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Tumor-specific CD8+T cells are exposed to persistent antigenic stimulation which induces a
dysfunctional state called “exhaustion.” Though functioning to limit damage caused by
immune response, T cell exhaustion leads to attenuated effector function whereby cytotoxic
CD8+T cells fail to control tumor progression in the late stage. This pathway is a dynamic
process from activation to “progenitor exhaustion” through to “terminally exhaustion” with
distinct properties. With the rapid development of immunotherapy via enhancing T cell
function, new studies are dissecting the mechanisms and identifying specific biomarkers of
dynamic differentiation during the process of exhaustion. Further, although immune
checkpoint inhibitors (ICIs) have achieved great success in clinical practice, most patients
still show limited efficacy to ICIs. The expansion and differentiation of progenitor exhausted T
cells explained the success of ICIs while the depletion of the progenitor T cell pool and the
transient effector function of terminally exhausted T cells accounted for the failure of immune
monotherapy in the context of exorbitant tumor burden. Thus, combination strategies are
urgent to be utilized based on the reduction of tumor burden or the expansion of the
progenitor T cell pool. In this review, we aim to introduce the concept of homeostasis of the
activated and exhausted status of CD8+T cells in the tumor immune microenvironment, and
present recent findings on dynamic differentiation process during T cell exhaustion and the
implications for combination strategies in immune therapy.
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INTRODUCTION

Cytotoxic CD8+T cells (CTLs) are a major population of immune cells that control and clear tumor
cells. CTLs need to be primed and activated first, and then hone to tumor site to induce an efficient
immune response (1). However, due to immunotolerance and immunosuppression mechanisms,
these T cells are often sub-optimally primed and differentiate into a dysfunctional state called
org February 2021 | Volume 11 | Article 6225091
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“exhaustion,” thus failing to control tumor growth, leading to
tumor progression. Multiple extrinsic and intrinsic factors have
been put forward to account for the possible mechanisms, among
which co-inhibitory receptors are thought to be one of the major
mechanisms impairing T cell effector function (2).

In the past decade, novel checkpoint blockades have made a
great breakthrough in treating multiple solid cancers. Antibodies
targeting inhibitory receptors including cytotoxic T lymphocyte-
associated Antigen 4 (CTLA-4) and programmed cell death 1
(PD-1) successfully relieve inhibition and enhance T cell effector
function, leading to improved clinical efficacy in treating several
solid tumors (3), including advanced melanoma, non-small-cell
lung cancer, renal cell carcinoma and metastatic bladder cancer
(4). Despite its great clinical success, most patients do not
experience complete response. Patients who do not respond to
initial PD-1/PD-L1 blockade are referred to as having “primary
resistance” to therapy (5). Furthermore, a growing subset of
patients develop “acquired resistance” to immunotherapy, which
is defined as a clinical scenario whereby a cancer initially
responds to immunotherapy, but after a period of time,
relapses and progresses (5). In clinical practice of using
immune checkpoint blockade, most patients still show limited
efficacy with either a poor response or a transient reinvigoration
soon to be resistant, necessitating the understandings of
mechanisms of resistance and exploring corresponding
strategies to overcome the resistance.

In this review, we aim to introduce new understandings of
inhibitory receptors beyond exhaustion, providing new insights
into checkpoint blockades treatment. Further, we highlight the
dynamic differentiation during T cell exhaustion and discuss the
implications for combination strategies in immune therapy.
HOMEOSTASIS OF THE ACTIVATED
AND EXHAUSTED STATUS OF CD8+

T CELLS IN THE TUMOR IMMUNE
MICROENVIRONMENT

T Cell Exhaustion in the Tumor
Microenvironment Is a Special
Hyporesponsive State
When naïve CD8+ T cells encounter antigen during an acute
infection, they are activated and then differentiate into cytotoxic
effector T cells that control and even clear the pathogen/antigen.
Once the pathogen/antigen has been eliminated, most effector T
cells undergo apoptosis while a minority survive and differentiate
into memory T cells which function as a back up to fight against
subsequent infection (6, 7). However, in face of persistent antigen
stimulation in chronic virus infections or tumors, T cell
differentiation is found to derail toward a special hyporesponsive
state namely “exhaustion.”

T cell exhaustion is defined as progressive loss of effector
function (loss of IL-2, TNF-a, and IFN-g production) and
sustained expression of inhibitory receptors such as PD-1, T
cell immunoglobulin domain, and mucin domain-containing
Frontiers in Immunology | www.frontiersin.org 2
protein 3 (Tim-3), CTLA-4, lymphocyte-activation gene 3
(LAG-3), and CD160 with a transcriptional program distinct
from functional effector or memory T cells (6). Tolerance, anergy
and exhaustion are several terminologies used to describe
hyporesponsive T cells. Tolerance refers to the main
mechanism to prevent autoimmunity by central/peripheral
inactivation of self-reactive T cells (7, 8). Anergy describes
incompletely activated T cells with absent co-stimulatory
signals and/or high co-inhibitory stimulation (9, 10). Among
those, exhaustion was especially put forward as a term to describe
a functional but hyporesponsive state having undergone initial
activation in the context of chronic infection or tumor,
distinguishing it from tolerance and anergy.

Exhaustion was observed in a chronic infection model of
lymphocytic choriomeningitis virus (LCMV) strain clone 13 and
later demonstrated in a tumor microenvironment (11, 12). In
chronic viral infection, virus-specific T cells initially acquire
effector function, and driven by chronic viral antigen
stimulation, progressively lose effector function in a
hierarchical manner firstly through loss of proliferative ability
and IL-2 production, then loss of TNF-a production and finally
loss of IFN-g production (13). Duration of activation impacts the
ability of CD8+T cells to secrete pro-inflammatory cytokines and
elaborate cytotoxic function (2, 14). Though sharing common
features in reduced immune function, exhausted T cells in the
tumor microenvironment are distinct from those in a chronic
infection (15).

Tumorigenesis is a long-term process during which
interactions between tumor cells and immune system remodel
the tumor microenvironment and change differentiation of
CD8+T cells. The progressive loss of T cell function in cancer
is mainly impeded by three stumbling blocks (16). Firstly, during
thymic maturation, partial tumor-specific T cells are depleted
because many tumor cells display self-antigens and self-tolerance
mechanisms negatively select them. Due to a “leaky” immune
tolerance mechanism, considerable numbers of self/tumor-
specific T cells still survive with low affinity for antigen
recognition as compared to virus-specific T cells (15, 16).
Moreover, antigen-presenting cells (APCs) are weakly activated
due to a lack of innate stimulators in the special non-
inflammatory context, resulting in the suboptimal activation of
tumor-specific T cells (17). The remaining stumbling block is the
induction and maintenance of T cell hyporesponsiveness by the
special immunosuppressive tumor microenvironment (TME).
Cancer immunoediting describes the dual host-protective and
tumor-promoting roles of immunity (18). While the immune
system eliminates tumor cells as immune surveillance, tumor
cells also recruit immunosuppressive cells and secrete related
inhibitory factors to generate the immunosuppressive tumor
environment and persistently suppress T cell immune function
with increasing tumor development (19).

Thus, despite the fact that CD8+ cytotoxic T cells play a pivotal
role in eliminating tumor cells, they often differentiate into an
exhaustion state and fail to control tumor progression in the late
stage.While sharing some common features with exhausted T cells in
chronic viral infection, tumor-specific exhausted T cells display
February 2021 | Volume 11 | Article 622509
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distinct properties due to immunotolerance and immunosuppression
mechanisms and effective methods to reinvigorate them will
significantly impact the progression of tumor.

Molecular Signatures of Activation
and Exhaustion Are Intertwined

T cell exhaustion arises in the face of persistent T cell activation
which may explain that surface markers and transcriptional
signatures of exhausted T cells are intertwined with activated T
cells (20). Both exhausted and activated CD8+ T cells up-regulate
genes related to cell cycle activation, T cell homing and co-
inhibitory receptors which down-regulate memory related genes
(21, 22). However, as exhaustion results in the failure to control
the tumor in the late stage, specific markers for exhaustion are
demanding to be identified as target sites to specifically reverse
dysfunctional T cells.

Inhibitory receptors are hallmarks of dysfunctional CD8+T
cell which are upregulated on naïve T cells undergoing activation
and differentiation (23). The breakthrough in immune
checkpoint blockade therapy (ICB) has raised great attention
in identifying the underlying inhibitory receptors and their
clinical significance. It is well acknowledged that multiple and
high expression of inhibitory receptors such as PD-1, Tim-3,
CTLA-4, LAG-3, T cell immunoreceptor with immunoglobulin,
and ITIM domains (TIGIT), B and T lymphocyte attenuator
(BTLA), 2B4 and CD160 are highly associated with the severity
of the dysfunction phenotype (2). There are several mechanisms
accounting for dampening T cell activation and leading to the
dysfunction, including blocking downstream co-stimulatory
signals, restraining metabolic changes, interfering the
proliferation or suppressing inflammatory factors (24).
However, in recent years the implication of inhibitory
receptors is thought to be more than exhaustion (25).

In a “tide model,” the expression of co-signaling molecules
including co-inhibitory receptors and co-stimulatory receptors is
differentially and tightly regulated by signals involved in T cell
activation and differentiation, where inhibitory receptors are up-
regulated in order to counterbalance co-stimulatory signals
following the peak of activation (26). With a primary signal to
initiate immune response, stimulatory and inhibitory signals
follow to cooperate to induce an inflammatory response and
limit damage to the surrounding tissue. Thus, inhibitory
receptors are also found upregulated even in physiological
immune process and function as a mechanism to balance
activity of immune cells and ensure immune homeostasis (14).
For instance, it was previously thought that PD-1 regulates T cell
dysfunction in chronic infection and tumor control whereby PD-
1hi cells exhibit an intense exhausted gene signature (27).
However, PD-1hi CD8+ T cells in healthy humans are not
significantly correlated with the PD-1hi exhausted gene
signatures of LCMV-specific CD8+T cells from mice, while
PD-1 expression does not directly affect cytokines secretion of
CD8+T cells (28). PD-1 was found to be upregulated in recently
activated effector cells (22). Further, PD-1+CD8+ T cells in
peripheral blood mononuclear cells (PBMC) of melanoma
Frontiers in Immunology | www.frontiersin.org 3
patients are also found not to be necessarily functionally
impaired (29). Moreover, the absence of PD-1 does not reverse
T cell dysfunction but conversely promotes accumulation of
terminally exhausted T cells during tumorigenesis (30).

The overlap of inhibitory receptors between dysfunction and
activation thus complicates the identification and development
of effective targeted therapies. An activation-dependent
exhaustion program whereby exhaustion of gene expression is
highly correlated with the expression of both cytotoxicity
markers and T cell activation states (22, 25, 31), and thus
expression of coinhibitory receptors may not be sufficient to
distinguish T cell activation from exhaustion. Consequently, it is
challenging to discover specific markers indicative of the
dysfunctional T cell state. Recently, a pattern of chromatin
accessibility enriched for consensus motifs for Nr4a and NFAT
transcription factors was specifically associated with T-cell
exhaustion (32). The overexpression of Nr4a1 was found to
inhibit the differentiation of effector T cell but induce T cell
tolerance (33). At the meanwhile, depletion of Nr4a transcription
factors reversed the dysfunctional state of T cells (33, 34). These
studies imply that Nr4a transcription factors induce the
differentiation of exhausted T cells while inhibit the effector
function. Driven by chronic T cell receptor stimulation and
NFAT activation, expression of the nuclear factor TOX is
upregulated in dysfunctional T cells (35). However, Tox-
deleted TST cells remained dysfunctional without upregulation
of inhibitory receptors (such as PD-1, CD39, Tim-3, 2B4, and
TIGIT) and failed to persist in tumors (35). Hence, TOX-
induced gene regulation of inhibitory receptors and other
exhaustion-associated molecules may function to prevent
overstimulation and activation-induced cell death (35). In
addition, enrichment of a gene model containing Tox
distinguishes progenitor exhausted CD8+ T cells (as outlined
below) in chronic infections from memory precursor cells (36).
TOX deficiency leads to loss of progenitor-like CD8+ T cells and
reduces persistent resistance to pathogen of (36, 37). This finding
suggests that TOX may drive T cells differentiation toward
progenitor-like CD8+ T cells and the absence of TOX results in
reduced capacity to generate exhausted T cells and thus the
failure of a persistent immune response.

Furthermore, by using single-cell RNA-seq, activation and
dysfunction gene modules can be separated at the single-cell level
(20). Intracellular metallothioneins (MT1 and MT2) that
regulates zinc metabolism was found highly enriched in
dysfunctional CD8+ tumor-infiltrating T cells (TILs) at the
same time as targeted deletion of metallothioneins reversed T
cell dysfunction and controlled tumor growth without reduction
of expression of co-inhibitory receptors (20). It reinforces the
concept that co-inhibitory receptors may play a significant role
in an activation-associated transcriptional program, but differs
from the program driving dysfunction in CD8+ T cells. By
analyzing the RNA profiles of TILs from wildtype and MT1/2
deficient mice, a separate ranking of genes by their association
with activated and dysfunctional T cell phenotypes was obtained
to define four separate modules including: (1) activation (but no
dysfunction), (2) dysfunction (but no activation), (3) activation
February 2021 | Volume 11 | Article 622509
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and dysfunction and (4) neither (a “naïve/memory-like”module)
(20). It provides us with a new gene model that is expressed
specifically in dysfunctional T cells but not in activated T cells to
develop targeted therapy specific for the dysfunctional T
cell state.

To fulfill the effective anti-cancer immune response, a series of
stepwise events named as “the Cancer-Immunity Cycle” must be
fulfilled at every point (1). The Cancer-immunity Cycle consists of
several steps. First of all, encountering antigens on activated
dendritic cells result in the priming and activation of CD8+ T cells
resulting in expansion and differentiation into cytotoxic T cell
(CTLs). These CTLs then circulate in vivo, extravasate at
inflammatory sites, penetrate into the tumor tissues and finally
recognize and kill tumor cells (1, 38). And any conditions that
forestall this process at any step can lead to the failure of immune
response. The goal of cancer immunotherapy is to initiate or
reinitiate a self-sustaining cycle of cancer-immunity with
restrained autoimmune inflammatory responses. Though the
development of immune checkpoint blockades has achieved great
success in cancer therapy, the perturbation to immune exhaustion
can provoke inappropriate autoimmune reactions in multiple
tissues including the skin, intestine, liver and lung (39). The most
common autoimmune-like immune-related adverse events (irAEs)
after checkpoint blockades are dermatologic (47%–65%), colitis
(30%–48%), hepatitis (5%–30%), and/or endocrine (5%–10%)with
different grades of severity (40).While our current therapy strategy
mainly focuses on blocking the inhibition signals to improve
effector function, these hyperfunctional T cells induce severe
autoimmune damage. Although multiple inhibitory receptors
have been investigated to identify T cell exhaustion (2), molecular
markers and transcriptional signatures identifying bona fide
dysfunctional T cells is still lacking. Thus, there is an urgent need
to identify novel tumor-restricted receptors that specifically
targe tumor cells, while avoiding or limiting responses in
the periphery.

Tumor-specific CD8+T cells have imprinted characteristics of
exhaustion in pre-malignant or early-malignant period of
tumorigenesis (41). Moreover, the selection of immunotherapy
targets should also take into account adverse effect in normal or
peripheral tissues to limit autoimmune-related immunopathology.
T Cell Exhaustion Is Not a Fixed State
Whereby Progenitor Exhausted T Cells
Give Rise to Terminally Exhausted T Cells
Exhaustion has recently been identified as a dynamic process
from “progenitor exhaustion” to “terminally exhaustion” during
the process of chronic infection or cancer (42–45). (Figure 1)
Several studies have been carried out to further recognize
properties and related mechanisms of exhausted T cells.

During chronic LCMV infection, aPD-L1 blockade is found
to selectively function on heterogenous exhausted T cells (46).
While one subset that expresses intermediate levels of PD-1 and
high levels of CD44 is reversed by aPD-L1 blockade, the other
with high levels of PD-1 and intermediate levels of CD44
remains unresponsive (46). Using ATAC-seq in the LCMV
Frontiers in Immunology | www.frontiersin.org 4
viral model, some open chromatin regions are found to be
“locked in” to a state unreversed upon immune checkpoint
blockade thereby limiting efficacy (47). By analyzing the
molecular and transcriptional characteristics of exhausted T
cells, two distinct subsets of virus-specific exhausted T cells are
found to cooperate to control chronic infection (48). Of interest
here, this phenomenon is also found during tumorigenesis after
the discovery in chronic infection (41, 49). Among exhausted
CD8+ T cells in chronic infection or tumor microenvironment, a
small population of the progenitor exhausted T cells retain stem-
like properties and the major population, “terminally exhausted”
TILs are characterized with high cytotoxicity (43, 50). While
terminally exhausted T cells remain unresponsive to vaccination
and checkpoint blockade immunotherapy, progenitor exhausted
T cells can be transferred into a host with terminally exhausted T
cells with increased cytotoxicity, but are short-lived (50, 51). By
analyzing the chromatin state and surface markers of these two
subtypes, the initial plastic state was also found to transit into a
fixed state as terminal exhaustion in the context of persistent
antigen stimulation, which is seen as elevated expression of
CD38, CD101 and CD30L and low expression of CD5 with
similar expression of PD-1 and LAG-3 (49). Thus, exhaustion is
a dynamic process from progenitor exhaustion to terminal
exhaustion in chronic infection or cancer, during which these
two subsets respond differently to vaccination and
checkpoint blockade.

Transcription factor T cell factor 1 (TCF-1, encoded by Tcf7)
is a key transcription factor in progenitor exhausted CD8+ T cells
during chronic infection and cancer (29, 42, 50–54). While TCF-
1+PD-1+ CD8+ T cells are defined as “progenitor exhausted T
cells” having expansion, regeneration and differentiation
capacity, TCF-1−PD-1+ CD8+ T cells defined as “terminally
exhausted T cells” are more exhausted but with increased
cytotoxicity (29). Thus, TCF-1 is thought to play a significant
role in differentiation of exhausted T cells. In chronic infection,
TCF-1 is found to meditate bifurcation that represses
development of a terminal effector but fosters progenitor
exhaustion (55). To seed development of progenitor exhausted
T cells in chronic viral infection, TCF-1 represses T-bet but
promotes Eomes expression and drives c-Myb expression that
controls Bcl-2 and survival. In addition, PD-1 is found to
stabilize this TCF-1+ precursor cell pool (55). While PD-1hi

was previously regarded as an emblem for terminal exhaustion,
the absence of PD-1 also leads to the accumulation of more
cytotoxic but terminally exhausted T cells (30). Further, as PD-1
was also recognized as a promoter of terminal exhaustion, this
discovery recovers its significant role in maintaining a durable
immune reaction by inducing differentiation of progenitor
exhausted T cells. One possible mechanism for the connection
between PD-1 and TCF-1 is attenuation of TCR and/or CD28
signaling by PD-1 to prevent loss of TCF-1 expression (55).
Another possibility is that a PD-1-BATF-TCF-1 feedback circuit
exists in the precursor cell pool where BATF has been identified
downstream of PD-1 and is positively correlated with TCF-1 in
precursor cells (55). However, it has not yet to be elucidated
whether TCF-1 in a tumor context also mediates the bifurcation
February 2021 | Volume 11 | Article 622509
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of T cell differentiation from effector or memory toward
exhaustion in the same mechanism. The discovery of an
exhaustion induction mechanism in chronic infection provides
a starting model to further understand exhaustion induction of
tumorigenesis. Thus, there is still much to discover about the
mechanism(s) accounting for the development of exhausted T
cells in the tumor microenvironment.

Recently, in the chronic infection model, a transitory
population marked by expression of CX3CR1 has been
identified, which differentiated into the terminally exhausted T
cells defined by upregulation of CD101 (44). The differentiation
of this transitory population was attenuated by persistent antigen
stimulation or suboptimally priming while PD-1 pathway
blockade was found to expand the population (44, 56).
However, more studies are demanding to further divide the
subpopulation of exhausted T cells in cancer. Although rapid
development in recognition of inhibitory receptors innovates
tumor immunotherapy, more specific molecular investigation is
needed to clarify the explicit stages of T cell differentiation.
Considering the fact that T cell exhaustion is a dynamic process
from progenitor to terminal exhaustion with distinct properties,
Frontiers in Immunology | www.frontiersin.org 5
more precise strategies of immunotherapy need to be discovered
to intervene in the differentiation toward exhaustion and reverse
certain stages of exhausted T cells.
DYNAMIC DIFFERENTIATION DURING
EXHAUSTION IMPLIES COMBINATION
THERAPY STRATEGY

PD-1 pathway inhibitors have shown great success in cancer,
especially in advanced melanoma, non-small-cell lung cancer,
renal cell carcinoma and metastatic bladder cancer (4). However,
this monotherapy approach is only effective in a subset of
patients and partially responsive in the majority of patients
(57–59). It is well acknowledged in the field that the clinical
efficacy of immune checkpoint inhibitors is largely dependent on
the density of pre-existing tumor-infiltrating CD8+ T cells (60).
The baseline density and location of T cells is also essential for
the success and durability of immune therapy (60), whereas
CD8+ T cell infiltration does not appear to correlate with clinical
FIGURE 1 | T cell differentiation is a dynamic process during which various mechanisms function to determine the bifurcation from effector or memory toward
exhaustion. T cell exhaustion has recently been identified as not a fixed state whereby progenitor exhausted T cells give rise to terminally exhausted T cells. While
progenitor exhausted T cells exhibit poor cytotoxicity but are long-lived with stem-like properties, terminally exhausted T cells have increased cytotoxicity but are
short-lived. The distinct properties of exhausted T cells imply the potential of immunotherapy-based combination strategy in cancer treatment. Tmem, memory T cell;
Teff, effector T cell; Tex, exhausted T cell.
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parameters such as disease stage or patient age (61). However,
the presence of terminally differentiated T cells, which derive
from progenitor exhausted T cells as aforementioned, positively
correlates with the total number of tumor-infiltrating T cells and
prevents disease progression (51). Apart from the infiltration of
T cells, tumor burden is found to determine severity of
exhaustion and T cell reinvigoration by PD-1 pathway
inhibitors in preclinical models and cancer patients (13, 62).
As eluded to, T cell exhaustion is a dynamic process with
variational properties from stem-like self-renewal toward
terminally exhaustion. While progenitor exhausted T cells
exhibit poor cytotoxicity but are long-lived with stem-like
properties, terminally exhausted T cells have increased
cytotoxicity but are short-lived. This phenomenon is consistent
with previous observations that a complete immune response is
required for both the effective ability to clear antigen and durable
potency to deal with sustained antigen stimulation. As a
compensatory mechanism for immune control, terminally
exhausted T cells function as a significant but transient
effector. Though PD-1 pathway inhibitors transfer stem-like
progenitor exhausted T cells into cytotoxic terminally
exhausted T cells to temporarily control the tumor (29, 50, 51),
terminally exhausted T cells, with depletion of the progenitor T
cell pool, finally fail to function in face of exorbitant tumor
burden. These observations may help to explain the reasons for
the failure of immune monotherapy. Therefore, the ratio of
exhausted T cell reinvigoration to tumor burden is put forward
as a predictor of clinical efficacy (63). Moreover, combination
therapy with PD-1 pathway inhibitors needs to be urgently to be
developed in clinical practice.

On the other hand, with further recognition of the complexity
of TME, tumors are divided into four subgroups (including hot
tumors, altered-immunosuppressed tumors, altered-excluded
tumors and cold tumors) based on the CD8+T cell landscape
within TME (64). In hot or altered-immunosuppressed tumors,
the failure of immune monotherapy mainly results from TILs
dysfunction, while ICB-based combination therapy mainly refers
Frontiers in Immunology | www.frontiersin.org 6
to improvement in T cell function (immune therapy targeting
other co-inhibitory receptor such as CTLA-4, LAG-3, and Tim-
3) or the removal of inhibition from immune suppression factors
(such as the blocking pathway of Treg or myeloid- derived
suppressor cells). As for altered-excluded tumors, deficiency in
T cell-recruiting signaling and physical barriers to T cell
penetration from abnormal vascular structure results in the
failure of T cell infiltration. Thus, combination therapy
strategies in altered excluded tumors mainly focus on
facilitation of T cell recruitment or angiogenesis inhibitors with
ICB. Cold tumors lack of pre-existing immune response is due
mainly to low immunogenicity and failed T cell priming. Thus,
the most important strategy is to turn cold tumors into hot
tumors. The priming therapy (including vaccines, chemotherapy
or radiotherapy) enhances T cell response and PD-1 pathway
inhibitors remove cancer-meditated suppression, which implies
the rationality of combination immune-activating therapy with
immunotherapy in cold tumors.

Thus, in clinical practice, the dynamic differentiation during
exhaustion essentially limits the effectiveness of immune
monotherapy in the context of exorbitant tumor burden.
Besides, the various immune properties of tumor emphasize
the significance of combination therapy. Hence, it is important to
now consider ICB-based combination therapy focusing on the
expansion of the progenitor T cell pool or the reduction of tumor
burden, implying the rationality and current clinical practice of
combination with other therapy strategy (Table 1).

Combination With Vaccines
Cancer vaccination relies on the identification of putative antigen
or antigenic epitopes and then transfer into patients through a
variety of approaches, such as whole tumor cells, MHC-specific
peptides, whole or partial proteins encoded by RNA or DNA, or
in recombinant viral or bacterial vecto expressed in dendritic
cells (DCs) (65). Though showing promise in clinical practice,
cancer vaccination alone has not been very effective in several
clinical trials (65). The immunosuppression of TME was
TABLE 1 | Intervention strategies based on the cancer-immunity cycle for different immune types of tumor.

Tumor classifications Characteristics Intervention processes Combined strategies

Hot immune tumors •High degree of T cell infiltration •Killing of cancer cells •Immune checkpoint blockades (e.g., anti-CTLA-4
and anti-PD-1 mechanism)

Altered-
immunosuppressed
immune tumors

•Poor T cell infiltration
•High presence of tumor suppressive
cells and inhibitory mediators

•Infiltration of T cells into tumors
•Killing of cancer cells

•Anti-VEGF
•Immune checkpoint blockades
•Removal of immune suppression (e.g., blockades
of CD39, CD73, IL-10 or TGF-b)

Altered-excluded immune
tumors

•No T cell infiltration within tumor but
accumulation at tumor borders
•Aberrant tumor vasculature and/or
stroma

•Infiltration of T cells into tumors
•Killing of cancer cells

•Anti-VEGF
•Immune checkpoint blockades

Cold immune tumors •Absent T cell infiltration
•Suboptimal T cell priming

•Release of cancer cell antigens
•Cancer antigen presentation
•Priming and activation
•Infiltration of T cells into tumors
•Recognition of cancer cells by T cells
•Killing of cancer cells

•Immunogenic cancer cell death (chemotherapy,
radiotherapy and targeted therapy)
•Enhanced APC function (e.g., anti-CD40)
•Vaccines
•Anti-VEGF
•CART
•Immune checkpoint blockades
CTLA-4, cytotoxic T lymphocyte-associated antigen 4; PD-1, programmed cell death 1; VEGF, vascular endothelial growth factor; CART, chimeric antigen receptor T-cell immunotherapy.
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considered to be the major barrier for a sustained immune
response, which implies a combination strategy with ICB. On
the other hand, mechanisms that do not allow T cell activation
could result in immune therapy resistance (5). T cell priming is
defined as the events that naïve T cells are initiated from a
quiescent state to an activated state (66). PD-1 blockade in
unprimed or suboptimally primed CD8+ T cells could induce
dysfunctional PD-1+CD38hiCD8+ cells leading to further
resistance, which can be reversed by proper antigen
stimulation (67). While immunosuppression in the TME
impedes vaccine-induced immune effectors, combination with
PD-1 pathway inhibitors significantly improved the overall
survival period. For instance, in a preclinical model,
combination therapy has been found to increase the infiltration
of memory precursor effector cells in canonical non-
immunogenic tumors, such as breast cancer and pancreatic
ductal adenocarcinoma (68, 69). It implies for a rationale
combination of vaccines and immunotherapy.

There are currently two FDA-approved therapeutic cancer
vaccines: sipuleucel-T and T-VEC. Sipuleucel-T functions as a
DC vaccine using a recombinant of the prostate tumor-
associated antigen prostatic acid phosphatase (PAP) and
granulocyte-macrophage colony-stimulating factor (GM-CSF).
Expression of PAP increases during prostate cancer progression,
activating the immune system and GM-CSF sustains DC
maturation. Sipuleucel-T was approved by the FDA in 2010 for
men with asymptomatic or minimally symptomatic hormone
refractory prostate cancer based on the phase III IMPACT trial
(70). Men who received Sipuleucel-T had a median overall
survival (OS) of 25.8 months versus 21.7 months with placebo
(HR: 0.78; 95% CI: 0.61–0.98; p = 0.03). In a phase I study of
ipilimumab plus Sipuleucel-T for prostate cancer, six of nine
patients treated had medial survival surpassing 4 years (71). On
the other hand, T-VEC is an intralesional oncolytic viral vaccine
composed of a modified herpes simplex virus type 1 encoding
GM-CSF, which was approved by the FDA in 2015 for patients
with recurrent melanoma. In the T-VEC OPTiM trial and a
phase III MASTERKEY-265 trial, the combination of T-VEC
and pembrolizumab increased infiltration of CD8+ T cells, PD-
L1 expression and interferon (IFN)-g levels, and thus improved
treatment efficacy (72).

Moreover, with the development of high-throughput
screening techniques and epitope-predicting algorithms, novel
personal targeted vaccines unique to each patient are being tested
in several clinical trials. One study has demonstrated the
feasibility, safety and immunogenicity of a personalized vaccine
in 20 advanced melanoma patients. Of six vaccinated patients,
four had no recurrence at 25 months after vaccination while two
recurrent patients subsequently received anti-PD-1 therapy and
experienced complete tumor regression with expansion of
neoantigen-specific T cells (73). Another RNA-based poly-neo-
epitope vaccine were used in 13 advanced melanoma patients
and showed sustained progression-free survival and was well-
tolerated (74). In addition, there is currently an ongoing clinical
trial (NCT02897765) combining a personalized vaccine (NEO-
PV-01) with anti-PD-1 in patients with advanced cancers
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including melanoma, NSCLC and bladder cancer. Interim
analysis has shown great success with 68.8% of patients
showing a partial response (PR) and 6.3% showing a complete
response (CR) for melanoma and, 45.5% of patients showing a
PR in NSCLC. What is more, an RNA vaccine targeting four
non-mutated, tumor-associated antigens has been proved to
induce durable response even in checkpoint-inhibitor-treated
melanoma (75). The RNA vaccine, alone or in combination with
ICBs, induced more infiltration of immune cells. At the
meanwhile, tumor burden at baseline has also been associated
with the final response. Thus, vaccines have shown great
potential in priming immune cells and inducing the
differentiation of progenitor exhausted T cells, which implies
the rationality of combination with immunotherapy. Though
achieving some success, the response could be obstructed by the
immunosuppression of TME and the exorbitant tumor burden,
implying more combination therapies to be further developed.
As the success of combination of vaccine and immunotherapy,
other immune-activating strategies are also worth for the
further development.

Combination With Chemotherapy
Conventional therapies such as chemotherapy and radiotherapy
can directly reduce tumor burden, however, they have also been
found to be associated immunological effects requiring further
understanding of tumor immune microenvironment. Genotoxic
chemotherapies (such as anthracyclines and oxaliplatin) induce
mutations and elicit the release of tumor antigens which
increases the immunogenicity of tumor (64). On the other
hand, these therapies can also induce immunological cell death
(ICD) and convert tumor into an in situ vaccine, leading to the
release of damage-associated molecular pattern molecules
(DAMPs), such as calreticulin, high mobility group box 1
(HMGB1) or adenosine triphosphate (ATP), which activate
apoptotic or necroptotic pathways and reactive immune
responses (76). in addition, chemotherapeutic agents such as
cyclophosphamide, taxanes or paclitaxel can activate
immunostimulatory signals, though in lack of ICD induction
(77). While chemotherapy often serves as the first-line therapy in
tumor treatment, relapse is often observed probably due to the
secondary expansion of immunosuppressing cells, exhaustion of
immune effector cells or the emergence of chemoresistant tumor
clones (77), which supports the rationale to combine
immunotherapy to enhance immune effects. In a phase II
study in metastatic NSCLC, phased ipilimumab plus paclitaxel
and carboplatin showed an improved efficacy (78). Another
phase II study has also shown the success of phased
ipilimumab plus paclitaxel and carboplatin in extensive-
disease-small-cell lung cancer (ED-SCLC) (79). Thus, the
success of vaccines implies the rationality for the combination
with immune-activating agents. Chemotherapy obviously
reduced the tumor burden and simultaneously functions as an
in situ vaccine optimally prime T cells which may induce the
expansion of the pool of progenitor exhausted T cells, which
suggests the prospect of the integration of chemotherapy
and immunotherapy.
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Combination With Radiotherapy
Similar with chemotherapy, radiotherapy can also modulate
immune response in addition to its tumor-debulking property.
Aside from ICD-related mechanisms as aforementioned,
radiotherapy show great promise in treating metastatic lesions
with its “abscopal effect,” which reflects the phenomenon that
while ionizing irradiation cause localized tumor death, non-
irradiated metastatic sites have also been regressed through
immune-related mechanisms. Thus, radiotherapy even focused
on a single metastatic lesion is considered as a powerful tool to
induce tumor into an in situ vaccine and optimally prime T cell
activation as well as reduce tumor burden, which suggests the
important role in combination with immunotherapy.

In phase III of the PACIFIC trial, patients with stage III
unresectable NSCLC received chemoradiotherapy in addition to
durvalumab, leading to improved median progression-free survival
(PFS) from 5.6 months to 17.2 months and a 2-year overall survival
improvement from 55.6% to 66.3% (80). In another phase II study,
patients with metastatic NSCLC received stereotactic body radiation
(SBRT) on a single tumor site preceding pembrolizumab (81).
Influenced by the PD-L1–negative subgroup, this trial did not
meet the study’s primary endpoint criteria but there was
improved overall survival and progression-free survival,
encouraging the possibility of further research. A phase I study of
multisite SBRT followed by pembrolizumab in metastatic solid
tumor patients has also been performed to assess the efficacy of
SBRT and checkpoint inhibitors in different advanced tumors (82).
Although median PFS was 3.1 months with no detailed record for
the initial and sustained response status, the abscopal response rate
in any single nonirradiated target metastasis was 26.9%. Despite
these outcomes, more trials are demanding to explore the dosage,
timing and sequence for the combination of radiotherapy
and immunotherapy.

Combination With Targeted Therapy
Recent studies of targeted therapies against the MAPK and VEGF
signaling pathways not only can precisely inhibit oncogenic
pathways, but also have effects on host immune modulation
through increasing tumor antigenicity and promoting T cell
infiltration (83), which rationalized the combination of
immunotherapies with targeted therapies. For most altered-
excluded tumors, deficiency in T cell-recruiting signaling and
physical barriers to T cell penetration from abnormal vascular
structure results in the failure of T cell infiltration, while anti-
VEGF targeted therapy augments intra-tumoral T-cell infiltration,
potentially through vascular normalization and endothelial cell
activation. Further investigation of endothelial cell alterations
indicated that the combinations of agents that inhibit the PD-1
and VEGF signaling pathways were adapting vessels for effective
lymphocyte trafficking (83). The exact mechanism for the
expansion of progenitor exhausted T cell pool is undefined but
the vascular disorder obstructing to further recruitment probably
explains the depletion. There are several clinical studies combining
targeted therapy with checkpoint blockade that have displayed
clinical benefit. In advanced metastatic melanoma, the
combination of bevacizumab and ipilimumab was safely
tolerated with increased adhesion molecule and immune cell
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infiltration as well as overall good clinical responses (84). Similar
results have also been observed in metastatic renal cell carcinoma
(85). Further, the combination of regorafenib and nivolumab
significantly improved the efficacy in treatment of gastric and
colorectal cancer (86). Though these results encourage further
exploratory studies, severe irAEs have also been observed and
therefore pretherapeutic evaluation should be carefully assessed
(87, 88).
Combination With Cytokines
Several cytokines (such as IL-2, IL-8, IL-10, IL-15, IFN-a, CSF-1,
etc.) contribute to regulate every phase of the cancer-immunity
cycle, including T cell priming, differentiation, expansion and
even the effector function in the TME (1, 89). Among those, IL-2
mainly functions to expand the T cell population and natural
killer (NK) cells while several clinical trials are ongoing based on
the combination of IL-2 and immunotherapy (89).

The reduction of IL-2 is one of the first markers during the
process of T cell exhaustion, however, the expression of IL-2Rb,
which correlates to the expression of PD-1, is elevated in exhausted
CD8+ T cells (90). Therefore, IL-2 pathway plays a significant and
complex role in the efficacy of treatment. The single agent is limited
due to its pleiotropic effects on immune systems or the severe side
effects, suggesting the necessity of combination therapy (91).
NKTR-214 is a recombinant IL-2 pathway agonist with
polyethylene glycol which preferentially activates IL-2bgR (IL2bg
receptor pathway) to foster the proliferation and activation of CD8+

T cells and NK calls without expansion of T regulatory cells in the
TME (92). Considering the elevation of inhibitory receptors,
combination with immunotherapy is recommended which results
in the infiltration of T cell function, replenishment of progenitor
exhausted T cell pool and enhancement of regional immune
response. NKTR-214 in combination with ICBs is being evaluated
in several clinical trials. (NCT03138499, NCT02983045,
NCT03282344 and NCT03435640) Combination of NKTR-214
and nivolumab has shown great response in naïve or pre-ICB-
treatment advanced solid tumors in a phase 1 trial (93).
CONCLUSIONS

T cell exhaustion emerges in face of overwhelming activation and
is modulated by multiple mechanisms during tumorigenesis.
While multiple and high expression of inhibitory receptors are
related to severity of exhaustion (66), inhibitory receptors are
also found to participate into the activation process and play a
physiological role in system (22, 25). Thus, new molecular targets
specific for exhaustion need to be further explored whereby
autoimmune-related adverse effects can also be limited to
localized lesions.

On the other hand, recent studies identify T cell exhaustion as
a dynamic process from progenitor exhausted T cells to
terminally exhausted T cells in the face of persistent antigen
stimulation or PD-1 pathway inhibitors (41, 48, 50, 94). While
progenitor exhausted T cells are poorly cytolytic but long-lived
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with stem-like properties, terminally exhausted T cells have
increased cytotoxicity but are short-lived. This dynamic
differentiation reflects the limitation of immunotherapy in
exorbitant tumor burden due to short-term effector function
and depletion of the pre-existing T cell pool. However, “the
Cancer-Immunity Cycle” suggests that rationale combination
strategy to reduce tumor burden, improve tumor antigenicity
and facilitate T cell infiltration can successfully overcome the
failure of immune monotherapy (1). With the further
understanding of immune-modulating function of vaccines
and conventional therapy such as chemotherapy, radiotherapy
and targeted therapy, new combination strategies have been put
forward and multiple trials are ongoing to test further efficacy.
Though showing promise in treatment of advanced tumors,
combination toxicity still needs to be investigated.
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