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Indirect genetic effects and kin recognition: estimating IGEs
when interactions differ between kin and strangers

SW Alemu1,2, P Berg1,3, L Janss1 and P Bijma2

Social interactions among individuals are widespread, both in natural and domestic populations. As a result, trait values of
individuals may be affected by genes in other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can
be estimated using linear mixed models. The traditional IGE model assumes that an individual interacts equally with all its
partners, whether kin or strangers. There is abundant evidence, however, that individuals behave differently towards kin as
compared with strangers, which agrees with predictions from kin-selection theory. With a mix of kin and strangers, therefore,
IGEs estimated from a traditional model may be incorrect, and selection based on those estimates will be suboptimal. Here we
investigate whether genetic parameters for IGEs are statistically identifiable in group-structured populations when IGEs differ
between kin and strangers, and develop models to estimate such parameters. First, we extend the definition of total breeding
value and total heritable variance to cases where IGEs depend on relatedness. Next, we show that the full set of genetic
parameters is not identifiable when IGEs differ between kin and strangers. Subsequently, we present a reduced model that
yields estimates of the total heritable effects on kin, on non-kin and on all social partners of an individual, as well as the total
heritable variance for response to selection. Finally we discuss the consequences of analysing data in which IGEs depend on
relatedness using a traditional IGE model, and investigate group structures that may allow estimation of the full set of genetic
parameters when IGEs depend on kin.
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INTRODUCTION

Social interactions among individuals are common in both wild and
domestic populations, and in animals, plants and microorganisms
(Frank, 2007). With social interactions, the trait value of an
individual may be affected by genes in other individuals, a
phenomenon that works out as indirect genetic effects (IGEs;
Griffing, 1967, 1976; Moore et al., 1997; Wolf et al., 1998). An IGE
is a heritable effect of one individual on the trait value of another
individual (reviewed in Wolf et al., 1998; Bijma, 2011a). A well-
known example is the maternal genetic effect of a mother on
preweaning growth rate of her offspring (Willham, 1963; Falconer,
1965; Kirkpatrick and Lande, 1989).

IGEs may have significant effects on the rate and direction of
response to selection, and can substantially increase or decrease
heritable variation in a trait (Griffing, 1967; Moore et al., 1997;
Bijma and Wade, 2008; McGlothlin and Brodie III, 2009; Wilson
et al., 2011; Bijma, 2011b). Thus, knowledge of IGEs is essential for
understanding response to selection in socially affected traits. The
magnitude of IGEs can be estimated using linear mixed models that
include a direct genetic effect for the individual producing the record,
and an IGE for each of its social partners (Arango et al., 2005; Muir,
2005; Bijma et al., 2007). This approach has been used both in
agricultural populations of animals and plants (see, for example,
Muir, 2005; Cosa e Silva et al., 2013), and in natural populations (see,
for example, Wilson et al., 2011). Bijma (2010a) showed that

estimation of genetic parameters for IGEs in group-structured
populations can be optimized by placing two families in each group.
Such schemes are an attractive breeding design because they also yield
a relatively high response to selection (Odegard and Olesen, 2011).

In the linear mixed model commonly used to estimate IGEs (Muir,
2005), it is assumed that an individual expresses the same IGE on
each of its social partners, irrespective of whether a partner is its
family member or an unrelated individual. Kin selection theory,
however, predicts that individuals behave more cooperatively towards
their relatives, because this increases their inclusive fitness (Hamilton,
1964). Hence, IGEs expressed on kin may differ systematically from
those expressed on strangers; they may differ not only in average level,
but also show incomplete correlation. Empirical evidence indeed
suggests that kin recognition and preferential behaviour towards kin
are widespread in both animals and plants (see, for example, Holmes
and Sherman, 1982; Hepper, 1986; Olsen, 1989; Dudley and File,
2007; Biedrzycki and Bais, 2010), and at least four mechanisms for kin
recognition have been described (Tang-Martinez, 2001; Mateo and
Holmes, 2004; Mateo, 2004; Coffin et al., 2011).

When individuals express a different IGE on kin versus strangers,
estimated breeding values for direct and indirect effects from the
common linear mixed model are incorrect, and selection based on
those estimates will yield suboptimal response. Moreover, when IGEs
are estimated from groups composed of strangers (see, for example,
Ellen et al., 2008), the resulting estimates may not accurately reflect
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the IGEs that occur in the relevant natural or domestic populations,
which may consist of kin groups. In natural populations, limited
dispersal often leads to interactions among relatives (Hamilton, 1964),
whereas in livestock populations such as domestic pigs, groups often
contain a number of family members (Chen et al., 2008). Thus, a
potential difference between IGEs on kin vs strangers is relevant for
both livestock and natural populations. The current statistical
methods for estimating IGEs, however, ignore the dependency of
IGEs on relatedness.

Here we propose a model for traits affected by IGEs that differ
between kin and strangers, investigate whether genetic parameters of
that model are statistically identifiable and develop statistical models
to estimate those parameters. First we show that the full set of genetic
parameters is not identifiable when IGEs differ between kin and
strangers. Subsequently, we developed a reduced model, and showed
that the reduced model can estimate meaningful linear combinations
of the genetic parameters. In the Discussion, we consider population
structures that may allow estimating the full set of genetic parameters.

QUANTITATIVE GENETIC MODEL
Trait model
This section introduces the trait model when IGEs differ between kin and

strangers. We consider here a population stratified into groups of n members

each, where interactions occur within groups. We consider the scheme that is

optimal for the estimation of IGEs in the absence of kin recognition (Bijma,

2010a). In this scheme, each group is composed of members of two families,

each family contributing n/2 individuals. Generalization of results to other

group structures is addressed in the Discussion.

In traditional quantitative genetics, the phenotypic value of individual i is

the sum of a heritable component, Ai, known as breeding value, and a

nonheritable residual, Ei (Falconer and Mackay, 1996; see Table 1 for a

notation key),

Pi ¼ AiþEi ð1Þ
with IGEs that do not depend on relatedness, the phenotype of an individual

stems from two components: a direct effect originating from the individual

itself, and the sum of indirect effects originating from each of its n�1 group

mates (Griffing, 1967),

Pi ¼ AD;iþED;iþ
Xn� 1

j¼1

AS;jþ
Xn� 1

j¼1

ES;j ð2Þ

where i denotes the focal individual, j a group mate, AD,i the direct genetic

effect (DGE) of i, ED,i the corresponding non-heritable direct effect, AS,j the

IGE of group mate j and ES,j the corresponding non-heritable indirect effect

(subscript S, suggesting ‘social’, is used to denote indirect effects instead of a

subscript I, to avoid confusion of i with I; Equation 2 is known as a variance

component model of IGEs, as opposed to a trait-based model. See McGlothlin

and Brodie III, 2009 for a comparison of models). Equation 2 contains two

kinds of genetic effects, direct effects, AD, and indirect effects, AS. Hence, fitting

Equation 2 involves the estimation of three genetic variance components; s2
AD

,

sADS
and s2

AS
(throughout, s2 denotes a variance and s a covariance).

With different interactions among kin versus strangers, two types of IGEs

may be distinguished: IGEs on kin versus IGEs on strangers. In our population

structure, where n/2 members of each family make up a group, the trait model

becomes:

Pi ¼ AD;iþED;iþ
Xn2� 1

j¼1

ASf ;jþ
Xn2� 1

j¼1

ESf ;jþ
Xn=2

k¼1

ASu ;kþ
Xn=2

k¼1

ESu ;k ð3Þ

where j denotes a family member of i, k a member of the other family in the

group, n
2� 1 the number of group mates of i from its own family, n/2 the

number of group mates of i from the other family, subscript ‘Sf ’ denotes IGEs

on family members and subscript ‘Su’ denotes IGEs on members of the other,

unrelated, family (u indicating ‘unrelated’). Equation 3 contains three genetic

effects: direct effects, AD, IGEs on family members, ASf
, and IGEs on strangers,

ASu. Hence, fitting Equation 3 involves the estimation of six genetic variance

components: three variances s2
AD

, s2
ASf

and s2
ASu

and three covariances sAD;Sf
,

sAD;Su
and sASf ;Su

. The genetic correlation between an individual’s IGE on kin

and its IGE on strangers, rASf
ASu
¼ sASf ;

ASu
=ðsASf

sASu
Þ, reflects the difference

between IGEs on kin and strangers. Equation 3 does not explicitly include a

potential difference in the mean value of the IGE on kin vs strangers, because

this has little consequences for the estimation of genetic parameters. Never-

theless, such a difference is relevant in statistical data analysis, and can be

accommodated easily in the fixed effects part of the model (see Discussion).

Total breeding value and heritable variation
This section presents the heritable variation available for response to selection

in a trait when IGEs differ between kin and strangers.

Irrespective of the trait model, response to selection in any trait can be

expressed as

R ¼ D �AT ¼ irsAT
; ð4Þ

where R is the genetic change in mean trait level from one generation to the

next because of selection, D �AT the change in mean total breeding value (AT) of

the population, i the intensity of selection, r the accuracy of selection and sAT

the s.d. in total breeding value (Bijma, 2011a); an equivalent expression in

terms of a selection gradient can also be found there, and may be more

appropriate for natural populations). In the context of Equation 4, the

accuracy of selection is the correlation between an individual’s value for the

selection criterion and its total breeding value (this definition applies to any

selection criterion; see Falconer and Mackay, 1996 for further explanation of

Table 1 Notation keya

Symbol Meaning

i,j,k,x,l,m Subscript to denote an individual.

Pi Observed trait value of an individual.

PD,i,PSf ;i
,PSu;i

Direct effect of i, indirect effect of i to kin, indirect

effect of i to stranger.

s2
P ;s

2
PD
; s2

PSf
; s2

PSu
Phenotype variance among individuals, unobserved

phenotype variance on self, kin and strangers.

s2
AD
; s2

ASf
; s2

ASu
Variance of DGEs among individuals, variance of IGEs on

kin among individuals, variance of IGEs on strangers

among individuals.

s2
ATf
; s2

AT
Variance of family breeding value among individuals,

variance of total breeding value among individuals.

s2
ED
; s2

ESf
; s2

ESu
Variance of direct environment among individuals,

variance of indirect environment on kin among

individual, variance of indirect environment on

strangers among individual.

sAD ;Sf
; rAD ;Sf

; sAD ;Su
; rAD ;Su

Covariance between DGEs and IGEs to kin, correlation

between DGEs and IGEs to kin, covariance between DGEs

and IGEs to strangers and correlation between DGEs and

IGEs to strangers.

sASf ;Su
rASf ;Sf

Covariance between IGEs to kin and IGEs to strangers,

correlation between IGEs to kin and IGEs to strangers.

sED ;Sf
; rED ;Sf

Covariance and correlation between nongenetic direct and

nongenetic indirect on kin.

sED ;Su
; rED ;Su

Covariance and correlation between nongenetic direct and

nongenetic indirect on strangers.

sESf ;Su
; rESf ;Su

Covariance and correlation between nongenetic in direct

on kin and nongenetic indirect on strangers.

r,r,n;s2
g Relatedness among individual in a group, residual

correlation of family member in a group, group size,

variance of nonfamily member in a group.

Abbreviations: DGE, direct genetic effect; IGE, indirect genetic effect.
aThroughout the text and in the tables, hats (^) denote estimates, whereas symbols without
hats refer to true values.
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the ‘accuracy of selection’). The total breeding value represents the average

impact of an individual’s genes on the mean trait value of the population, and

is a generalization of the traditional breeding value to account for IGEs and to

allow modelling of so-called emergent traits (Bijma, 2011b). Thus, analogous

to the classical breeding value, the total breeding value represents an

individual’s value for response to selection. As illustrated in Equation 4, in

which i and r are standardized parameters, the s.d. in total breeding value

represents the intrinsic potential of a population to respond to selection.

For any trait model, the total breeding values follow from the genetic mean

of the population (Bijma, 2011b). From Equation 3, the genetic mean of the

trait value for our population structure equals

�PA ¼ ADþð12n� 1ÞASf
þ 1

2n ASu
:

Therefore, following Bijma (2011b), an individual’s total breeding value is

the sum of its DGE, 1/2n�1 times its IGE on family members, and 1/2n times

its IGE on strangers,

AT;i ¼ AD;iþð12n� 1ÞASf ;iþ 1
2n ASu ;i: ð5Þ

Taking the variance of the total breeding value yields an expression for the

heritable variation available for response to selection,

s2
AT
¼ s2

AD

þ n� 2ð Þ sAD;Sf
þ ð12n� 1Þ2s2

ASf

þ nsAD;Su
þ n 1

2n� 1
� �

sASf ;Su
þ 1

4n2s2
ASu
:

ð6Þ

Note that s2
AT

does not reflect the additive genetic component of phenotypic

variance, but the heritable variation that determines the potential of a

population to respond to selection (see Equation 4 and Bijma, 2011b).

An individual’s total breeding value can be partitioned into a family

component, ATf
, which summarizes all its heritable effects on family members

(including the direct effect on itself) and is considered the family breeding

value here, and a non-family component, ATu
, the non-family breeding value.

This partitioning will be used below, where the family components of the total

breeding value will be grouped for reasons of statistical identifiability. With

each family contributing, 1/2n group members

AT;i ¼ ATf ;iþATu ;i; ð7aÞ

ATf ;i ¼ AD;iþð12n� 1ÞASf ;i; ð7bÞ

ATu ;i ¼ 1
2nASu ;i: ð7cÞ

Taking the variances of Equation 7 yields

s2
AT
¼ s2

ATf
þ 2sATf Tu

þ s2
ATu

ð8aÞ

s2
ATf
¼ s2

AD
þ ðn� 2ÞsAD;Sf

þð12n� 1Þ2s2
ASf
; ð8bÞ

s2
ATu
¼ 1

4n2s2
ASu
; ð8cÞ

sATf Tu
¼ 1

2nsAD;Su
þ 1

2n 1
2n� 1
� �

sASf ;Su
: ð8dÞ

VARIANCE COMPONENT ESTIMATION

Genetic parameters can be estimated using a linear mixed model
including correlated random genetic effects, the so-called animal
model (Henderson, 1953, 1975; Lynch and Walsh, 1998). The classical
animal model includes DGEs only, but can be extended with IGEs
(Muir, 2005).

Full model
The full model includes DGEs, IGEs on family members and IGEs on
strangers,

y ¼ XbþZDaDþZSf
aSf
þ ZSu

aSu
þWgþ e; ð9Þ

where b is a vector of fixed effects with incidence matrix X, aD is a
vector of DGEs with incidence matrix ZD linking observation on
individuals to their own DGE, aSf

is vector of IGEs on family members

with incidence matrix ZSf
linking observations on individuals to the

IGEs of their group mates belonging to the same family, aSu
is vector

of IGEs on strangers with incidence matrix ZSu
linking observations

on individuals to the IGEs of their group mates belonging to the other
family, g is a vector of random group effects, with g � Nð0; Igs2

gÞ
and incidence matrix W linking records to groups, and e is a vector of
residuals with e � Nð0; Ies2

e Þ, where I is an identity matrix. The
covariance structure of the genetic terms is

aD

aSf

aSu

2
4

3
5 � MVN 0; C � Að Þ

where C ¼
s2

AD
sAD;Sf

sAD;Su

sAD;Sf
s2

ASf
sA

Sf
;Su

sAD;Su
sA

Sf
;Su

s2
ASu

2
664

3
775;

where # indicates the Kronecker product of matrices, and A is a
matrix of additive genetic relationships between individuals, the
so-called numerator relationship matrix (Henderson, 1985).

When fitting the full model, the results showed that there are
multiple parameter combinations that give the same likelihood.
Hence, using this model, the genetic parameters are statistically
nonidentifiable. In particular, results showed that the variance of
IGEs on strangers, s2

ASu
, is identifiable, but that the variance

components referring to interactions between family members, s2
AD

,
sAD ;ASf

and s2
ASf

, are fully confounded. We investigated why this
occurs and found that there are only five informative genetic
covariances in the data, but six genetic parameters to estimate (see
Appendix A). Thus, when IGEs differ between kin and strangers, it is
not possible to estimate all six genetic parameters from group-
structured data. This is not a problem of the estimation method, but a
property of the data structure and occurs when group composition
with respect to family is the same for all groups (see Discussion and
Appendix A). Thus, the data structure that is optimal for estimating
the variance of IGEs that do not depend on kin renders the estimation
of kin-dependent IGEs impossible. In the Discussion, we consider
alternative schemes that may allow estimating all parameters of the
full model. Note that the variance structure given above for the
residual of Equation 9 ignores the distinction between indirect effects
on kin vs strangers. However, as the full model is nonidentifiable, we
did not further investigate this issue.

Reduced model
Because the full model was not identifiable, we investigated a reduced
model, aiming to estimate part of the genetic parameters or mean-
ingful linear combinations. As the full model indicated that the effects
because of the focal family were fully confounded, we fitted only a
single term for the family of the focal individual. Therefore, the
reduced model was

y ¼ XbþZDaF þZSu
aSu
þWgþ e ð10Þ

where aF is a vector of genetic effects due to the family of the focal
individual and ZD is the incidence matrix for direct genetic effects as
in the full model (Equation 9). Hence, with respect to the genetic
terms, the only difference between the full and reduced model is that
the ZSf

aSf
term is omitted in Equation 10; the other genetic terms are

the same. However, as omitting the ZSf
aSf

will change both the
estimates and the interpretation of the ‘direct’ genetic effects, we write
ZDaF in Equation 10, where subscript F suggests ‘family’, rather than
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ZDaD. The covariance structure of the genetic terms in Equation 10 is

aF

aSu

� �
� MVN 0;Cr � Að Þ

where Cr ¼
s2

AF
sAF;Su

sAF;Su
s2

ASu

� �
:

The Wg term is as in Equation 9. The covariance structure for the
residual term is

var eð Þ ¼ Rs2
e ; ð11Þ

where Rii¼ 1, Rij¼ r when i and j are group mates from the same
family, and Rij¼ 0 otherwise. Hence, this structure allows for a
covariance between residuals of group mates belonging to the same
family. Thus, when individuals are ordered by group and by family
within group, then R is block-diagonal, with blocks of size n/2,
diagonal elements equal to 1, off-diagonals of blocks equal to r, all
other off-diagonals equal to zero, and two blocks per group, one for
each family. Appendix B shows that this residual variance structure
together with the random group effect corresponds to the nongenetic
variance structure generated by the assumed true model (Equation 3).
Thus, the Wgþ e in Equation 10 accounts for the variance structure
generated by the term ED;iþ

P
ESf ;j
þ
P

ESu;k
in Equation 3.

Investigation of Equation 10 showed that there are five informative
genetic covariances in the data to estimate three genetic parameters,
indicating that the model in Equation 10 is identifiable. To investigate
the interpretation of the genetic estimates from the reduced model,
we derived their expectation, assuming that the data are generated by
the model given in Equation 3 (Appendix A). With

AF;i ¼ AD;iþð12n� 1ÞASf ;i; ð12aÞ

and

ASu;i ¼ ASu;i; ð12bÞ
it follows that

Eðŝ2
AF
Þ ¼ s2

AD
þ n� 2ð Þ sAD;Sf

þ 1
2n� 1
� �2s2

ASf
; ð12cÞ

EðŝAF;Su
Þ ¼ sAD;Su

þ 1
2n� 1
� �

sASf ;Su
; ð12dÞ

Eðŝ2
ASu
Þ ¼ s2

ASu
: ð12eÞ

Equations 12c–e sum up all the variance components considered in
the true model. Equation 12e shows that the reduced model yields an
estimate of the variance of IGEs on strangers. Moreover, combining
Equations 12c–e with the decomposition of the total breeding value
into a family and a non-family component given in Equations 7 and 8
above shows that the reduced model yields estimates of the family and
non-family genetic parameters,

ŝ2
ATf
¼ ŝ2

AF
; ð13aÞ

ŝATf
ATu
¼ 1

2nŝAF;Su
ð13bÞ

ŝ2
ATu
¼ 1

4n2ŝ2
ASu
: ð13cÞ

Thus, the variance of the total breeding value can be obtained from
the reduced model as

ŝ2
AT
¼ ŝ2

AF
þ nŝAF ;Su

þ 1
4n2ŝ2

ASu
: ð13dÞ

Thus, the reduced model allows the estimation of the total heritable
variation, even though not all the underlying parameters are
identifiable.

Equation 13b refers to the covariance between the family breeding
value and the non-family breeding value. This is a meaningful linear

combination, as it expresses the covariance between genetic effects on
kin (including self) and those on strangers. If this covariance is
positive, members from different families are cooperative, whereas a
negative value indicates competition between families.

Appendix B shows that the expectations of the nongenetic variance
components in Equation 10 are given by

Eðŝ2
g Þ ¼ 2sED;Su

þ n� 2ð ÞsESf ;Su
ð14aÞ

Eðŝ2
e Þ ¼ s2

ED
þ 1

2n� 1
� �

s2
ESf
þ 1

2ns2
ESu
� s2

g ; ð14bÞ

Eðr̂Þ ¼
2sEDESf

þ 1
2n� 2
� �

s2
ESf
þ 1

2ns2
ESu
� s2

g

s2
e

ð14cÞ

Equations 14a–c show that the underlying nongenetic parameters
are not uniquely identifiable, because there are only three estimable
parameters (s2

g , s2
e and r) that are a function of six unknowns. This

was expected, as it is also the case for models not distinguishing
between IGEs on kin vs strangers (Bijma et al., 2007).

Consequences of ignoring kin-dependent IGEs
This section investigates the bias in the estimated genetic parameters
when IGEs differ between kin and strangers, although this is ignored
in the statistical analysis. Thus, it is assumed that the true model
generating the trait values is given by Equation 3 above, which
distinguishes between IGEs on kin and strangers, whereas the
statistical model used to estimate genetic parameters is the traditional
direct–indirect mixed linear model (Muir, 2005),

y ¼ XbþZDaDþZSaSþWgþ e; ð15Þ
where aS is vector of IGEs on group mates, not distinguishing between
kin and strangers, and ZS an incidence matrix linking observations on
individuals to the IGEs of all their group mates. The ZDaD and Wg
are as in the full model (Equation 9), whereas the residual variance
structure is as in the reduced model (Equation 11; see discussion
below). Note that Equation 15 differs from the reduced model
(Equation 10) because the term ZSaS includes the IGEs of all n–1
group mates, and not only those belonging to the other family
making up the group.

To investigate the bias resulting from fitting a conventional IGE
model (Equation 15) to data in which IGEs differ between kin and
strangers, we derived the expectations of the estimated breeding
values and variance components produced by Equation 15 when data
are generated by Equation 3. Those expectations follow from the
informative covariances in the data that Equation 15 utilizes to
estimate the genetic parameters, and can be obtained using the
method of Bijma, 2010a; see Appendix C). Results showed that

Eðŝ2
AD
ÞEqn:15 ¼ s2

AD
þ ð12n� 1Þ2 s2

ASf
� 2sASf

ASu
þ s2

ASu

� �
þ ðn� 2ÞðsADASf

� sA
D

ASu
Þ

ð16aÞ

EðŝADS
ÞEqn:15 ¼ sADASu

þð12n� 1Þ ðsASf
ASu
� s2

ASu
Þ ð16bÞ

Eðŝ2
AS
ÞEqn:15 ¼ s2

ASu
ð16cÞ

Eðŝ2
AT
ÞEqn:15 ¼ s2

AT
: ð16dÞ

These results show that the direct genetic variance and the direct–
indirect genetic covariance estimated with the conventional linear
model for IGEs (Equation 15) are biased when IGEs depend on
relatedness. In other words, the estimate of s2

AD
is biased because

the right-hand side of Equation 16a differs from s2
AD

. Similarly,
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difference of the right-hand side of Equation 16b from sADS
indicates

bias of sADS
. Moreover, the estimated indirect genetic variance from

Equation 15 refers to the magnitude of IGEs expressed on strangers
(Equation 16c). Surprisingly, despite the incorrect model assump-
tions, the traditional direct–indirect model yields an unbiased
estimate of the total heritable variance (Equation 16d). Beware that
results in Equations 16a–d are correct only if the residual covariance
structure accounts for differences between indirect effects on kin and
strangers, as given by Equation 11. Therefore, when the aim is to
estimate total breeding values (TBVs) using the traditional direct–
indirect mixed model of Muir (2005), this model should be
implemented including a random group effect and the residual
variance structure given in Equation 11 above.

We did not attempt to derive the expectations of estimated genetic
parameters from the traditional direct–indirect model (Equation 15)
when the residual variance structure is incorrect (that is, different
from that given in Equation 11). The reason is that those expectations
will depend not only on the assumed true genetic model
(Equation 3), but also on the data structure. For example, in data
consisting of many groups, the covariance between relatives in
different groups will dominate the estimates, and incorrect covar-
iances within groups may have little effect. In that case, estimates may
be close to values given in Equation 16. On the other hand, when
groups are fewer, information from the within-group (co)variances
will become more important and results may deviate more from
Equation 16.

Simulation
Methods. We used Monte Carlo simulation to validate the theore-
tical relationships between the true model, the reduced model and the
traditional model presented above (Equations 12, 14 and 16). Data
were generated under the model in Equation 3, and analysed using
either the reduced model in Equation 10 or the traditional model in
Equation 15, using the ASReml software (Gilmour et al., 2006). A
population of two discrete generations was simulated using R
(R Development Core Team, 2011). No fixed effects were simulated.
The base generation consisted of 100 sires and 1000 dams, which were
unrelated. To produce the second generation, sires and dams of the
first generation were mated at random, each sire being mated to 10
dams, and each dam producing 10 full-sib offspring. Individuals of
the second generation were kept in 2500 groups of 4 individuals each,
and each group consisted of two full-sib families, each family
contributing two individuals. Table 2 shows the range of genetic
parameters simulated. For each set of genetic parameters, estimates
were averaged over 100 replicates. Details of the simulation are given
in Appendix D.

Results. Table 3 shows a comparison between simulated and
estimated values for s2

ATf
; sATf

ASu
; s2

ASu
and s2

AT
from the reduced

model for different magnitudes of IGEs. We used s2
PSf
¼ s2

PSu
of either

50 or 25% of s2
PD

to represent high or low indirect effects, and
s2

ASf
,s2

ASu
of either 10, 12.5, 20 and 25% of s2

PSu
,s2

PSf
, to represent high

or low heritability of IGE, and a range of genetic correlations between
direct effects, indirect effects on kin and indirect effects on strangers
(Table 2). Results show close agreement between simulated and
estimated values as proven by the relative error that is p5% in all
cases (those small errors originate from stochasticity among repli-
cates, and do not indicate systematic bias). These results confirm the
theoretical relationships between the full and reduced models
presented in Equations 12 and 13. Thus, the reduced model yields
unbiased genetic parameters of the family and non-family breeding

values, and of the total breeding value. We also compared the
estimated nongenetic components with their expectations given in
Equation 14, showing close agreement (results not shown).

Table 4 shows a comparison between the theoretically expected
values of the estimated variance components from the traditional
model (Equation 16) and the empirical values estimated from the
simulated data using the traditional model (Equation 15). Results
confirm the theoretical expectation that the traditional direct–indirect
model yields biased estimates of the direct genetic variance and the
direct–indirect genetic covariance, but unbiased estimates of the
genetic variance of IGEs on strangers and of the total genetic variance.

Table 2 Parameter values used for validation of reduced and

traditional models

Scheme Deviation from basic schemea

Alt.1 s2
ASf
¼ 0:125; s2

ASu
¼ 0:100

Alt.2 s2
PSf
¼ s2

PSu
¼ 0:25;s2

ASf
¼ 0:050; s2

ASu
¼ 0:063

Alt.3 s2
PSf
¼ s2

PSu
¼ 0:25;s2

ASf
¼ 0:063; s2

ASu
¼ 0:050

Alt.4 rAD ;ASf
¼ rED ;ESf

¼ 0:5

Alt.5 rAD ;ASf
¼ rED ;ESf

¼ 0:5;s2
ASf
¼ 0:125;s2

ASu
¼ 0:1

Alt.6 rAD ;ASf
¼ rED ;ESf

¼ 0:5;s2
ASf
¼ 0:050;s2

PSf
¼ 0:25

Alt.7 rAD ;ASf
¼ rED ;ESf

¼ 0:5;s2
ASf
¼ 0:125;s2

ASu
¼ 0:05; s2

PSf
¼ s2

PSu
¼ 0:25

Alt.8 rAD ;ASf
¼ rED ;ESf

¼ �0:5

Alt.9 rAD ;ASu
¼ rASf ;

ASu
¼ rED ;ESu

¼ rESf ;
ESu
¼ 0:5

Alt.10 rAD ;ASu
¼ rASf ;

ASu
¼ rED ;ESu

¼ rESf ;
ESu
¼ 0:5; s2

ASf
¼ 0:100

Alt.11 rAD ;ASu
¼ rASf ;

ASu
¼ rED ;ESu

¼ rESf ;
ESu
¼ 0:5;

s2
ASf
¼ 0:050; s2

A
Su

¼ 0:063; s2
PSf
¼ s2

PSu
¼ 0:25

Alt.12 rAD ;ASu
¼ rASf ;

ASu
¼ rED ;ESu

¼ rESf ;
ESu
¼ 0:5; s2

ASf
¼ 0:050;

s2
PSf
¼ s2

PSu
¼ 0:25

Alt.13 rAD ;ASf
¼ rAD ;ASu

¼ rASf ;
ASu
¼ rED ;ESf

¼ rED ;ESu
¼ rESf ;

ESu
¼ 0:5

Alt.14 rAD ;ASf
¼ rAD ;ASu

¼ rASf ;
ASu
¼ rED ;ESf

¼ rED ;ESu
¼ rESf ;

ESu
¼ �0:1

aThe basic scheme has s2
PD
¼1, s2

AD
¼0.5, s2

PSf
¼ s2

PSu
¼0.5, s2

ASf
¼0.125 and s2

ASu
¼0.100,

and all correlations are zero. Alternative schemes only show parameters that deviate from the
basic scheme.

Table 3 Errors in estimates for the reduced model

Scheme Error%

ŝ2
ATf

ŝATf
;ASu

ŝ2
ASu

ŝ2
AT

Basic 0 0 �1 0

Alt.1 1 0 0 1

Alt.2 �2 0 2 �1

Alt.3 �1 0 �2 �1

Alt.4 2 0 �1 �1

Alt.5 0 0 0 �1

Alt.6 �2 0 0 �2

Alt.7 �1 0 2 0

Alt.8 �1 0 1 0

Alt.9 1 1 2 1

Alt.10 �1 �2 �2 �2

Alt.11 0 1 2 1

Alt.12 1 1 0 1

Alt.13 �2 �4 �3 �3

Alt.14 1 5 �1 1

See Table 2 for a description of schemes. Error %¼100% � (estimated�simulated)/
simulated. When the prediction equals the true value E[error%]E 0. The expected absolute
error equals E [|error%|] B2.5%, and E|error %|45% implies significant bias (Po0.05; two
sided).
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DISCUSSION

We have proposed a quantitative genetic model and investigated
methodology to estimate the genetic parameters of traits affected by
IGEs when those IGEs differ systematically between kin and strangers.
Results show that the full set of genetic parameters for the full model
is not statistically identifiable. We also presented a reduced model that
yields unbiased estimates of meaningful linear combinations of
genetic parameters: the variance of the family breeding value, the
covariance between family breeding value and IGEs on strangers and
the variance of IGEs on strangers. The reduced model also provides
estimates of the variance in total breeding value, and predictions of
the total breeding values of individuals.

An interesting question is whether experimental designs exist that
allow estimating all six genetic parameters of the full model
(Equation 3). Our results show that this is not possible when pairs
of individuals can be categorized into either kin or unrelated, each
category shows a different IGE and group composition is the same for
all groups. As long as group composition with respect to family is the
same for all groups, this situation results in full confounding of
the direct effect and the IGE on kin, irrespective of the composition of
the groups (that is, 50/50, 25/75 and so on; Appendix A).

When differences in IGE originate from factors that usually go
together with relatedness such as familiarity, rather than from
relatedness per se, experimental designs that disconnect relatedness
from those factors may allow estimation of the full set of genetic
parameters. For example, when individuals recognize each other
because of prior association (see Introduction), relatives who grow up
together will recognize each other and adjust their behaviour, whereas
relatives who grow up separately will interact similarly to unrelated
individuals. This may, for example, occur in mammals such as grey
mouse lemur (Kessler et al., 2012) or rats (Hepper, 1983, 1986), where
full siblings often grow up in the same litter, whereas paternal half
siblings grow up in different environments. Our preliminary inves-
tigations show that all six genetic parameters are statistically

identifiable in this situation when groups consist of a mix of full
sibs, half sibs and unrelated individuals. A statistically more powerful
approach may come from cross-fostering designs, where full siblings
that grow up in different litters may interact as if they were unrelated.
When cross-fostering is impossible and a mix of full and half siblings
is unavailable, a solution may come from utilizing the variation in
relatedness among pairs of full siblings, estimated using genome-wide
genetic markers (Hill, 1993; Visscher et al., 2006). However, as
variation in relatedness among full siblings is limited, this approach
will require large sample sizes.

When relatedness itself (as opposed to, for example, familiarity) is
the causal factor underlying a difference in IGE, it would seem
unlikely that the full set of genetic parameters can be identified. When
individuals adjust their behaviour according to their relatedness to the
recipient of the behaviour, as predicted by kin selection theory
(Hamilton, 1964), any covariance between trait values of individuals
is a function of relatedness and of genetic parameters of interest,
which depends on this relatedness. This would seem to suggest full
confounding.

However, variation in group composition seems to offer a solution.
For example, having three different group compositions in a popula-
tion may allow estimating all six genetic parameters. The first
composition may have unrelated individuals only, the second may
have two family members supplemented with unrelated individuals
and the third may have three family members supplemented with
unrelated individuals. From the first composition, s2

AD
, sAD;ASu

and
s2

ASu
can be estimated using the traditional direct–indirect mixed

model (Muir, 2005). Then, using the reduced model, s2
AF
ðnf ¼ 2Þ ¼

s2
AD
þ 2sAD;Sf

þ s2
ASf

can be estimated from the second composition,
and s2

AF
ðnf ¼ 3Þ;¼ s2

AD
þ 4sAD;Sf

þ 4s2
ASf

can be estimated from the
third composition, as well as sASf ;Su

and again s2
ASu

. Then, as s2
AD

is
known from the first composition, this yields two equations with two
unknowns, and thus can be solved yielding estimates of sADASf

and
s2

ASf
. Moreover, the estimate of sAF;Su

from either the second or third
composition can be used to obtain sASf ;Su

, because sAD;ASu
is known

from the first composition (see Equation 12b). Then all six
genetic parameters are estimated. Thus, variation in group composi-
tion with respect to family seems to allow estimating all six genetic
parameters. Statistical power, however, may be very limited, and
further complications may arise when IGEs depend on group size
(Hadfield and Wilson, 2007; Bijma, 2010b), which we did not
investigate here.

When IGEs depend on relatedness, the traditional direct–indirect
mixed model that ignores this dependency yields biased estimates of
the direct genetic variance and the direct–indirect genetic covariance,
but an unbiased estimate of the variance in total breeding value. Thus,
even though the full set of genetic parameters is not statistically
identifiable, the total heritable variance and total breeding values can
be estimated, either using the reduced model or the traditional model.
This is an important result, because kin-dependent IGEs appear to be
widespread in natural and domestic populations of both animals and
plants (see Introduction).

The reduced model and traditional model are statistically equiva-
lent, that is, yield the same maximum likelihood, but represent
different linear combinations of the underlying parameters. The main
difference is that the estimates of the reduced model are biologically
meaningful in the context of kin-selection theory (Hamilton, 1964),
as they separate the effects on kin (the family breeding value) from
those on unrelated individuals. The correlation between the family
breeding value and IGE on strangers, for example, measures the
degree of competition or cooperation between families. With the

Table 4 Comparison of the expected (Equation 16) and empirical

estimates for the traditional model

Scheme Error%

ŝ2
AD

ŝAD S ŝ2
AS

ŝ2
ATBV

Basic �1 �2 �2 �1

Alt.1 1 �1 0 1

Alt.2 0 1 0 �1

Alt.3 0 4 �2 0

Alt.4 0 �4 0 2

Alt.5 �2 0 �1 �2

Alt.6 �1 2 1 �1

Alt.7 0 0 0 0

Alt.8 1 2 �1 �3

Alt.9 0 2 2 1

Alt.10 �3 �4 0 �2

Alt.11 �1 �2 0 �1

Alt.12 0 2 0 1

Alt.13 �2 �5 �3 �3

Alt.14 1 3 0 �2

See Table 2 for description of schemes. Error %¼100% � (estimated�expected)/expected,
where the expected values of estimates are taken from Equation 16. When prediction equals
true value E[error%]E0. The expected absolute error equals E[|error%|]B2.5%, and E|error
%|45% implies significant bias (Po0.05;two sided). Beware that expected values do not
correspond to the simulated values (Equation 16).
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exception of the IGEs on strangers and the total breeding value, the
estimates of the traditional model do not seem to have a clear
biological meaning (Equation 16). Thus, the reduced model is
preferable in terms of interpretation.

In this study, we have considered only the random effects;
consequences of kin-dependent IGEs on the fixed effects to be
included in the Xb term of the models have been ignored. When
IGEs depend on relatedness, IGEs on kin vs strangers probably not
only show incomplete correlation, but also differ systematically in
level. In other words, individuals interacting primarily with kin
probably receive more favourable IGEs than those interacting
primarily with strangers, which creates a systematic difference in trait
level between individuals interacting with different numbers of
kin. This is not accounted for by the random effects in the model,
because those are zero on average by construction. Hence, a fixed
effect for the number of relatives an individual interacts with should
be included in the model. This is similar to the inclusion of a fixed
effect for the number of group mates when group size varies. Because
estimation of a fixed effect with a few degrees of freedom is straight
forward, we did not investigate this in detail. In our simulations,
there was no need to account for such a fixed effect, because all
individuals had the same number of kin and strangers among their
group mates.

In animal and plant breeding, the focus is on improving the mean
trait value of the population in the next generations. Theoretical
studies have shown that group and kin selection methods utilize the
total heritable variation for response to selection (Muir, 2005; Bijma
et al., 2007; Ellen et al., 2008; McGlothlin et al., 2010). This theoretical
expectation is supported by results from selection experiments that
have used group and/or kin selection without explicit reference to the
total breeding value (Wade, 1976, 1977; Goodnight, 1985; Muir,
1996). Whether or not this result extends to the situation where IGEs
differ between kin and strangers is interesting, but has not been
investigated to our knowledge.

To optimize selection for traits affected by interactions among
individuals, the ideal selection criterion is the TBV of selection
candidates estimated using all available information. This is because
response to selection equals the change in mean TBV from one
generation to the next, so that maximizing the accuracy of estimated
TBVs also maximizes response to selection. Because Equation 4 is
generally valid, this result holds irrespective of whether or not IGEs
depend on relatedness (Bijma, 2011b). Hence, the availability
of kin and group selection methods does not make estimated TBVs
superfluous. Moreover, knowledge of the total heritable variance
quantifies the intrinsic potential of a population to respond to
selection, and therefore provides a measure of efficiency for breeding
schemes (Bijma, 2011b). The variance in TBV, therefore, is an
important parameter for both optimizing individual selection deci-
sions and evaluation of breeding schemes. This work has shown how
the definition and estimation of the variance in TBV can be extended
to schemes where IGEs differ between kin and strangers. This
extension of variance in TBV to schemes where IGEs differ between
kin and strangers may contribute to breeding plan design and
application.
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APPENDIX A

This appendix shows that the full model is not statistically identifi-
able, whereas the reduced model is identifiable. Estimation of genetic
parameters for direct and indirect genetic effects rests on covariances
between phenotypes of relatives and of their social partners (Lynch
and Walsh, 1998). Only covariances between relatives (or social
partners) present in different groups contribute to the estimation of
genetic parameters because within-group covariances are fully con-
founded with the nongenetic direct and indirect effects. The follow-
ing, therefore, considers between-group covariances only.

Each group consists of members of two families. There are no
genetic covariances between groups not sharing a family; hence those
group combinations can be ignored. Then, when considering two
groups having one family in common, there are three families in total;
the common family, denoted F1, and its partner family in each group,
denoted F2 and F3. Before we derive covariance between individual,
the individual’s total breeding value, which is the total heritable
impact of an individual’s genes on the mean trait value of
the population when interaction differ between kin and strangers,
is given as:

AT;i ¼ ADiþ 2 nf � 1
� �

ASf
þ nf ASu

ðA1Þ

Taking the variance of the total breeding value yields

s2
AT
¼ s2

A
D
þ 2 nf � 1
� �

sA
DASf
þ nf � 1
� �2s2

ASf
þ 2nf nf � 1

� �
sASf ASu

þ n2s2
ASu

ðA2Þ

When we have one family common in two groups, there are only
three informative covariances. First, the covariance between the
phenotypes of a member of F1 in each group,

CovðPi;Pj j i; j 2 F1Þ ¼ r s2
AD
þ 2ðnf � 1ÞsADASf

þðnf � 1Þ2s2
ASf

h i
; ðA3Þ

where r denotes relatedness between members of the same family, and
nf the number of members of F1 in each group (assumed to be the
same in both groups). Second, the covariance between a member of
the common family (F1) in the one group, and a member of a partner
family in the other group (F2 is considered here, but the result for F3

is identical),

CovðPi; Pj j i 2 F1; j 2 F2Þ ¼ r nf sADASu
þ nf ðnf � 1Þ sASf

ASu

h i
: ðA4Þ

Third, the covariance between two members of the partner families
(F2 and F3) in different groups is

CovðPi; Pj j i 2 F2; j 2 F3Þ ¼ r n2
f s

2
ASu

ðA5Þ

This equation shows that the variance of IGE on strangers is
estimable. In total, however, these three equations contain six
unknowns (the six genetic parameters to be estimated) and cannot
be solved. Thus, the full model is not identifiable.

Equations A1 to A3 also show that the reduced model is
identifiable, as they represent the informative covariances and there
are only three genetic parameters to estimate. Moreover, Equations A1
to A3 imply that the expected values of the estimated genetic
parameters of the reduced model are given by Equations 12a–c when
nf ¼ 1

2n.

APPENDIX B

This appendix shows the derivation of the nongenetic covariance
structure generated by Equation 3 (Equations 11 and 14) and refers to
the reduced model. Nongenetic covariances occur only among
individuals within the same group. As the genetic model terms
fully account for genetic covariances within groups, those can be
ignored here.

There are three nongenetic parameters of interest: the covariance
between group members of different families, the covariance between
group members of the same family and the residual variance. Because
all groups have the same composition, these parameters are the same
for all groups. This leads to the block-diagonal residual variance
structure given by Equation 11, which has a single residual variance, a
covariance between group mates of the same family and a second
covariance between group mates of different families.

Consider two group mates, say i and k. The group mates of i of its
own family are denoted j, and those of the other family j’.
Analogously, the group mates of k are denoted l and l’. Note that k
is one of the individuals included in j and j’, whereas i is one of the
individuals included in l and l’. Then, the nongenetic covariance
between the phenotypes of i and k is given by

cov Pi; Pkð ÞE¼ cov EDi
þ
Xn2� 1

j¼1

ESf ;j
þ
Xn

2

j0¼1

ESu;j0 ; EDk
þ
Xn2� 1

l¼1

ESf ;l þ
Xn

2

l0¼1

ESu;l0

 !
:

ðB1Þ
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First consider this covariance when i and k are group members of
different families, giving

cov Pi; Pkð ÞE¼ 2sED;Su
þ n� 2ð ÞsESf ;Su

: ðB2Þ

The first term arises because i affects k and vice versa, whereas the
second term arises because i and k have n�2 group mates in
common. In Equation 10, the nongenetic covariance between
unrelated group mates equals the variance of the random group
effect. Hence,

Eðŝ2
gÞ ¼ 2sED;Su

þ n� 2ð ÞsESf ;Su

which is Equation 14a.
Next, consider the full nongenetic variance. From Equation B1, it

follows that

varðPÞE ¼ s2
ED
þ 1

2n� 1
� �

s2
ESf
þ 1

2ns2
ESu
: ðB4Þ

In Equation 10, the full nongenetic variance is the sum of the group
variance and the residual variance. Hence, the residual variance in
Equation 10 follows from subtracting the group variance from
Equation B4, giving

Eðŝ2
e Þ ¼ s2

ED
þ 1

2n� 1
� �

s2
ESf
þ 1

2ns2
ESu
� s2

g ;

which is Equation 14b.
Finally, consider the covariance when i and k are group members of

the same family,

cov Pi; Pkð ÞE¼ 2sED;Sf
þ 1

2n� 2
� �

s2
ESf
þ 1

2ns2
ESu

ðB5Þ

The first term arises because i affects k and vice versa, the second
term arises because i and k have 1

2n� 2 group mates of their
own family in common and the third term arises because i and k
have 1

2n group mates of the other family in common. In Equations 10
and 11, the covariance between unrelated group mates is the
sum of the group variance and the residual covariance, s2

g þ rs2
e .

Hence, the residual correlation follows from subtracting the
group variance from Equation B5 and dividing by the residual
variance, giving

Eðr̂Þ ¼
2sEDESf

þ 1
2n� 2
� �

s2
ESf
þ 1

2ns2
ESu
� s2

g

s2
e

which is Equation 14c.

APPENDIX C

This appendix shows the derivation of Equations 16a–d, being the
expectations of genetic parameters when the traditional direct-–
indirect model (Equation 15) is applied to data generated by the
model in Equation 3. The derivation uses the method of Bijma
(2010a).

Direct genetic variance
With two families per group, the information for estimating the direct
genetic variance using Equation (15) comes from the variable

zkl¼ �Pkl�j�P
k0 l , in which j ¼ ð12n� 1Þ=1

2n, �Pkl is the mean

phenotype of the family of interest k in group l, and �Pk0 l is the mean
phenotype of the other family ḱ in group l (Equations B15 and B16 in
Bijma, 2010a; the zkl is referred to as the ‘effective record’) and n is the
group size. When the data are generated by Equation 3, the
expectation of zkl conditional on the family of interest k in group l
equals

E zkl j k½ � ¼ AD;kþ 1
2n� 1
� �

ASf ;k� 1
2n� 1
� �

ASu;k; ðC1Þ

which depends not only on the DGE of family k, but also on the IGEs
of family k on kin and strangers. The expected value of the estimated
direct genetic variance follows from the variance of z, giving

Eðŝ2
AD
ÞEqn:15 ¼ s2

AD
þ ð12n� 1Þ2 s2

ASf
� 2sASf

ASu
þ s2

ASu

� �
þ ðn� 2ÞðsADASf

� sA
D

ASu
Þ ;

which is Equation 16a.

Indirect genetic variance
The information for estimating the indirect genetic variance using
Equation (15) comes from the variable zkl ¼ �Pk0 l=ð12nÞ (Equation B18
in Bijma, 2010a). When the data are generated by Equation 3, the
expectation of zkl conditional on the family of interest, equals

E½zkl j k� ¼ ASu;k ðC2Þ

Thus, the expected value of the estimated indirect genetic variance
equals

Eðŝ2
AS
ÞEqn:15 ¼ s2

ASu

which is Equation 16c.

Direct–indirect genetic covariance
From Equations C1 and C2, it follows that

EðŝADS
ÞEqn:15 ¼ sADASu

þð12n� 1Þ ðsASf
ASu
� s2

ASu
Þ

which is Equation 16b. Thus, when the IGE on kin is identical to the
IGE on strangers, the second term becomes zero,
andEðŝADS

ÞEqn:15 ¼ sADS
.

Total heritable variation
The information for estimating the total heritable variance using
Equation (15) comes from the variable zkl ¼

Pn
j¼1 Pkl;j =ð12nÞ (Equa-

tion B20 in Bijma, 2010a). When the data are generated by
Equation 3, the expectation of zkl conditional on the family of interest
equals

E zkl j k½ � ¼ 1
2n ADþ 1

2n� 1
� �

ASf
þ 1

2n ASu

h i
= ð12nÞ ¼ AT;k ðC3Þ

Thus, the expected value of the estimated total heritable variance
equals

Eðŝ2
AT
ÞEqn:15 ¼ s2

AT
;

which is Equation 16d.

APPENDIX D

This appendix shows details of the stochastic simulation. Breeding
values of individuals in the base generation were simulated from the
multivariate normal distribution

AD

ASf

ASu

2
4

3
5 � N

0
0
0

0
@

1
A ;

s2
AD

rAD;Sf
sAD

sASf
rAD;Su

sAD
sASu

rAD;Sf
sAD

sASf
s2

ASf
rASf ;Su

sASf
sASu

rAD;Su
sAD

sASu
rASf ;Su

sASf
sASu

s2
ASu

0
B@

1
CA

2
64

3
75:

To produce the second generation, sires and dams of the first
generation were mated at random, each sire being mated to 10 dams,
and each dam producing 10 full-sib offspring. Second-generation
breeding values for all three genetic effects were simulated as
Ai ¼ 1

2Asireþ 1
2AdamþMSi, where MS denotes the Mendelian sampling

term. The MS were simulated from the multivariate normal
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distribution

MSD
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MSSu
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1
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Nongenetic effect were simulated only for the second generation,
from

ED

ESf

ESu

2
4

3
5 � N

0
0
0

0
@

1
A ;

s2
ED

rED;Sf
sED

sESf
rED;Su

sED
sESu

rED;Sf
sED

sESf
s2

ESf
rESf ;Su
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sESu

rED;Su
sED

sESu
rESf ;Su

sESf
sESu

s2
ESu

0
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1
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2
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3
75:

Then, we calculated the phenotypes of the individual from second
generation using the full model (Equation 3). Those phenotypic
values were used to estimate the variance components. We simulated
100 replicates for each set of genetic parameter and the estimates were
averaged over replicates.
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