-

due predictors that make use of the structural features of the RNA.

Such a dataset is required because unlike in the case of RNA

sequences, we cannot artificially generate RNA structures to evaluate

as putative alternative binding partners of a protein that is part of

protein-RNA complex in PDB by randomly shuffling an RNA structure

extracted from the bound complex. First, we identified 2495 PDB

structures containing at least one RNA chain, regardless whether it is

bound to a protein. Second, we collected the RNA structures (includ-

ing those extracted from protein-RNA complexes) from this set. Third,

we filtered the resulting set of RNA structures based on criteria identi-

cal to those used to derive the dataset of 172 protein-RNA pairs

described above: (a) the resolution of the corresponding PDB struc-

ture is at least 3.5 Å; (b) RNA sequence length ranges from 25 to

300 rNTs; (c) No RNA structure contain RNA chains that share a

sequence identity greater than 80% with an RNA chain that is part of

another RNA structure included in the dataset. This procedure yielded

a nonredundant dataset of 213 RNAs (R213). It is should be empha-

sized that R213 includes RNA structures extracted from protein-RNA

complexes as well as those that are not bound to any protein, permit-

ting us to obtain relatively unbiased RSM estimates (modulo the cur-

rent coverage of PDB).

2.5 | Feature extraction

Let (p, r) denote a pair of interacting protein (p) and RNA (r) chains

where p = p1, p2, � � �, pn represents the n residues of the protein

sequence and r = r1, r2, � � �, rm represents the m rNTs of the RNA

sequence. We extracted all protein-RNA residue pairs (pi, rj) where i

2 {1, 2, � � �, n} and j 2 {1, 2, � � �, m} and labeled them as either interfa-

cial or non-interfacial AA-rNT pairs. We then extracted sequence-

based features from each such residue pair (pi, rj) from sequence

windows centered at pi and rj over the corresponding protein and

RNA chains, respectively. Using windows of size 15 and 21 for protein

and RNA chains (respectively), we extracted five types of features:

(a) Protein sequence features, (b) Protein structure features, (c) RNA

sequence features, (d) RNA structure feature, and (e) Protein-RNA

interface motif feature, as described below. We also extracted several

structural features of the corresponding protein residues and RNA

nucleotides, also described below.

2.5.1 | Protein sequence features

We used a position-specific scoring matrix (PSSM) to encode each AA

residue within a window. Specifically, we ran PSI-BLAST49 against

NCBI nr database to retrieve the sequence homologs of each protein

sequence using three iterations of PSI-BLAST with an e-value of

0.001. We used the resulting hits to build the PSSM profile of the pro-

tein sequence. Following the procedure used in previous

studies,23,50,51 we normalized the PSSM values to lie in the range [0,1]

using the logistic (also called sigmoid) function. Finally, each residue in

a sequence window was encoded using a 20-element vector that cor-

responds to its normalized PSSM profile. Thus, each AA sequence

window was encoded using 15 × 20 numeric features.

2.5.2 | Protein structure features

Two structural features used for each protein residue were protein

secondary structure codes and the relative accessible surface area

(rASA). Using STRIDE,52 each residue in protein structure was

assigned to one of seven structure category codes; alpha helix, 3-10

helix, PI-helix, extended conformation, isolated bridge, turn, and coil.

We encoded the structure codes with numbers from one to seven as

a feature. The rASA of each residue was calculated using both its sol-

vent accessible area obtained using STRIDE and the known surface

area of the residue.53

2.5.3 | RNA sequence features

We extracted RNA tri-nucleotide composition features54 from RNA

sequence windows consisting of 21 rNTs. Occurrences of all 64 possi-

ble trinucleotides (4 ×4× 4 rNTs, from AAA to UUU) within an RNA

sequence window were counted and used as 64 sequence features.

Also, we added total length of an RNA sequence and the frequency of

the four rNT types in the RNA sequence as features.

2.5.4 | RNA structure feature

We assigned RNA secondary structure codes to rNT using DSSR55

and BEAR encoding56 following the protocol used in the RPI-Bind

method.40 A dot-bracket notation sequence for entire RNA sequence

was obtained using DSSR. Based on the resulting dot-bracket nota-

tion, we assigned a BEAR RNA structure code to each rNT. The 12 dif-

ferent RNA structure BEAR codes we used were: Unpaired, Loop,

Stem, Stem branch, Left internal loop, Left internal loop branch, Right

internal loop, Right internal loop branch, Bulge left, Bulge right, Bulge

left branch, and Bulge right branch. We encoded the RNA structure

BEAR codes with numbers from 1 to 12 as a feature.

2.5.5 | Protein-RNA interface motif feature

Following Muppirala et al.39, we extracted 494 unique protein-RNA

interface motifs from PR122 dataset. Each motif is a pair of interact-

ing AA and rNT 5-mers that includes at least one interfacial protein-

RNA pair. The presence or absence of each of these 494 motifs is

encoded by a corresponding binary feature with a ‘1’ denoting the

presence of the corresponding protein-RNA interface motif, and a ‘0’

denoting its absence within a pair of protein-RNA windows.

Based on the generated feature vectors, we developed two RNA

partner-specific protein-RNA interfacial pairs predictors trained on

PR122, a sequence-based predictor, PSPRInt-Seq and a structure-

based predictor, PSPRInt-Str. For PSPRInt-Seq, we utilized three of

the five feature types: protein sequence features, RNA sequence fea-

tures, and protein-RNA interface motif features. For PSPRInt-Str, we

utilized all five feature types.
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3 | RESULTS

3.1 | How reliable are partner-specific protein-RNA
binding interface prediction methods?

We experimented with a set of widely used features for representing

protein and RNA sequences and structures as well as features for

representing the interactions between an AA residue and an RNA

nucleotide (eg, protein-RNA interaction motifs39). Most of the

sequence features have been used in the two related studies, PS-

PRIP39 and PRIdictor.38 Tables 2 and 3 report the performance of

three machine learning classifiers, random forest (RF)57 with 1000

trees, support vector machine (SVM)41 with the radial basis function

(RBF) kernel (SVM-RBF) and naïve bayes (NB)58 on predicting protein-

RNA interfacial pairs using fivefold cross-validation and independent

test procedures. It is important to note that ignoring the fact that the

PR122 and PR50 datasets have extremely uneven class distribution

(ie, millions or hundreds of thousands of non-interfacial pairs and only

few thousands of interfacial pairs) might lead to inaccurate conclu-

sions. In such a setting, naïve use of the standard metrics such as ACC,

Sn, Sp, AUC can lead to highly misleading conclusions. For example,

because more than 99% of the instances correspond to are non-

interfacial pairs, classifiers that predict every protein-RNA residue pair

as a non-interfacial residue pair can achieve an accuracy exceeding

99%; A classifier that achieves a sensitivity of 0.5 and specificity of

0.9 has a false positive rate (1-specificity) of 0.1 which can be unac-

ceptably high when the dataset contains millions of non-interfacial

residues. The statistics summarized in Table 1 show that in order for

the RF classifier to correctly identify ~2700 interfacial pairs, one must

be willing to tolerate 178 690 false positive predictions; Even AUC

has limitations when the data are unbalanced.45,46 As noted in the

Methods section, AUC [CROC] offers a more useful alternative to

AUC in this setting.47 Hence, the only conclusions that we can draw

from the results in Tables 2 and 3 are that: (a) All three classifiers out-

perform random guessing (recall that a random guessing classifier

would have MCC, AUC [ROC], and AUC [CROC] equal to 0, 0.5, and

0.14 respectively); (b) The RF classifier outperforms NB and SVM-RBF

in terms of MCC, and AUC [CROC] when performance is evaluated

using cross-validation; (c) Evaluations using the PR50 independent

test set show that RF and SVM-RBF achieve comparable performance

and both outperform NB.

The preceding results demonstrate that the performance of pre-

dictors of protein-RNA interfacial residue pairs trained using standard

machine learning algorithms and the sequence-derived features used

in previous studies38,39 leaves much room for improvement. They also

underscore the some of the challenges that need to be addressed, not

the least of which has to do with the extremely uneven class distribu-

tion in datasets commonly used. Based on these results, we decided

to use the RF classifier, PSPRInt-Seq, and PSPRInt-Str, for the rest of

our experiments. Despite its poor performance (based on MCC) in

predicting protein-RNA interfacial residue pairs, it was of interest to

determine whether this classifier can accurately predict the binding

residues in the RBP.

3.2 | From interfacial AA residue-rNT pairs to RNA
binding residues in RBPs

Although it is claimed that PS-PRIP and PRIdictor models predict

interfacial protein-RNA residue pairs, the implemented servers return

predicted interfaces in the RNA and protein sides separately. Both

studies also assessed the performances of the resulting RNA partner-

specific predictors of RNA-binding residues in proteins. In the follow-

ing experiment, we evaluate three methods for converting predicted

interfacial protein-RNA residue pairs into predicted RNA-binding resi-

dues in RBPs. Briefly, for each residue in the RNA-binding protein, we

aggregate the predicted scores for that particular residue paired with

all rNTs in the RNA sequence. This aggregated score is then treated

as the predicted score for that AA residue to be an RNA-binding resi-

due in the protein-RNA complex. We evaluated three different

methods for aggregating the AA residue-rNT scores into a single “per

residue” score: (a) maximum of pair-wise scores; (b) average of all pair-

wise scores; and (c) average of top k pair-wise scores for k = 5,

15, and 25. Tables 4 and 5 show that it is reasonable to use any of

these aggregation methods to map residue-rNT interaction scores

onto RNA-binding residue scores, because no method outperforms

the others using MCC, AUC [ROC], and AUC [CROC], with differences

in any metric (if any) at most 2%. Hence, our final model for RNA

partner-specific predictor of RNA-binding residues in proteins is an

RF trained using the PR122 dataset, and using the maximum of all AA

residue-rNT scores for a specific AA residue as the predicted score

that the residue is an RNA-binding residue within the corresponding

protein-RNA complex. These conversions were applied to both

PSPRInt-Seq and PSPRInt-Str.

TABLE 2 Performance of different classifiers for predicting interfacial amino acid residue-ribonucleotide pairs using fivefold cross-validation and

PR122 dataset

Features Classifier Sn Sp ACC MCC AUC [ROC] AUC [CROC]

Sequence-based RF 0.43 0.91 0.91 0.07 0.77 0.45

SVM-RBF 0.16 0.98 0.98 0.06 0.74 0.39

NB 0.50 0.75 0.75 0.04 0.68 0.34

Structure-based RF 0.47 0.91 0.91 0.08 0.80 0.48

SVM-RBF 0.16 0.98 0.98 0.06 0.75 0.40

NB 0.51 0.76 0.75 0.04 0.69 0.35

Abbreviations: ACC, accuracy; AUC, Area under curve; CROC, concentrated receiver operating characteristic; MCC, Matthew's correlation coefficient; NB,
naïve bayes; RF, random forest; ROC, receiver operating characteristic; Sn, sensitivity; Sp, specificity; SVM-RBF, support vector machine with radial basis
function kernel.
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It should be emphasized that our primary intention here is not

necessarily to develop a novel method for RNA partner-specific pre-

diction of RNA-binding residues in proteins or AA-rNT pairs in the

interface of a protein-RNA complex. Instead, our goal is to implement

baseline sequence-based and structure-based methods to gain

insights into the relative performance of the RNA partner-specific ver-

sus partner-agnostic predictors of protein-RNA interfaces. Specifically,

we systematically evaluated the predictions made by PSPRInt-Seq and

PSPRInt-Str, and the importance of features57 of the learned RF

models implemented in these classifiers to explore the conditions

under which RNA partner-specific and RNA partner-agnostic methods

for protein-RNA interface prediction can provide inaccurate or poten-

tially misleading conclusions about their performance relative to each

other.

3.3 | Comparisons with other RNA partner-agnostic
predictors of RNA-binding residues in proteins

Table 6 compares the performances of PSPRInt-Seq and PSPRInt-Str

with five RNA partner-agnostic predictors of RNA-binding residues in

TABLE 3 Performance of different classifiers for predicting interfacial amino acid residue-ribonucleotide pairs using the PR50 independent

test set

Features Classifier Sn Sp ACC MCC AUC [ROC] AUC [CROC]

Sequence-based RF 0.48 0.91 0.91 0.09 0.80 0.49

SVM-RBF 0.35 0.96 0.96 0.10 0.79 0.48

NB 0.47 0.77 0.77 0.04 0.69 0.30

Structure-based RF 0.52 0.90 0.90 0.09 0.83 0.52

SVM-RBF 0.36 0.96 0.96 0.11 0.81 0.50

NB 0.49 0.76 0.76 0.04 0.69 0.30

Abbreviations: ACC, accuracy; AUC, Area under curve; CROC, concentrated receiver operating characteristic; MCC, Matthew's correlation coefficient; NB,
naïve bayes; RF, random forest; ROC, receiver operating characteristic; Sn, sensitivity; Sp, specificity; SVM-RBF, support vector machine with radial basis
function kernel.

TABLE 4 Performance comparison of different methods for mapping predicted interfacial amino acid residue-ribonucleotide pairs to

RNA-binding residues on protein side using PR50 independent test set

Model Method Sn Sp ACC MCC AUC [ROC] AUC [CROC]

PSPRInt-Seq Max 0.47 0.93 0.87 0.42 0.81 0.42

Average 0.38 0.96 0.88 0.41 0.80 0.41

Average top-5 0.46 0.93 0.87 0.42 0.81 0.42

Average top-15 0.44 0.94 0.87 0.41 0.81 0.42

Average top-25 0.42 0.95 0.87 0.42 0.81 0.42

PSPRInt-Str Max 0.55 0.90 0.85 0.42 0.84 0.44

Average 0.41 0.95 0.88 0.42 0.83 0.43

Average top-5 0.54 0.91 0.86 0.43 0.84 0.44

Average top-15 0.50 0.93 0.87 0.43 0.84 0.44

Average top-25 0.48 0.93 0.87 0.43 0.84 0.43

Abbreviations: ACC, accuracy; AUC, area under curve; CROC, concentrated receiver operating characteristic; MCC, Matthew's correlation coefficient;
ROC, receiver operating characteristic; Sn, sensitivity; Sp, specificity.

TABLE 5 Performance comparison of different methods for mapping predicted interfacial amino acid residue-ribonucleotide pairs to

RNA-binding residues on protein side using PR30 independent test set

Model Method Sn Sp ACC MCC AUC [ROC] AUC [CROC]

PSPRInt-Seq Max 0.25 0.93 0.85 0.21 0.74 0.33

Average 0.18 0.95 0.86 0.19 0.73 0.34

Average top-5 0.23 0.93 0.85 0.20 0.74 0.33

Average top-15 0.21 0.94 0.85 0.19 0.74 0.33

Average top-25 0.21 0.95 0.85 0.19 0.74 0.33

PSPRInt-Str Max 0.38 0.91 0.85 0.27 0.78 0.35

Average 0.24 0.96 0.88 0.26 0.78 0.37

Average top-5 0.36 0.92 0.86 0.28 0.78 0.36

Average top-15 0.32 0.93 0.87 0.28 0.78 0.36

Average top-25 0.30 0.94 0.87 0.26 0.78 0.36

Abbreviations: ACC, accuracy; AUC, area under curve; CROC, concentrated receiver operating characteristic; MCC, Matthew's correlation coefficient;
ROC, receiver operating characteristic; Sn, sensitivity; Sp, specificity.
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proteins20,21,25,26,51 using the PR50 test set. Interestingly, both

PSPRInt-Seq and PSPRInt-Str outperform most of the other methods

based on all performance metrics examined except Sensitivity. More-

over, a substantial improvement in MCC is observed. However, we

note that this comparison is not entirely fair. Although PR50 is nonre-

dundant with respect to the set of interacting protein-RNA pairs in

PR122, our training dataset, PR50, and PR122 need not necessarily

be nonredundant with respect to proteins. Recall that two protein-

RNA pairs are considered redundant if the similarity between the two

protein sequences is greater than 25% and the similarity between the

RNA sequences is greater than 40%. Thus, two protein-RNA pairs that

have the same protein sequence but different RNAs are considered to

be nonredundant. Consequently, a protein belonging to a protein-

RNA pair included in PR50 can have a high degree of sequence simi-

larity with one or more proteins belonging to protein-RNA pairs

included in PR122, as long as the corresponding RNAs have suffi-

ciently dissimilar sequences. If we eliminate redundancy with respect

to both protein and RNA, we end up with the PR30 dataset, a subset

of PR50 which only includes only those protein-RNA pairs containing

proteins with sequence identity no greater than 25% with respect to

any protein belonging to a protein-RNA pair included in PR122.

Table 7 compares the performance of PSPRInt-Seq and PSPRInt-Str

with five web servers that implement partner-agnostic predictors of

RNA-binding residues in proteins using the PR30 dataset. The results

of this comparison, unlike those obtained using the PR50 dataset,

show that PSPRInt-Seq and PSPRInt-Str no longer substantially out-

perform the other prediction methods.

In summary, the results of evaluating the performance of RNA

partner-specific predictors of RNA-binding residues in proteins using

a nonredundant test dataset (PR30, Table 7) contradicts the conclu-

sions from an assessment using a test dataset (PR50, Table 6) that, as

in previously published studies of RNA partner-specific predictors of

RNA binding residues in proteins,38,39 does not ensure that the pro-

teins included in the protein-RNA pairs in the test dataset are nonre-

dundant with respect to those in the training dataset. Hence, we

conjecture that the purported superior performance of RNA partner-

specific methods, which has been attributed to their use of RNA-

derived features, AA-rNT pairs,38 or protein-RNA interfacial motifs39

can be simply explained instead by the redundancy of the proteins

belonging to protein-RNA pairs in the test dataset with respect to

those in the training dataset. We conclude that the performance of

the existing RNA partner-specific predictors of RNA binding residues

in proteins is at best comparable to that of their partner-agnostic

counterparts.

3.4 | Do features of the RNA binding partner
improve PSPRInt predictions?

We proceeded to test whether our RNA partner-specific predictors,

PSPRInt-Seq, and PSPRInt-Str, derive significant performance gains

from the features of the putative RNA partner, relative to their coun-

terparts that do not take into account features of the RNA, that is,

those that use only features derived from the RBP. Specifically, we

conjecture that the added RNA features do not provide enough useful

information to boost the performance of methods such as PSPRInt-

TABLE 6 Performance comparisons of PSPRInt-Seq and PSPRInt-Str with RNA partner-agnostic RNA-binding residue prediction methods using

RBPs in PR50 test set

Method Sn Sp ACC MCC AUC [ROC] AUC [CROC]

PSPRInt-Seq 0.47 0.93 0.87 0.42 0.81 0.42

PSPRInt-Str 0.55 0.90 0.85 0.42 0.84 0.44

RNABindRPlus 0.47 0.94 0.88 0.44 0.83 0.44

FastRNABindR 0.70 0.75 0.74 0.33 0.79 0.39

RNABindR v2.0 0.68 0.71 0.71 0.28 0.77 0.35

BindN+ 0.47 0.85 0.80 0.27 0.75 0.33

RBScore 0.60 0.81 0.78 0.33 0.76 0.33

Results for two RNA partner-specific methods are shown in bold, above the line. All other methods (below the line) are RNA partner-agnostic.
Abbreviations: ACC, accuracy; AUC, area under curve; CROC, concentrated receiver operating characteristic; MCC, Matthew's correlation coefficient;
ROC, receiver operating characteristic; Sn, sensitivity; Sp, specificity.

TABLE 7 Performance comparisons of PSPRInt-Seq and PSPRInt-Str with RNA partner-agnostic RNA-binding residue prediction methods using

RBPs in PR30 test set

Methods Sn Sp ACC MCC AUC [ROC] AUC [CROC]

PSPRInt-Seq 0.25 0.93 0.85 0.21 0.74 0.33

PSPRInt-Str 0.38 0.91 0.85 0.27 0.78 0.35

RNABindRPlus 0.34 0.94 0.88 0.32 0.79 0.40

FastRNABindR 0.58 0.73 0.72 0.25 0.73 0.36

RNABindR v2.0 0.57 0.70 0.70 0.22 0.72 0.35

BindN+ 0.40 0.83 0.78 0.21 0.71 0.30

RBScore 0.50 0.79 0.76 0.27 0.73 0.31

Results for two RNA partner-specific methods are shown in bold, above the line. All other methods (below the line) are RNA partner-agnostic.
Abbreviations: ACC, accuracy; AUC, area under curve; CROC, concentrated receiver operating characteristic; MCC, Matthew's correlation coefficient;
ROC, receiver operating characteristic; Sn, sensitivity; Sp, specificity.
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Seq and PSPRInt-Str, relative to their partner-agnostic counterparts.

To test this conjecture, we examined the feature importance scores57

extracted from the respective RF models. Supporting Information -

Tables S6 and S7 list all the features used to encode data for training

PSPRInt-Seq and PSPRInt-Str, respectively, ordered by their respec-

tive feature importance scores. In the case of PSPRInt-Seq, the top

ranked feature happens to be the AA-rNT interaction motif feature,

followed by the PSSM value of the target AA residue (located at the

center of the 15 AA window) and those of its flanking sequence

neighbors. Surprisingly, RNA trinucleotide features, derived from the

putative RNA partner, are ranked at the bottom of the list. Thus, the

RNA-derived features do not appear to contribute much to the pre-

dictions made by the RF classifier implemented in PSPRInt-Seq. In the

case of PSPRInt-Str, interestingly, the rASA of the target residue is

ranked at the top of the list, with the secondary structure of the RNA

binding partner also appearing among the top ranked features (among

the top 3). This suggests that the structural features of both the pro-

tein and its putative RNA binding partner tend to be informative in

discriminating protein-RNA interfacial residue pairs from non-

interfacial residue pairs. However, surprisingly, incorporating these

structural features did not lead to significant performance gains over

RNA partner-agnostic methods. We note further that the AA-rNT

interaction motif feature and the PSSM values of the AA residues are

still ranked highly, as in the case of PSPRInt-Seq.

3.5 | How sensitive are the RNA partner-specific
predictions of RNA-binding residues in proteins to
changes in the RNA partner?

The preceding approach to assessing the contribution of the RNA fea-

tures used by RNA partner-specific protein-RNA interface predictors is

applicable only when we have access to the internal structure of the

respective predictors (ie, their code, eg, the classification models with

the list of features used and their feature importance scores). Because

PS-PRIP39 and PRIdictor38 are accessible only as online web servers, it

is not possible to use this approach. Hence, we devised a novel

approach to assess the role-played by the RNA-derived features indi-

rectly by quantifying how the predicted interface changes depending

on the putative RNA binding partner. For each protein-RNA interacting

chain in the PR24 test set, we queried each of the four RNA partner-

specific predictors 11 times, once using the actual RNA partner of the

protein and 10 times with its putative RNA binding partner replaced

with its sequence variant (in the case of sequence-based predictors) or

structure variant (in the case of structure based predictors) in order to

compute an RNA-Specificity Metric, RSM, for each predictor (see the

RNA-Specificity Metrics subsection in the Materials and Method

Section for details concerning the choice of the sequence and structure

variants of the putative RNA binding partner). The key intuition here is

that if a predictor is indeed RNA partner-specific, then the predicted

RNA binding residues in the query protein or the predicted protein-

RNA interfacial residue pairs should vary significantly when we replace

the actual RNA binding partner with its sequence or structure variants.

More “RNA partner-specific” predictions should have higher RSM

values (closer to 1), and predictions that are not affected by changing

the RNA partner should have lower RSM values (closer to 0).

Table 8 shows the RSM scores for predictors computed for each

protein-RNA pair in PR24 dataset. PS-PRIP has the highest average

RSM score of 0.138. However, its RSM score is zero for 13 out of the

24 test cases. PRIdictor has the average RSM score of 0.056, with

RSM score of zero for seven cases. The average RSM scores for

PSPRInt-Seq and PSPRInt-Str are 0.050 and 0.069, respectively.

Recall that an RSM score of zero means that in all pair-wise compari-

sons between the predicted interface with the actual RNA binding

partner and predicted interfaces associated with its RNA sequence or

structure variants, the model returns exactly the same predictions (ie,

the prediction is independent of the putative RNA binding partner in

question). The detailed RSM assessing results of PS-PRIP, PRIdictor,

PSPRInt-Seq, and PSPRInt-Str are provided in Supporting

Information Text.

Table 9 compares the performance of RNA partner-specific and

partner-agnostic RNA-binding residue predictors on the PR24 test

set. For a fair comparison, we considered only protein-side predictions

of the RNA partner-specific methods. In the cases of PS-PRIP and

PRIdictor, we used results of their protein-side predictions provided

by the web servers. In the cases of PSPRInt-Seq and PSPRInt-Str, we

used the aggregated prediction scores for single AA residues from the

corresponding residue-rNT pairs (see the From interfacial AA residue-

rNT pairs to RNA binding residues in RBPs subsection in the Results for

details). At the time of the experiments reported in this section, BindN

+26 web server was no longer accessible, so could not be included in

the comparison. Even though ignoring BindN+, PSPRInt-Seq and

PSPRInt-Str (because of the overlap between PR24 and PR122) from

the comparison, we observed that the RNA partner-agnostic predic-

tors substantially outperform their RNA partner-specific counterparts

PS-PRIP and PRIdictor, in terms of MCC.

In summary, results in Tables 8 and 9 show that: (a) the predic-

tions of RNA-binding residues in RBPs produced by PS-PRIP and PRI-

dictor have a low degree of RNA partner-specificity; and (b) the

performance of “RNA partner-specific” predictors in identifying RNA-

binding residues in RBPs is not superior to that of RNA partner-

agnostic predictors.

3.6 | Effect of increasing the size of the test set on
estimated RSM scores

A major limitation in Table 8 results, is that the estimated RSM scores

for the four RNA-specific protein-RNA interface prediction methods

is obtained using only 24 protein-RNA pairs. To address this limitation,

we generated a new test set covering all protein-RNA complexes

deposited in PDB between January 2014 and July 2018. Following

the same data preprocessing procedure described in the Methods

Section, the final dataset (called PR38) consists of 38 nonredundant

protein-RNA pairs and the length of each RNA chain is at least

100 nucleotides. Supporting Information Table S8 reports the RSM

scores for protein-RNA pairs on PR38 dataset estimated for four

RNA-specific protein-RNA interface prediction methods. Interestingly,

the results are in agreement with the results in Table 8 obtained using

the smaller test set. We conclude that the poor RSM scores of all the

methods considered in this study is not an artifact of using a small

test set.
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4 | DISCUSSION

Identifying the individual AAs and rNTs that form interfaces in

protein-RNA complexes is a crucial step in understanding the

mechanisms of recognition in protein-RNA interactions. Computa-

tional approaches, including statistical machine learning methods, for

predicting RNA-binding sites in RBPs20–28 are increasingly valuable

because biophysical characterization of protein-RNA complexes is

TABLE 8 RSM scores for protein-RNA pairs in the PR24 dataset determined for four RNA partner-specific RNA-binding residue prediction

methods

Interacting protein-RNA chain PS-PRIP PRIdictor PSPRInt-Seq PSPRInt-Str

1MFQ_B-1MFQ_A 0.000 0.063 0.053 0.063

1MFQ_C-1MFQ_A 0.000 0.000 0.057 0.037

1NWY_M-1NWY_9 0.288 0.400 0.029 0.000

1U6B_A-1U6B_B 0.000 0.007 0.058 0.055

1VQN_Q-1VQN_9 0.193 0.004 0.114 0.135

1W2B_V-1W2B_9 0.251 0.024 0.073 0.063

2OTJ_D-2OTJ_9 0.070 0.034 0.038 0.029

2ZJR_D-2ZJR_Y 0.206 0.000 0.032 0.058

3DLL_J-3DLL_Z 0.076 0.000 0.038 0.070

3DLL_S-3DLL_Z 0.000 0.114 0.014 0.053

3G71_H-3G71_9 0.129 0.054 0.054 0.053

3G8T_A-3G8T_P 0.000 0.005 0.091 0.116

3HHN_B-3HHN_C 0.000 0.032 0.072 0.056

3I56_N-3I56_9 0.033 0.014 0.057 0.080

3IVK_H-3IVK_M 0.000 0.000 0.047 0.130

3NDB_B-3NDB_M 0.367 0.167 0.070 0.085

3V7E_A-3V7E_C 0.000 0.000 0.029 0.066

4IO9_W-4IO9_Y 0.697 0.132 0.077 0.062

4LCK_A-4LCK_C 0.000 0.000 0.003 0.032

4P3E_B-4P3E_A 0.000 0.108 0.038 0.033

4P3E_C-4P3E_A 0.000 0.000 0.047 0.089

4UYJ_D-4UYJ_S 1.000 0.074 0.024 0.125

4UYK_A-4UYK_R 0.000 0.083 0.055 0.093

4W90_B-4W90_C 0.000 0.017 0.033 0.082

Average 0.138 0.056 0.050 0.069

STDEV 0.248 0.088 0.025 0.034

Abbreviation: STDEV, standard deviation.

TABLE 9 Performance comparisons of RNA partner-specific RNA-binding residue predictors with RNA partner-agnostic RNA-binding residue

predictors using RBPs in PR24 test set

Methods Sn Sp ACC MCC AUC [ROC] AUC [CROC]

PSPRInt-Seq 0.90 0.91 0.90 0.69 0.97 0.57

PSPRInt-Str 0.90 0.89 0.88 0.66 0.97 0.57

PRIdictor 0.17 0.97 0.84 0.18 NA NA

PS-PRIP 0.21 0.92 0.78 0.10 NA NA

RNABindRPlus 0.79 0.81 0.80 0.54 0.88 0.36

FastRNABindR 0.85 0.57 0.62 0.35 0.80 0.33

RNABindR v2.0 0.83 0.54 0.58 0.30 0.74 0.29

BindN+ NA NA NA NA NA NA

RBScore 0.7 0.75 0.74 0.40 0.79 0.37

Results for two RNA partner-specific methods are shown in bold, above the line. All other methods (below the line) are RNA partner-agnostic.
Abbreviations: ACC, accuracy; AUC, area under curve; CROC, concentrated receiver operating characteristic; MCC, Matthew's correlation coefficient;
ROC, receiver operating characteristic; Sn, sensitivity; Sp, specificity.
NA AUC results because corresponding methods return only predicted binary labels. NA results for BindN+ because the server was no longer accessible at
the time of running this experiment.
The performance metric for PSPRInt-Seq and PSPRInt-Str assessed using the PR24 dataset should be interpreted with caution because PR24 is derived in
part from PR122 (dataset used to train PSPRInt-Seq and PSPRInt-Str) and PR50. Therefore, PR24 is not an independent test set for the PSPRInts and the
superior performance of the PSPRInts here may be due to the 19 protein-RNA pairs that they have in common.
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difficult.19 Most existing methods for predicting RNA-binding residues

in RBPs use only the sequence and/or structural features of the RBP,

without considering the sequence or structure of its putative RNA

partner(s) even though RBPs such as Cas9 proteins,11 Pumilio12 and

zinc finger proteins13 are known to contain modular RNA-binding

motifs or domains that recognize specific RNA sequence and/or struc-

tural features of their binding partners10; Base-specific hydrogen

bonding,59 electrostatic interactions, and geometric factors influence

binding specificity.60 Reliable computational tools for predicting RNA

binding residues in RBPs can both complement and help narrow the

focus of biophysical and molecular genetic methods for identifying

features critical for recognition in protein-RNA interactions.

In this study, we have focused on computational methods for

RNA partner-specific prediction of RNA-binding residues or protein-

RNA interfacial pairs in RBPs. We rigorously assessed the extent to

which existing methods for RNA partner-specific prediction of RNA-

binding residues in RBPs37–39 are indeed RNA partner-specific. We

devised a novel metric, the RSM, for quantifying the RNA partner-

specificity of the RNA-binding residues predicted by such tools. Our

results show that the RNA-binding residues predicted by these

methods are, in fact, almost oblivious to the characteristics of the

putative RNA binding partner. Moreover, when evaluated using RNA

partner-agnostic metrics, RNA partner-specific methods are outper-

formed by the state-of-the-art partner-agnostic methods. Our results

underscore the importance of rigorously assessing the presumed RNA

partner-specificity of protein-RNA interface predictors. The impor-

tance of ensuring that the training and test data are nonredundant

cannot be overstated. Our results also highlight the importance of

“looking under the hood” of black-box predictive models trained using

machine learning to carefully examine the presumed contribution of

RNA-derived features (as well as other features) in the resulting pre-

dictions.61 To facilitate the interpretation of black-box predictions, it

is essential to employ machine learning algorithms that produce inter-

pretable models and provide information regarding which features

contribute most to the accurate predictions.

Partner-specific protein-RNA interface prediction methods are

designed to predict pairs of contacting AAs and rNTs, that is, residues

on both sides of the interface. In this study, we focused only on pre-

dicting residues on the protein side for two reasons: (a) the reported

performance of PRIdictor and PS-PRIP on predicting rNTs on the RNA

side of the interface is very poor (MCC of 0.19 and 0.13 for PRIdictor

and PS-PRIP, respectively); (b) the lack of existing tools that effec-

tively use RNA sequence or structural information for predicting inter-

faces. We note, however, that the RNA-specificity metric introduced

here could be easily adapted to assess the protein partner-specificity

of the predicted protein-binding rNTs.

It is worth noting that most of the available structures of protein-

RNA complexes in the PDB have been solved for proteins with high

affinity for their bound RNA partner(s).62 Furthermore, ribosomal

RNA structures are greatly overrepresented among the protein-RNA

complexes in PDB, making up almost 50% of the total. At present, it is

unclear which among the RBPs represented in protein-RNA com-

plexes in the PDB,61 or even what fraction of them, are RNA partner-

specific.63

Recent advances in high throughput techniques for characterizing

protein-RNA complexes have provided unprecedented opportunities

to identify partners and the interfaces in protein-RNA complexes

in vivo.64,65 In addition, it is now possible to estimate binding affinities

for a large number of possible sequence variants for most RBPs

in vitro, and to derive binding models.9,66 Affinity distributions

obtained from such experiments can provide an unbiased picture of

protein binding to unstructured RNA or to specific RNA structures.

Although it is believed that roughly half of all RBPs, and hence half of

the corresponding protein-RNA interactions, are highly sequence-

specific,9,11 affinity distributions of RBPs measured in vitro and RNA

binding patterns of numerous RBPs measured in vivo have called into

question the classification of RBPs as “specific” versus “nonspeci-

fic”.9,66 For example, some proteins, for example, the C5 subunit of

RNase P, can display both specific and nonspecific binding modes.9

Studies that map RNA-protein interactions on a transcriptome-wide

scale have shown that certain RBPs often bind to RNA sites that vary

considerably in sequence and/or structure.67 Additional sources of

complication include potential cooperative interactions among RNA

binding motifs and domains, the kinetics of the reactions that precede

and follow binding, the presence of non-Watson-Crick base pairing in

“loop” regions and the other tertiary interactions in RNA,68–70 the

diversity, complexity, and flexibility of the secondary structures

formed by RNA,71–73 the fact most RNAs exist as an ensemble of ter-

tiary structures in solution,74,75 and results showing that the RNA-

binding sites of many RBPs correspond to intrinsic disordered regions

(IDRs) in the unbound proteins.76 Taken together, these findings argue

for a more nuanced characterization of the “specificity” of RBPs and

protein-RNA interactions.

In light of the preceding discussion, it is probably safe to conclude

that the defining characteristics of RNA partner-specificity in protein-

RNA interactions are largely not understood. Where does this leave

current attempt to develop tools for predicting RNA-binding sites in

proteins or protein-binding sites in RNA, which are bound by specific

proteins and vice versa?

One possible direction is to leverage the known RNA-binding

domains and motifs of RNA-binding proteins to help improve the per-

formance of RNA partner-specific predictors of RNA-binding residues

in RBPs.77–80 Intrinsically disordered regions (IDRs) that connect mul-

tiple domains in RBPs may play a critical role in mediating the RNA

sequence specificity of the interaction.81 Recently, IDR have been

successfully used for predicting RNA and DNA-binding proteins on a

large scale.82 This finding, together with the availability of increasing

number of computational tools for predicting IDRs from protein

sequence,83–85 suggests a promising direction for developing

improved protein-RNA binding site prediction models that incorporate

information derived from IDRs. Another promising direction is to

leverage high throughput data from protein-RNA binding assays and

affinity distributions, to generate the RNA binding models for

RBPs.6,86,87 It should also be possible to incorporate a more nuanced

notion of RNA partner-specificity into the training of RNA-binding

residues in RBPs. A third promising direction is to leverage RNA bind-

ing models for RBPs with structures of protein-RNA complexes to

improve the reliability of computational predictions of protein-RNA

interfaces, interactions, and complexes (eg, using protein-RNA
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docking88–92 or template-based modeling93,94). It is also of interest to

consider complexes formed by proteins with one or more other RNA,

DNA, or protein partners because several RBPs bind not only to RNA

but also to other macromolecules. Finally, because many proteins can

bind to different classes of RNAs (eg, miRNA and mRNA)95 and RBPs

can be predicted more accurately for some RNA types (eg, rRNA96)

than others, exploring the relationship between RNA functional types

and RNA partner-specificity in protein-RNA interactions is another

interesting research direction.

5 | CONCLUSIONS

In this study, we analyzed several aspects in developing RNA partner-

specific protein-RNA interface prediction tools. We conducted experi-

ments to: (a) demonstrate how challenging the problem is; (b) analyze

the effect of different aggregation methods in mapping RNA partner-

specific predictions into partner-agnostic predictions on the protein

side of the interface; (c) highlight inaccurate interpretations of results

that might lead to misleading conclusions and claims in that area. We

also evaluated the performance of the two existing interface predic-

tion methods, PS-PRIP and PRIdictor, which are publically available

through online web servers. In addition to widely used standard per-

formance evaluation metrics, we employed a novel metric the RNA-

Specificity Metric (RSM), for evaluating how much prediction results

depend on the sequence or structure of the partner RNA. Our results

revealed that the predictive performance of RNA partner-specific

methods is no better than that of partner-agnostic methods, and that

predictions of the existing “partner-specific” methods are actually

oblivious to the partner RNAs. Our results highlight the importance of

taking steps to eliminate redundancy between training and test data-

sets and of determining which features actually contribute to the

accuracy of machine learning-based predictors. Failure to do so can

lead to inaccurate interpretations of results and misleading conclu-

sions. RSM is a threshold-dependent metric, as are accuracy, sensitiv-

ity, and specificity. Therefore, it can be sensitive to choice of the

threshold used to assign binary labels. Our ongoing work aims to

develop a novel RSM score that is threshold-independent (ie, could be

estimated directly from predicted probabilities as opposed to pre-

dicted interface/non-interface labels). Our future work also aims to

adapt an RSM-like metric for partner-specific protein-protein inter-

face residue prediction and assessing the sensitivity of existing tools

to changes in the putative interacting partner. We believe that this

work identifies important factors to be considered in developing

partner-specific protein-RNA interface prediction methods and by

extension, partner-specific methods for predicting protein-protein,

protein-DNA and other types of macromolecular interfaces, com-

plexes, and interactions.
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