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Lower-grade gliomas (LrGG), characterized by invasiveness and heterogeneity, remain 
incurable with current therapies. Clinicopathological features provide insufficient 
information to guide optimal individual treatment and cannot predict prognosis completely. 
Recently, an increasing amount of studies indicate that the tumor microenvironment plays 
a pivotal role in tumor malignancy and treatment responses. However, studies focusing 
on the tumor microenvironment (TME) of LrGG are still limited. In this study, taking 
advantage of the currently popular computational methods for estimating the infiltration of 
tumor-associated normal cells in tumor samples and using weighted gene co-expression 
network analysis, we screened the co-expressed gene modules associated with the 
TME and further identified the prognostic hub genes in these modules. Furthermore, 
eight prognostic hub genes (ARHGDIB, CLIC1, OAS3, PDIA4, PARP9, STAT1, TAP2, 
and TAGLN2) were selected to construct a prognostic risk score model using the least 
absolute shrinkage and selection operator method. Univariate and multivariate Cox 
regression analysis demonstrated that the risk score was an independent prognostic factor 
for LrGG. Moreover, time-dependent ROC curves indicated that our model had favorable 
efficiency in predicting both short- and long-term prognosis in LrGG patients, and the 
stratified survival analysis demonstrated that our model had prognostic value for different 
subgroups of LrGG patients. Additionally, our model had potential value for predicting the 
sensitivity of LrGG patients to radio- and chemotherapy. Besides, differential expression 
analysis showed that the eight genes were aberrantly expressed in LrGG compared to 
normal brain tissue. Correlation analysis revealed that the expression of the eight genes 
was significantly associated with the infiltration levels of six types of immune cells in LrGG. 
In summary, the TME-related eight-gene signature was significantly associated with the 
prognosis of LrGG patients. They might act as potential prognostic biomarkers for LrGG 
patients, offer better stratification for future clinical trials, and be candidate targets for 
immunotherapy, thus deserving further investigation.

Keywords: lower-grade gliomas, tumor microenvironment, weighted gene co-expression network analysis, 
prognosis, immune cells infiltration
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InTRODUcTIOn
Lower-grade gliomas (LrGG) are infiltrative and heterogeneous 
brain neoplasms that include World Health Organization (WHO) 
grade II and III diffuse gliomas (Patel et al., 2017). Because of their 
highly invasive characteristics, complete neurosurgical resection 
is unachievable for most patients. The residual tumor results in 
recurrence and malignant progression at variable intervals; some 
of these tumors recur and even progress to glioblastoma (WHO 
grade IV) within months, whereas others remain indolent for years 
(van den Bent et al., 2011; Zhou et al., 2017). The current treatment 
modalities for LrGG typically involve neurosurgical resection, 
observation, chemotherapy, and/or radiotherapy. However, none 
of these treatment options are curative for this disease (Kumthekar 
et al., 2015). The main purpose of treatment is to delay tumor 
progression and improve quality of life (Duffau and Taillandier, 
2015). However, due to considerable heterogeneity between LrGG, 
an optimal treatment strategy against this disease at the individual 
level still remains a challenge (Duffau, 2018). From this perspective, 
it is necessary to develop reliable approaches for identifying subsets 
of patients at high risk of deterioration and to find novel molecular 
targets for the development of effective therapeutic strategies.

Recently, the tumor microenvironment (TME), including 
tumor-associated normal epithelial and stromal cells, immune 
cells, and vascular cells, has been observed to participate in 
cancer biology and has received increasing amounts of attention. 
Increasing studies show that a highly heterogeneous TME plays 
a substantial role in tumor malignancy and treatment responses 
and critically impacts immunotherapeutic strategies (Platten et al., 
2014; Li et al., 2017; Ma et al., 2018). For example, epithelial and 
stromal cells participate in tumor growth, malignant progression, 
and treatment resistance (Kalluri and Zeisberg, 2006; Straussman 
et al., 2012). Infiltrating immune cells, including macrophages, 
dendritic cells, mast cells, natural killer cells, and lymphocytes, also 
exhibit tumor-promoting features in a context-dependent manner 
(Fridman et al., 2012; Yoshihara et al., 2013). Thus, strengthening the 
knowledge of TME and highlighting the mechanism underlying its 
effects will ultimately contribute to the diagnosis and treatment of 
gliomas. Considering the importance of TME in cancer treatment, 
many computational methods have been developed to estimate the 
infiltration of tumor-associated normal cells in tumor samples using 
genomic approaches such as ESTIMATE (Estimation of STromal 
and Immune cells in MAlignant Tumours using Expression data), 
TIMER (Tumor Immune Estimation Resource), and CIBERSORT 
(Cell-type Identification By Estimating Relative Subsets Of RNA 
Transcripts) (Yoshihara et al., 2013; Newman et al., 2015; Li T. et al., 
2017). These methods can facilitate a comprehensive understanding 
of tumor biology and the development of robust predictive models 
in long-term tumor management. In fact, increasing studies have 
successfully applied these algorithms to various cancers including 
prostate cancer, breast cancer, and colon cancer. (Ali et al., 2016; 
Alonso et al., 2017). However, application of these algorithms to 
explore the cellular networks underlying the glioma TME are still 
limited, especially in LrGG.

In the present study, through construction of gene 
co-expression networks using a weight gene co-expression 
network analysis (WGCNA) and the identification of 

TME-related gene co-expression modules, we aimed to identify 
the prognostic genes involved in the TME of LrGG and to set 
up an effective prognostic model for LrGG. Our findings might 
provide novel insights into the TME of LrGG and provide 
important clues for predicting the prognosis of LrGG and for the 
selection of individualized therapies for LrGG patients.

MaTERIaLS anD METhODS

Data Sets
RNA sequencing data of The Cancer Genome Atlas (TCGA) LrGG 
(530 samples, 516 patients) containing RSEM normalized data and 
log2(RSEM+1) transformed data were obtained from the Broad 
GDAC firehose (http://gdac.broadinstitute.org/) and the University 
of California, Santa Cruz, Xena browser (UCSC Xena, https://
xenabrowser.net/), respectively. The clinical data of LrGG (516 
patients, five of which had no survival data) were also downloaded 
from UCSC Xena. The stromal score (positively correlating with the 
presence of stroma in tumor tissue) and immune score (positively 
correlating with the level of immune cells infiltrations in tumor 
tissue) of TCGA LrGG dataset generated using the ESTIMATE 
algorithm were downloaded from https://bioinformatics.
mdanderson.org/estimate/. Another cohort of LrGG patients 
(181  patients, nine of which had no survival data) was obtained 
from the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.
org.cn/), and their mRNA sequencing data (FPKM) and clinical 
data were downloaded. In the present study, the TCGA cohort was 
used as training data and the CGGA cohort was used for validation. 
The information of LrGG patients including survival information 
from both TCGA and CGGA datasets is shown in Table 1.

TaBLE 1 | Clinical characteristics of LrGG with survival information in TCGA and 
CGGA datasets.

TcGa cGGa

No. of patients 511 172
age (mean, year) 40.03 40.42
Gender
 Male 283 105
 Female 228 67
Censor
 alive 386 122
 death 125 50
WHO grade
 G II 246 105
 G III 264 67
 unknown 1 –
IDH status
 WT 90 44
 Mut 411 128
 unknown 10 –
MGMT promoter methylation –
 methylated 416 –
 unmethylated 85 –
 unknown 10 –
karnofsky performance score (KPS) –
 >70 254 –
 ≤70 47 –
 unknown 210 –
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Weighted Gene co-Expression network 
analysis
Weighted gene co-expression network analysis (WGCNA) was 
performed using the “WGCNA” package (Langfelder and Horvath, 
2008) in R language, version 3.5.3 (https://www.r-project.org). 
According to the instructions for WGCNA, the RSEM data were 
used for subsequent analysis. Prior to network construction, we 
checked the RNA sequencing data and removed the genes and 
samples with too many missing values as well as obvious outlier 
samples. Then, based on the criterion of approximate scale-free 
topology, we chose the soft thresholding power β to construct 
unsigned co-expression networks. Co-expression similarity was 
calculated, defined as Sij, which equals the absolute Pearson’s 
correlation coefficient between gene i and j. Then, the similarity 
matrix was transformed to the weighted adjacency matrix, 
defined as Aij = Sij

β. The topological overlap matrix (TOM) was 
derived from the weighted adjacency matrix. Based on the TOM, 
a hierarchical clustering tree (dendrogram) of genes was produced 
using a hierarchical clustering method. Finally, we used the 
standard method, Dynamic Tree Cut, to identify co-expression 
gene modules with a deep split level of two and a minimum module 
size of 30. A height cut of 0.25, corresponding to a correlation of 
0.75, was used to merge similar modules. We calculated the Gene 
Significance (GS) and Module Membership (MM) to evaluate the 
gene relationship between ESTIMATE scores (immune score and 
stromal score) and each module. Modules significantly associated 
with the two scores (p value < 0.05) were screened out, and the 
genes in these modules were selected for further analysis.

Functional Enrichment analysis
Functional enrichment analyses, including gene ontology (GO) 
analysis comprising cellular component (CC), molecular function 
(MF), and biological process (BP), and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis, were performed 
using the clusterProfiler package in R language (Yu et al., 2012). 
The reference gene set for analyses is whole transcriptome as 
RefSeq transcript set. The P value adjusted by Benjamini and 
Hochberg method.

hub Gene Identification and Module 
Visualization
Hub genes were identified using the R package WGCNA. The 
thresholds for identifying hub genes in each target module were 
|MM| > 0.8 and |GS| > 0.2. Finally, we obtained 54, 15, and 8 hub 
genes in the green, salmon, and magenta module, respectively. 
Visualization of the targeted modules was performed using 
Cytoscape (Shannon et al., 2003), an open source software for 
visualizing molecular interaction networks.

Protein-Protein Interaction analysis
Protein-protein interaction (PPI) analysis of survival-related 
genes was performed using an online software, The Search 
Tool for the Retrieval of Interacting Genes (STRING, https://
string-db.org/) (Szklarczyk et al., 2019), and the PPI network was 
visualized using Cytoscape.

Survival analysis
Kaplan–Meier survival analysis and the Cox proportional hazard 
model were performed using R language packages (survival, 
survminer, and ggplot2).

construction of Prognostic Risk Score 
Model via the Least absolute Shrinkage 
and Selection Operator Method
Least absolute shrinkage and selection operator (LASSO) is a 
penalization method to shrink and select variates for regression 
(Tibshirani, 1997). It has been widely used in the genetic data 
analyses of various cancers, including TCGA data (Zhao et al., 
2015). In this article, univariate Cox regression analysis was first 
performed to identify 74 prognostic hub genes of three TME-
related gene co-expression modules in TCGA cohort. As one 
(LILRB4) of these 74 genes was missing in the CGGA LrGG 
cohort, the remaining 73 genes were selected for LASSO Cox 
regression analysis in TCGA LrGG cohort, and finally, 8 prognostic 
genes were selected to the construct a prognostic risk model. The 
formula for calculating the risk score was as follows: risk score = 
(-0.1880 * expression level of ARHGDIB) + (0.3131 * expression 
level of CLIC1) + (0.0546 * expression level of OAS3) + (0.2527 * 
expression level of PARP9) + (0.1052 * expression level of STAT1) + 
(0.1776 * expression level of PDIA4) + (0.2479 * expression level of 
TAGLN2) + (-0.2525 * expression level of TAP2).

Time Dependent Receiver Operating 
characteristic curve analysis
The Receiver Operating Characteristic (ROC) curve analysis is a 
widely used method for assessing the sensitivity and specificity 
of a continuous diagnostic marker for a binary disease variable 
(Kamarudin et al., 2017). Time-dependent ROC curve analysis was 
used to evaluate the performance, including the predictive accuracy 
and sensitivity, of our prognostic model within 1 year, 3 years, and 
5 years of OS using the R package, survivalROC (Heagerty et al., 
2000). The optimal cutoff of the risk score was calculated using 
the Youden index. In the TCGA cohort, the optimal cutoffs of the 
risk score for 1 year, 3 years, and 5 years of OS were 7.61036429, 
7.37154483, and 7.37154483, respectively. In the CGGA cohort, 
the optimal cutoffs for 1 year, 3 years, and 5 years of OS were 
1.790661239, 1.790661239, and 1.736271505, respectively. In both 
TCGA and CGGA cohorts, the patients were divided into high- 
and low-risk groups based on the optimal cutoff for 5 years of OS, 
respectively. In TCGA LrGG cohort, 121 patients were classified 
in the high-risk group and 390 patients belonged to the low-risk 
group. In the CCGA LrGG cohort, there were 64 patients in the 
high-risk group and 108 patients in the low-risk group.

Differential Expression analysis
Differential expression analysis of eight genes within our model 
was performed using the online database Gene Expression 
Profiling Interactive Analysis (GEPIA). GEPIA (Tang et al., 
2017) is an interactive web platform for gene expression analysis, 
which integrates the cancer samples from the TCGA database 
and normal samples from the GTEx database.
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analysis of Immune Infiltration
TIMER is a comprehensive resource for the analysis of immune 
infiltrates across various cancers (https://cistrome.shinyapps.io/
timer/) (Li T. et al., 2017). An estimation of immune cells, including 
B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, 
and dendritic cells, in TCGA LrGG was performed using TIMER. 
We analyzed the correlation between the risk model system (risk 
score and eight genes within the model) and infiltrating levels of six 
immune cells using an R package (psych). Spearman’s correlation 
was calculated by the corr.test function in psych package, and 
scatter plots were generated using the ggplot2 package in the R 
language. We used the following standard to describe the strength 
of correlation for the absolute value of r: absolute values between 
0 and 0.3 indicate a weak correlation; absolute values between 0.3 
and 0.7 indicate a moderate correlation; absolute values between 
0.7 and 1.0 indicate a strong correlation (Akoglu, 2018).

RESULTS

Immune Scores and Stromal Scores 
are Significantly associated With LrGG 
Subtypes and Prognosis
The ESTIMATE algorithm is based on a single sample Gene Set 
Enrichment Analysis, and its predictive ability has been well 
validated (Yoshihara et al., 2013). The stromal score and immune 
score positively reflect the presence of stroma cells and immune 
cells, respectively, in tumor tissues. First, we plotted the distribution 
of immune scores and stromal scores in the TCGA LrGG cohort. 
The results showed that both immune scores and stromal scores 
in grade III glioma were significantly higher than those in grade II 
glioma (Figures 1A, B). To reveal the molecular expression patterns 
of immune and stromal scores, we compared both immune scores 
and stromal scores in IDH (isocitrate dehydrogenase) subtypes 
[including IDH wildtype (IDH-Wt) and IDH Mutant (IDH-Mut)] 
as well as four transcriptome subtypes (including mesenchymal, 
classical, neural, and preneural) of LrGG. The results showed that 
both immune scores and stromal scores in IDH-Mut subtype 
samples were significantly lower than those in IDH-Wt subtype 
samples (Figures 1C, D). The immune scores of four transcriptome 
subtypes were significantly different and those of mesenchymal 
subtype patients were the highest, followed by the classical subtype, 
neural subtype, and proneural subtype (Figure 1E). Separately, the 
stromal scores of transcriptome subtypes were similar to the results 
of immune scores, except there was no significant difference between 
the stromal scores of neural and proneural subtype samples (Figure 
1F). To determine the potentially clinical value of the immune score 
and the stromal score for patients with LrGG, the Kaplan–Meier 
survival analysis was performed. Based on the median of immune 
score and stromal scores, LrGG were divided into two groups, the 
high group (score > median) and low group (score ≤ median). The 
result showed that patients in the low immune score group had a 
significantly longer overall survival (OS) compared to patients in 
the high immune score group (Figure 1G). Similarly, cases with 
a low stromal score had better prognosis than those with a high 
stromal score (Figure 1H). In summary, these results indicate that 
both immune scores and stromal scores correlate significantly 

with LrGG subtypes, and that high scores predict a relatively poor 
prognosis for LrGG patients.

construction of Weight co-Expression 
network Using WGcna
To provide system-level insights and high sensitivity to small fold 
changes in genes, WGCNA can be applied to high-throughput 
microarray or RNA-seq datasets and can describe the correlation 
between gene modules and external conditions (Pei et al., 2017). 
Prior to WGCNA, the RNA sequencing data of TCGA LrGG 
(530 samples) was constructed into a matrix with gene IDs as row 
names and sample barcodes as column names. Further, genes and 
samples with too many missing values were removed and the genes 
were then ranked by variance from large to small; the top 5,000 
genes were selected for WGCNA. After one outlier was identified 
and removed (Supplementary Figure S1), we constructed the 
co-expression network based on the remaining 529 samples with 
5,000 genes via the WGCNA package. As shown in Figure 2A, 
β = 4, which is the lowest power for which the scale-free topology fit 
index reached 0.90, was selected to calculate the adjacencies. Based 
on TOM, a hierarchical clustering tree (dendrogram) of genes 
was produced using the hierarchical clustering function. After 
merging similar modules, we obtained 13 gene modules (Figures 
2B–D) with size ranging from 37 to 1,426 genes. We assigned each 
co-expression module an arbitrary color for reference: black, blue, 
brown, green, greenyellow, magenta, pink, purple, red, salmon, 
tan, turquoise, and yellowturquoise. These modules contained 262, 
791, 647, 358, 115, 206, 220, 133, 348, 37, 70, 1,426, and 371 genes, 
respectively. As a single group, the non-co-expressed group was 
designated as ‘gray’ based on the WGCNA developer’s rationale, 
and 16 genes in this group were removed.

Identifying the TME-associated Modules 
and Prognostic hub Genes of LrGG
To determine whether any module was associated with immune 
scores and stromal scores, a principal components analysis was 
performed to generate the module eigengene (ME). MEs provide 
single-column summary measures of the overall gene expression 
level of each co-expression module. Then we calculated the 
correlations between the scores and each co-expression module. The 
results showed that 11 modules including greenyellow, tan, purple, 
yellow, pink, salmon, green, magenta, brown, red, and turquoise were 
correlated with immune scores and stromal scores (Figure 2E, p 
value < 0.05). Furthermore, GO enrichment analysis was performed 
to identify TME-related modules from the 11 abovementioned 
modules. The results revealed that the three co-expression modules, 
green, salmon, and magenta, were significantly associated with 
the TME (Supplementary Figure S2, Supplementary Table S1). 
Consistently, these three modules belong to the same branch of 
the clustering dendrogram of module eigengenes (Figure 2B). 
However, the remaining modules were rarely correlated with TME 
(Supplementary Table S2). In a co-expression network, hub genes 
are defined as genes inside co-expression modules that have high 
connectivity (Langfelder and Horvath, 2008). Hub genes are highly 
co-expressed with other genes and play key roles in critical pathways 
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FIGURE 1 | Immune score and stromal score correlate with LrGG subtype and outcome. (a–B) Both immune score and stromal score positively associated with the 
WHO grade in LrGG. (c–D) Both Immune score and stromal score associated with the IDH status in LrGG. (E–F) Both immune score and stromal score corelated 
with the transcriptome subtypes of LrGG. (G–h) Both immune score and stromal score associated with the prognosis of LrGG. *** P 0.001, ns P 0.05, (a–F) t-test, 
(G–h) Log-rank test.
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(Uddin and Singh, 2017). To identify the hub genes of the three target 
modules, intramodular connectivity and module membership for all 
genes in each module were calculated using the WGCNA package. 
Based on the preset threshold (|MM| > 0.8 and |GS| > 0.2), we 
identified 54, 15, and 8 hub genes in the green, salmon, and magenta 
module, respectively. The co-expression network of the hub genes in 
each module was visualized using Cytoscape based on the weight, 
which indicated that these hub genes were highly connected (Figure 

3A). To identify the prognostic genes of LrGG patients from the 77 
hub genes, univariate Cox regression analysis was performed and 
the result showed that 74 genes were significantly correlated with the 
OS of LrGG patients in TCGA cohort (p value < 0.05, Table 2), and 
the Kaplan-Meier survival curves of the top nine significant genes 
are shown in Figures 3B–J. In addition, 70 of the 74 genes were 
well validated in the LrGG cohort from the CGGA, an independent 
glioma database (Table 2).

FIGURE 2 | Weighted gene co-expression network of LrGG. (a) Analysis of network topology for various soft-thresholding powers and identification of suit soft 
-thresholding power to construct a scale-free network. (B) Clustering dendrogram of consensus module eigengenes. The red line represents merging threshold and 
modules with a correlation coefficient more than 0.75 were merged. (c) Hierarchical cluster analysis dendrogram used to detect co-expression models along with 
corresponding color assignments in LrGG. (D) The eigengene adjacency heatmap of 13 co-expression models. The eigengene adjacency AIJ = (1 + cor (EI, EJ))/2. 
The table is color-coded by adjacency according to the color legend, which decreased in size from red to blue. (E) Correlation between the gene modules and 
immune scores as well as stromal score. Rows correspond to module eigengenes, columns correspond to traits. Each cell contains the corresponding correlation 
and p-value. The table is color-coded by correlation according to the color legend, which decreased in size from red to green.
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FIGURE 3 | Visualization of hub genes in three modules and Kaplan-Meier survival curves of the top nine prognostic genes. (a) Visualization of hub genes in the 
green, magenta, and salmon modules, respectively, based on weight. (B–J) Kaplan-Meier survival curves for the top nine prognostic genes ranked by p value from 
small to large (grouped by median value of the gene expression level).
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TaBLE 2 | Univariate Cox analysis of 77 hub genes.

hub genes TcGa P value
(Wald test)

cGGa P value
(Wald test)

hR (95% cI) hR (95% cI)

TAGLN2 1.88 (1.65-2.15) 4.03E-21 2.54 (1.97-3.27) 4.29E-13
CLIC1 2.05 (1.76-2.4) 2.19E-19 1.98 (1.62-2.41) 2.76E-11
PDIA4 2.5 (1.98-3.15) 1.37E-14 2.89 (2.15-3.9) 2.56E-12
SERPINH1 1.78 (1.53-2.06) 2.18E-14 3.29 (2.3-4.71) 6.56E-11
PARP9 2.05 (1.7-2.46) 3.09E-14 3.22 (1.91-5.44) 1.19E-05
MYL12A 2.17 (1.77-2.66) 1.33E-13 2.3 (1.74-3.04) 4.05E-09
ANXA2 1.56 (1.39-1.76) 2.42E-13 6.11 (3.57-10.4) 3.83E-11
LAMC1 1.87 (1.58-2.22) 2.94E-13 1.99 (1.61-2.46) 2.63E-10
MRC2 1.73 (1.49-2.02) 1.47E-12 1.5 (1.31-1.73) 9.24E-09
STAT1 1.85 (1.56-2.2) 4.17E-12 2.21 (1.65-2.98) 1.43E-07
S100A11 1.65 (1.43-1.91) 8.17E-12 1.91 (1.56-2.34) 3.86E-10
OAS3 1.56 (1.37-1.78) 1.69E-11 1.57 (1.23-2) 3.17E-04
LGALS3BP 2.02 (1.64-2.49) 4.26E-11 2.99 (2.16-4.12) 2.81E-11
PARP14 1.85 (1.54-2.22) 6.28E-11 1.99 (1.48-2.66) 4.32E-06
IFI6 1.45 (1.29-1.62) 1.24E-10 1.59 (1.28-1.97) 2.31E-05
CECR1 1.78 (1.49-2.14) 2.40E-10 65.5 (3.92-1090) 3.61E-03
LAP3 2.15 (1.68-2.74) 7.16E-10 3.36 (2.35-4.81) 3.19E-11
BST2 1.6 (1.38-1.87) 1.36E-09 1.85 (1.49-2.3) 2.00E-08
TRIM22 1.69 (1.42-2) 1.48E-09 3.78 (2-7.15) 4.46E-05
TAP1 1.77 (1.44-2.17) 6.05E-08 1.94 (1.46-2.56) 3.64E-06
LHFPL2 1.65 (1.37-2) 2.26E-07 2.2 (1.56-3.11) 7.35E-06
HLA.B 1.56 (1.31-1.84) 2.65E-07 2.03 (1.58-2.62) 4.57E-08
HLA.DRA 1.32 (1.19-1.47) 3.14E-07 1.67 (1.38-2.01) 1.07E-07
FCGR2A 1.43 (1.24-1.64) 4.44E-07 4.11 (2.09-8.08) 4.16E-05
CD74 1.36 (1.2-1.53) 5.62E-07 1.66 (1.35-2.03) 1.10E-06
OLFML3 1.53 (1.29-1.81) 1.37E-06 5.65 (3.13-10.2) 9.36E-09
IL13RA1 1.64 (1.34-2) 1.41E-06 1.78 (1.25-2.55) 0.00142
B2M 1.7 (1.37-2.12) 2.18E-06 2.41 (1.7-3.42) 7.45E-07
PSMB8 1.7 (1.36-2.11) 2.27E-06 2.7 (1.83-3.99) 5.12E-07
HLA.DMB 1.39 (1.21-1.59) 2.71E-06 1.86 (1.46-2.36) 5.49E-07
HCLS1 1.41 (1.22-1.64) 4.25E-06 1.86 (1.4-2.46) 1.43E-05
CTSZ 1.57 (1.29-1.91) 6.24E-06 2.05 (1.56-2.68) 2.34E-07
HLA.DMA 1.37 (1.2-1.58) 6.41E-06 1.88 (1.49-2.37) 1.17E-07
HLA.E 1.71 (1.35-2.15) 7.07E-06 1.85 (1.27-2.69) 0.00134
FCGR3A 1.27 (1.14-1.4) 7.41E-06 81300 (191–34700000) 2.53E-04
MYO1F 1.44 (1.23-1.69) 7.49E-06 2.14 (1.53-3.01) 1.09E-05
CTSB 1.98 (1.46-2.7) 1.37E-05 3.06 (1.87-4.99) 7.58E-06
SLA 1.42 (1.21-1.67) 1.77E-05 2.88 (1.26-6.57) 0.0119
INPP5D 1.49 (1.24-1.8) 2.19E-05 48.8 (2.49-958) 0.0105
CTSS 1.38 (1.18-1.62) 5.25E-05 3.02 (1.81-5.05) 2.49E-05
SIPA1 1.51 (1.23-1.86) 8.46E-05 85.2 (9.07-800) 1.00E-04
MS4A6A 1.26 (1.12-1.41) 9.43E-05 11.5 (4.11-32.1) 3.26E-06
NPC2 1.56 (1.25-1.96) 0.000107 2.35 (1.7-3.24) 2.10E-07
ARPC1B 1.44 (1.2-1.74) 0.000109 2.22 (1.64-3.02) 3.29E-07
LGALS9 1.38 (1.17-1.63) 0.000151 2.48 (1.42-4.31) 0.00133
C1QB 1.3 (1.13-1.49) 0.000152 1.85 (1.47-2.33) 2.16E-07
RNASET2 1.4 (1.17-1.67) 0.000185 1.76 (1.28-2.43) 0.000529
HAVCR2 1.33 (1.14-1.56) 0.000257 1.68 (1.26-2.25) 0.000486
CD37 1.32 (1.13-1.52) 0.000289 1.8 (1.25-2.59) 0.00146
CYBA 1.35 (1.15-1.59) 0.000296 1.87 (1.43-2.44) 4.36E-06
ITGB2 1.3 (1.12-1.5) 0.000366 3.15 (1.92-5.18) 5.67E-06
LCP1 1.35 (1.14-1.6) 0.000445 1.68 (1.23-2.29) 0.00112
C3 1.24 (1.1-1.39) 0.000501 1.62 (1.33-1.97) 1.35E-06
TAP2 1.67 (1.25-2.22) 0.00055 2.21 (1.32-3.7) 0.00251
ARHGDIB 1.41 (1.16-1.71) 0.000563 2.08 (1.55-2.78) 8.82E-07
C1QC 1.28 (1.11-1.48) 0.000726 1.76 (1.36-2.29) 1.90E-05
CD53 1.31 (1.12-1.54) 0.000852 11100 (4.27-28800000) 0.0202
C1QA 1.26 (1.1-1.45) 0.000954 1.89 (1.49-2.4) 1.80E-07
SPI1 1.3 (1.11-1.53) 0.00101 2.39 (1.64-3.48) 5.46E-06
TNFRSF1B 1.35 (1.13-1.61) 0.00109 1.76 (1.25-2.5) 0.00132
CD68 1.31 (1.11-1.54) 0.0011 2.03 (1.49-2.78) 8.69E-06
TYROBP 1.28 (1.1-1.5) 0.00179 2.94 (1.74-4.96) 5.30E-05

(Continued)
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Functional Enrichment and PPI analysis of 
Prognostic Genes
To further understand the underlying mechanism of these 
prognostic genes, functional enrichment analysis was performed. 
GO enrichment analysis showed the 70 prognostic genes 
significantly associated with immune-related terms. For GO 
analysis, a total of 366 terms of biological process (BP), 81 terms 
of cellular component (CC), and 21 terms of molecular function 
(MF) were identified to be statistically significant (adjusted p 
value < 0.05, Benjamini and Hochberg method, Supplementary 
Table S3). The top terms of BP included neutrophil 
degranulation, activation, neutrophil mediated immunity, and 
antigen processing and presentation (Figure 4A). MF indicated 
enrichments predominantly involved in MHC protein binding, 
cell adhesion molecule binding, and antigen binding (Figure 
4B). As for CC, these genes showed significant enrichment 
in the MHC protein complex, vacuolar lumen, and collagen-
containing extracellular matrix (Figure 4C). Additionally, KEGG 
pathway analysis revealed that these genes were significantly 
enriched in immune related pathways such as antigen processing 
and presentation, Th1 and Th2 cell differentiation, Th17 cell 
differentiation, and Leukocyte transendothelial migration 
(Figure 4D, Supplementary Table S3). To further understand 
the interaction among these genes, PPI networks (which 
contained 70 nodes and 366 edges) were constructed based on 
the STRING database (Figure 4E). This network contained 70 
nodes and 366 edges and was highly connected.

construction and Validation of Prognostic 
Risk Score Model for LrGG
Through the LASSO regression method, eight genes, including 
ARHGDIB, CLIC1, OAS3, PARP9, PDIA4, STAT1, TAGLN2, and 
TAP2, were selected to construct the prognostic risk score model 
(Figures 5A, B). The formula for calculating risk score was as 
follows: risk score = (-0.1880 * expression level of ARHGDIB) + 
(0.3131 * expression level of CLIC1) + (0.0546 * expression level 
of OAS3) + (0.2527 * expression level of PARP9) + (0.1052  * 

expression level of STAT1) + (0.1776 * expression level of 
PDIA4)  + (0.2479 * expression level of TAGLN2) + (-0.2525 * 
expression level of TAP2). To evaluate the predictive accuracy 
and sensitivity of our prognostic model, a time-dependent ROC 
curve analysis was performed. In the TCGA cohort, the area 
under the ROC curve (AUC) of this model for 1-, 3-, and 5-year 
OS was 0.882, 0.831, and 0.711, respectively (Figure 6A). Next, 
based on the optimal cutoff value (7.37154483) for the 5-year 
OS, our model presented good sensitivities and specificities to 
predict the 1-year (sensitivity = 0.906, specificity = 0.806), 3-year 
(sensitivity = 0.668, specificity = 0.889), and 5-year (sensitivity = 
0.486, specificity = 0.915) OS, and we divided the patients in 
the TCGA LGG cohort into the high-risk group and low-risk 
group (Figure 6B). The heatmap showed that these eight genes 
were remarkably overexpressed in the high-risk group (Figure 
6C). Additionally, differential expression analysis via the GEPIA 
revealed that all eight genes were significantly upregulated in 
LrGG samples compared with those in normal brain tissues 
(Supplementary Figure S3). To evaluate the prediction ability 
of risk score on OS and Relapse Free Survival (RFS) of LrGG 
patients, the Kaplan-Meier analysis was performed. The results 
showed that patients in the high-risk group had significantly 
shorter OS and RFS than those in the low-risk group based on the 
TCGA dataset (Figures 6D–E). Furthermore, these results were 
well validated in the CGGA LrGG cohort. In the CGGA cohort, 
the AUC of this model for 1-, 3-, and 5-year OS was 0.878, 0.909, 
and 0.892, respectively (Figure 6F). Using the same formula and 
standard for grouping, our model also presented good sensitivities 
and specificities for predicting the 1-year (sensitivity  = 0.991, 
specificity = 0.706), 3-year (sensitivity  = 0.907, specificity = 
0.820), and 5-year (sensitivity = 0.810, specificity = 0.891) OS, 
and the patients were divided into high-risk and low-risk group; 
the patients in the low-risk group showed a significantly better 
outcome than those in the high-risk group (Figures 6G–I) in the 
CGGA cohort. Taken together, these results suggest the potential 
favorable efficiency as well as general applicability of this eight-
gene model in predicting short- and long-term prognosis in 
patients with LrGG.

TaBLE 2 | Continued

hub genes TcGa P value
(Wald test)

cGGa P value
(Wald test)

hR (95% cI) hR (95% cI)

LAPTM5 1.29 (1.1-1.51) 0.00187 1.77 (1.36-2.31) 2.12E-05
RHBDF2 1.28 (1.09-1.49) 0.00204 4.18 (0.874-20) 0.0733
HMHA1 1.37 (1.1-1.71) 0.00578 5.4 (0.66-44.1) 0.116
NCKAP1L 1.23 (1.06-1.43) 0.006 8.49 (3.04-23.7) 4.56E-05
ADORA3 1.24 (1.06-1.44) 0.00611 1.37 (1.02-1.83) 0.0375
CD4 1.27 (1.06-1.52) 0.00883 2.37 (1.47-3.84) 0.000441
APBB1IP 1.2 (1.04-1.38) 0.0116 1.42 (1.06-1.9) 0.0178
LILRB4 1.18 (1.03-1.36) 0.0208 Null Null
SYK 1.19 (1.02-1.39) 0.0232 8.09e+13 (4.32e-15-1.51e+42) 0.335
C3AR1 1.18 (1.02-1.35) 0.0237 1.38 (1.05-1.81) 0.0228
CYBB 1.16 (1.02-1.33) 0.0263 1.59 (1.21-2.1) 0.000967
DOCK2 1.17 (1.01-1.35) 0.0352 1.72 (1.18-2.49) 0.00445
UBE2L6 1.44 (0.974-2.12) 0.0673 – –
SLC2A5 1.1 (0.963-1.27) 0.154 – –
AIF1 1.1 (0.943-1.28) 0.228 – –
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FIGURE 4 | Functional enrichment analysis and PPI network of 70 prognostic genes in TCGA cohort. (a) The top 10 biological process terms of GO enrichment 
analysis of 70 prognostic genes. (B) The top 10 molecular function terms of GO enrichment analysis of 70 prognostic genes. (c) The top 10 cellular component 
terms of GO enrichment analysis of 70 prognostic genes. (D) KEGG pathway analysis for 70 prognostic genes and visualization of the top 10 terms. (E) PPI network 
of the 70 prognostic genes was visualized by Cytoscape.
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The Prognostic Model Is an Independent 
Predictor and a Valuable hierarchical Factor
To study the association between the risk groups classified based 
on our risk score and the clinicopathological factors (age, gender, 
histological grade) and molecular characteristics (IDH status and 
MGMT promoter methylation status) in LrGG, we evaluated the 
statistical difference of the latter parameters between high and 
low-risk groups using the chi-square test. The result demonstrated 
that these parameters, apart from gender, were significantly 
different in patients from high- and low-risk groups in both the 
TCGA and CGGA datasets (Figure 7A, Table 3). To identify if our 
prognostic model was an independent prognostic factor in LrGG, 
both univariate and multivariate Cox analysis were performed. 
After adjusting with the abovementioned clinicopathological 
and molecular characteristics, our prognostic model was still a 
significantly predictive factor (Table 4 and Table 5). Furthermore, 
stratified survival analysis was performed to evaluate the 
prognostic values of this prognostic model in different subgroups 
of LrGG. In the TCGA cohort, the results showed that this model 
stratified patients with grade II or grade III glioma well in the OS. 
When both grade and risk scores were considered, grade II glioma 
patients within the low-risk group showed the best outcomes, 
whereas grade III glioma patients belonging to the high-risk group 
presented the worst prognosis (Figure 7B). Similarly, our model 
also stratified patients in different IDH subgroups, especially the 
IDH-Mut subgroup, remarkably well in the OS. When both IDH 
status and risk scores were considered, patients harboring IDH-Wt 
in the high-risk group had the worst outcome, whereas IDH-Mut 
patients in the low-risk group had the best prognosis (Figure 7C). 
Furthermore, these results were well validated in the CGGA cohort 
(Figures 7D, E). Our model also stratified patients in different 
age subgroups (age >45 or age ≤45) notably well in both the 
TCGA and CGGA cohorts. When both age and risk scores were 
considered, high-risk patients with age > 45 had the worst OS, 
whereas low-risk patients with age ≤45 had the best OS (Figures 
7F, G). Collectively, these data suggest that our prognostic model 
is an independent prognostic factor as well as a valuable factor for 
stratification in LrGG.

The Prognostic Model Predicts the 
Sensitivity for Radio- and chemotherapy
Sine TME plays a substantial role in treatment responses and, 
as our signature was based on eight TME-related genes, we 
wondered whether this model could predict the sensitivity of 
LrGG for radio- and chemotherapy. Through Kaplan–Meier 
curve analysis, we found that LrGG patients who underwent 
radiotherapy belonging to the low-risk group had longer OS 
than those belonging to the high-risk group in the TCGA 
cohort (Figure 8A). Consistently, we observed similar result in 
the CGGA cohort (Figure 8B). For chemotherapy, we found 
our risk score significantly associated with the methylation 
status of the MGMT promoter, which can effectively predict the 
responsiveness of glioma to alkylating agents, the commonly 
used chemotherapeutic drugs for glioma (Esteller et al., 2000; 
Hegi et al., 2005; Song et al., 2015). The majority of patients 
(65.9%) with MGMT promoter unmethylation belonged to 
the high-risk group and the majority of patients (84.9%) with 
MGMT promoter methylation belonged to the low-risk group 
(Table 3). Furthermore, Kaplan–Meier curve analysis showed 
that the prognosis of patients who underwent chemotherapy 
in the low-risk group was better than that of patient underwent 
chemotherapy in the high-risk group in the CGGA LrGG cohort 
(Figure 8C). Taken together, these results indicate that our 
prognostic model have the potential value for predicting the 
sensitivity of LrGG patient to radio- and chemotherapy.

The Prognostic Model correlates With 
Immune Infiltration in LrGG
Clinical research on immunotherapy has confirmed that 
the tumor-infiltrating lymphocytes within the tumor 
microenvironment have a predictive value for prognosis and 
treatment with immunotherapy in cancers (Spencer et al., 
2016). Considering that our risk score was based on eight 
TME-related genes, we investigated whether our risk score was 
correlated with the infiltrating levels of six immune cells in the 
TCGA LrGG cohort, which were obtained from TIMER. The 

FIGURE 5 | Identification of independent prognostic TME-related genes by LASSO regression. (a) LASSO coefficient profiles of 73 prognostic genes. (B) Ten-time 
cross-validation for tuning parameter selection in the LASSO model.
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results showed that the risk score was significantly correlated 
with the infiltrating levels of B cells (r = 0.386, p = 3.16e - 20), 
CD4+ T cells (r = 0.455, p = 1.67e - 28), CD8+ T cells (r = 
0.349, p = 1.30e - 16), neutrophils (r = 0.538, p = 4.46e - 41), 
macrophages (r = 0.527, p = 3.57e - 39), and dendritic cells 
(r = 0.565, p = 4.60e - 46) in LGG (Figure 9A). In addition, 
the immune and stromal scores of patients within the high-
risk group were significantly higher than those of patients 
within the low-risk group (Supplementary Figure S4A). For 
immune cell infiltration, the infiltrating levels of six immune 
cells in high-risk patients were remarkably higher than those 

in low-risk patients (Supplementary Figure S4B). Next, we 
analyzed the correlation between the expression levels of eight 
TME-related genes and the infiltrating levels of six immune 
cells. The results showed that the expression of these eight 
genes showed significantly positive associations with immune 
cell infiltration (p < 0.05, Figure 9B). ARHGDIB expression 
presented a strong correlation with the infiltration levels of 
CD4+ T cells, neutrophils, macrophages, and dendritic cells 
(0.751 ≤ r ≤ 0.847), moderate correlation with the infiltrating 
levels of B cells (r = 0.605), and weak correlation with CD8+ 
T cell infiltration level (r = 0.173). CLIC1 expression exhibited 

FIGURE 6 | Construction and validation of the eight-gene prognostic model in LrGG cohorts. (a) Time-dependent ROC curves indicated good performance of 
the eight-gene prognostic model in the TCGA cohort. (B) The distribution of risk scores in TCGA cohort. (c) Heatmap of the model genes in TCGA dataset; the 
expression of eight genes was transformed by the z-score. (D) Kaplan-Meier curve for OS in TCGA LrGG cohort stratified by the eight-gene model as high- and 
low-risk. (E) Kaplan-Meier curve for RFS in TCGA LrGG cohort stratified by the eight-gene model into high- and low-risk. (F) Time-dependent ROC curves indicated 
good performance of our prognostic model in the CGGA cohort. (G) The distribution of risk scores in the CGGA cohort. (h) Heatmap of the model genes in the 
CGGA dataset; the expression of eight genes was transformed by the z-score. (I) Kaplan-Meier curve for OS in the CGGA LrGG cohort stratified by the eight-gene 
model into high- and low-risk.
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FIGURE 7 | Eight-gene signature performance in clinicopathological and molecular subgroups in TCGA and CGGA cohorts. (a) Comparison of the eight-gene 
signature with the clinicopathological and molecular features of LrGG in TCGA cohort. (B) Kaplan-Meier survival curves for OS between grade II and grade III 
patients with high-risk and low-risk in TCGA cohort. (c) Kaplan-Meier survival curves for OS between IDH-Wt and IDH-Mut patients with high-risk and low-risk 
in TCGA cohort. (D) Kaplan-Meier survival curve for OS between grade II and grade III patients with high-risk and low-risk in the CGGA cohort. (E) Kaplan-Meier 
survival curve for OS between IDH-Wt and IDH-Mut patients with high-risk and low-risk in the CGGA cohort. (F) Kaplan-Meier survival curves for OS between age 
subgroups with high-risk and low-risk in TCGA cohort. (G) Kaplan-Meier survival curves for OS between age subgroups with high-risk and low-risk in CGGA cohort.
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weak correlation with CD8+ T cell (r = 0.265) infiltration 
levels and a moderate correlation with the infiltrating levels 
of other immune cells (0.474 ≤ r ≤ 0.678). The expression of 
OAS3 presented a moderate correlation with the infiltrating 
levels of CD8+ T cells (r = 0.349) and a weak correlation with 

the infiltrating levels of other cells (0.172 ≤ r ≤ 0.289). PARP9 
expression was strongly correlated with the infiltrating level of 
dendritic cells (r = 0.719) and was moderately correlated with 
the infiltrating level of other immune cells (0.336 ≤ r ≤ 0.658). 
STAT1 moderately correlated with the infiltrating levels of all 
six immune cells (0.339 ≤ r ≤ 0.585). The expression of PDIA4, 
TAGLN2, and TAP2 presented weak to moderate correlation 
with the infiltrating levels of all six immune cells (0.104 ≤ r ≤ 
0.400). Taken together, these results indicate that our model 
system is significantly associated with the infiltration level of 
immune cells in the TME of LrGG.

DIScUSSIOn
Glioma is a fatal tumor of the central nervous system, and none of 
the current available treatments are curative. In recent years, an 
increasing amount of studies have demonstrated that the tumor 
microenvironment plays a vital role in in tumor malignancy 
and responses to treatments including immunotherapy. Thus, a 
comprehensive understanding of the tumor microenvironment 

TaBLE 3 | Clinical characteristics of LrGG patients within different risk groups in TCGA and CGGA cohorts.

TcGa Risk group cGGa Risk group

high (121) Low (390) p.value
(χ2 test)

high (64) Low (108) p.value
(χ2 test)

MGMT promoter methylation
Methylated 63 353 5.27E-23 – – –
Unmethylatd 56 29 – –
IDH status
Mutant 36 375 1.02E-62 33 95 3.26E-07
WT 83 7 31 13
Gender
Female 55 173 0.915 24 43 0.889
Male 66 217 40 65
Age
>45 74 129 6.37E-08 23 22 0.039
≤45 47 261 41 86
WHO grade
GIII 95 169 3.18E-11 43 24 1.32E-08
GII 26 220 21 84

TaBLE 4 | Univariate and multivariate Cox analysis in TCGA LrGG cohort.

Univariate analysis Multivariate analysis

hR (95% cI) P value (Wald test) hR (95% cI) P value (Wald test)

MGMT promoter 2.981 <0.001 1.010 0.970
(Unemethylated vs. Methylated) (2.033-4.370) (0.610-1.671)
IDH status 9.243 <0.001 3.368 0.001
(Wt vs. Mutant) (6.261-13.650) (1.607-7.059)
Gender 1.093 0.625 – –
(Male vs Female) (0.766-1.559) – –
Age 0.359 <0.001 0.531 0.003
(≤45 vs >45) (0.248-0.519) (0.352-0.802)
WHO grade 0.300 <0.001 0.448 <0.001
(GII vs. GIII) (0.203-0.443) (0.288-0.699)
Risk Score 0.187 <0.001 0.490 0.026
(Low vs. High) (0.131-0.268) (0.261-0.920)

TaBLE 5 | Univariate and multivariate Cox analysis in CGGA LrGG cohort.

Univariate analysis Multivariate analysis

hR (95% cI) P value
(Wald test)

hR (95% cI P value
(Wald test)

IDH group 3.735 <0.001 1.059 0.875
(Wt vs. Mutant) (2.115-6.595) (0.521-2.152)
Gender 1.077 0.799 – –
(Male vs. Female) (0.608-1.908)
Age 0.33 <0.001 0.547 0.066
(≤45 vs. >45) (0.188-0.581) (0.288-1.041)
WHO grade 0.166 <0.001 0.350 0.003
(GII vs. GIII) (0.090-0.306) (0.175-0.701)
Risk Score 0.094 <0.001 0.1672 <0.001
(Low vs. High) (0.048-0.182) (0.081-0.345)
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in LrGG might help us find novel predictive biomarkers to guide 
individual treatment and might provide therapeutic targets to 
develop effective treatment strategies.

In this study, we used the weighted gene co-expression 
network analysis (WGCNA) to construct a weighted gene 
co-expression network in LrGG samples from the TCGA 
database. Due to several advantages such as reflecting the 
continuous nature of the underlying co-expression information, 
providing systems-level insights, and high sensitivity to low 
abundance and small fold-changes in genes without any 
information loss, WGCNA has been widely applied in various 
cancers (Pei et al., 2017; Maertens et al., 2018; Wan et al., 2018). 
Through principal components analysis, we initially screened 
out the co-expression modules that significantly correlated 
with the immune score and stromal score as calculated by 
the ESTIMATE algorithm. After performing GO enrichment 
analysis of these modules, we obtained three co-expression 
modules with a total of 601 genes involved in TME. In gene 

co-expression networks, hub genes are very important nodes 
with a maximal information exchange with other genes, and 
they are located centrally in the module (Langfelder and 
Horvath, 2008; Yang et al., 2014). Thus, intramodular hub 
genes were extracted with high gene significance and high 
intramodular connectivity from the three modules. Finally, 
we obtained 77 hub genes, of which 74 genes were associated 
with the OS of LrGG in TCGA database. Importantly, 70 genes 
were well validated in another independent LrGG cohort from 
the CGGA database, which further confirmed the reliability 
of these results. Indeed, some of these 70 genes were reported 
to be involved in glioma tumorigenesis or as being significant 
in predicting OS. For example, TAGLN2 (Transgelin-2), a 
member of the calponin family of actin-bundling proteins, 
has been reported to promote the development of glioma, and 
high TAGLN2 expression is associated with poor prognosis 
(Han et al., 2017). CLIC1 is the first member of the Chloride 
Intracellular Channel family; its expression has been correlated 

FIGURE 8 | The eight-gene model and treatments (radio- and chemotherapy). (a) Kaplan-Meier survival curves for OS between patients who underwent 
radiotherapy in high-risk and low-risk groups in TCGA cohort. (B) Kaplan-Meier survival curves for OS between patients who underwent radiotherapy in high-
risk and low-risk groups in CGGA cohort. (c) Kaplan-Meier survival curves for OS between patients who underwent chemotherapy in high-risk and low-risk 
groups in CGGA cohort.
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FIGURE 9 | The correlation between model genes as well as risk score and infiltration level of immune cells (Spearman’s r and p, smoother is LOESS, and 
confidence band is SE). (a) The risk score significantly associated with infiltrating levels of immune cells. (B) ARHGD1B, CLIC1, OAS3, PARP9, PDIA4, STAT1, 
TAGLN2, and TAP2 were significantly correlated with infiltrating levels of immune cells.
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with poor prognosis and it is known to modulate the cell cycle 
progression of glioblastoma stem cells (Wang et al., 2012; 
Gritti et al., 2014). Thus, these results might provide novel 
insights into the TME of LrGG at the molecular level, and these 
prognostic genes might act as biomarkers and/or therapeutic 
targets for the diagnosis, outcome prediction, and treatment of 
LrGG in the future.

The individual prognosis of LrGG patients varies 
greatly; however, both the histopathological features and 
recently established genetic biomarkers such as IDH, 1p/19q 
codeletion, ATRX, and TERT, of diffuse gliomas often fail 
to precisely predict a prognosis and completely explain this 
difference (Boots-Sprenger et al., 2013). Although IDH 
mutation strongly predicts good prognosis in glioma, most 
LrGG harbor IDH mutation and its predictive value in LrGG 
was not as good as that in GBM. On the other hand, adults 
with IDH-Wt LrGG do not have uniformly poor prognoses, 
nor is there a uniformly good outcome of LrGG with IDH 
mutation (Aibaidula et al., 2017; Liu et al., 2019). Thus, the 
LrGG need to be further stratified. More recently, some 
genetic prognostic models have been constructed and their 
predictive performances have been validated in glioma. For 
example, Zeng et al. (2018) identified and validated a three-
gene prognostic signature for LrGG by integrative Analysis 
of DNA Methylation and Gene Expression data. Yin et al. 
(2019) selected five genes from differentially expressed 
genes in glioblastoma to construct a prognostic model with 
potential in the prognosis prediction of GBM. Kang et al. 
(2019) developed a 5-CpG signature of miRNA methylation 
with prognostic values in non-G-CIMP GBM patients. It is 
thus obvious that the genes within the majority of constructed 
prognostic models are selected by differential expression 
analysis. However, a prognostic model based on TME-
related genes based on gene co-expression analysis was rarely 
reported for LrGG. Through differential expression analysis 
of known immune-related genes between IDH-WT and IDH-
Mut LrGG, Qian et al. (2018) revealed that IDH was associated 
with the regulation of immune microenvironment in LrGG 
and reported an IDH-associated immune signature. However, 
focusing on IDH-associated immune-related genes might limit 
our understanding of TME in LrGG and the clinical value of 
their signature. In order to comprehensively understand the 
TME in LrGG, our analysis did not emphasize any known 
clinicopathological or molecular factors. In the present 
study, by combining the WGCNA and LASSO methods, we 
successfully developed a prognostic model with eight TME-
related genes for LrGG. Our prognostic model showed a 
favorable efficiency in predicting both short- and long-term 
prognoses for LrGG patients. Furthermore, stratified survival 
analysis demonstrated that this prognostic model still had a 
prognostic value for patients in different clinicopathological 
and molecular subgroups. Moreover, our risk model was an 
independent predictive factor for LrGG after adjusting for 
clinicopathological and molecular factors. In summary, our 
risk model has potential value for the prediction of prognoses 
in LrGG.

Despite many studies indicating that complete neurosurgical 
resection can effectively prolong the OS rate of LrGG, this is 
unachievable for most patients due to the invasive characteristics 
of LrGG, the location of the tumor, and other reasons. Patients 
with residual tumors might undergo adjuvant radiotherapy 
and chemotherapy to delay or control tumor progression. 
However, LrGG exhibits a differential response to radio- and 
chemotherapy, and some patients cannot even benefit from 
these treatments (Forst et al., 2014). Thus, identifying LrGG 
patients who are sensitive to these treatments is especially 
important. Through Kaplan–Meier curve analysis, we found 
that our model had the potential value of predicting LrGG 
patient sensitivity to both radiotherapy and chemotherapy. This 
might be related to the STAT1 signaling. Notably, we found that 
our prognostic model consists of three known or presumable 
targets (STAT1, OAS3 and TAP2) and one modulator (PARP9) of 
STAT1 signaling (Samuel, 2001; Zhang et al., 2015; Iwata et al., 
2016; Narkwa et al., 2017). Additionally, these four genes were 
co-expressed in both TCGA and CGGA LrGG cohorts (Figure 
3A middle, Supplementary Figures S5A and B). Furthermore, 
an increasing amount of studies have indicated that STAT1 is 
associated with radio- and chemoresistance in multiple tumor 
entities (Weichselbaum et al., 2008; Khodarev et al., 2012). 
Indeed, STAT1 had been reported to be aberrantly expressed in 
glioblastoma and an overexpression of STAT1 predicted poor 
prognosis (Thota et al., 2014). Duarte et al. developed a signature 
of IFN/STAT1 signaling genes, which presented strong predictive 
value in the proneural subtype glioblastoma (Duarte et al., 
2012). Similarly, our analysis also demonstrated that STAT1 was 
aberrantly expressed in LrGG and a high expression of STAT1 
predicted poor prognosis of LrGG patients (Supplementary 
Figures S5C, D). The time-dependent ROC analysis revealed 
that STAT1 alone presented favorable efficiency for predicting 
prognosis of LrGG in both TCGA and CGGA LrGG cohorts 
(Supplementary Figures S5E, F). However, comparing the 
AUC of our model and STAT1, we found our model had better 
predictive abilities than STATA1 alone.

In addition, the risk score and expression levels of all eight genes 
in our model exhibited a significantly positive association with 
the infiltrating levels of immune cells including B cells, CD4+ T 
cells, CD8+ T cells, dendritic cells, macrophages, and neutrophils, 
whereas a relatively low correlation was observed between the gene 
expression and CD8+ T cells. Accumulating research suggests 
that the efficiency of immunotherapy relies on an immunogenic 
TME, and tumor-infiltrating lymphocytes within the TME have 
a predictive value for treatment with immunotherapy in cancers 
(Spencer et al., 2016; Gasser et al., 2017). Association with 
infiltrating immune cells could be a useful criterion for selecting 
putative cancer vaccine targets (Li et al., 2016). Additionally, it is 
confirmed that some of these genes are involved in the regulation 
of immune cells. The cleaved form of ARHGDIB (also called 
RhoGDIβ), cleaved by caspase-3 at Asp19, plays a role in the PMA−
induced differentiation of THP−1 cells to macrophages (Ota et al., 
2017). CLIC1, intracellular chloride channel protein 1, regulates 
macrophage phagosomal functions and regulates the dendritic 
cell processing of antigens for presentation to antigen-specific T 
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cells (Salao et al., 2016). Furthermore, all of these eight genes were 
aberrantly expressed in LrGG samples compared to normal brain 
tissues. Taken together, our model system might have a predictive 
value for immunotherapy, and these 8 genes might be potential 
immunotherapy targets that deserve further study.

There are several limitations to our study. First, because of 
the limited clinical information of patients in public databases, 
we were unable to perform stratified survival analysis in more 
subgroups. Second, the performance of our prognostic model 
should be validated in more LrGG datasets. Third, all the results 
were based on public datasets and should be further confirmed 
by actual experiments.

In summary, we identified 74 prognostic hub genes from 
three TME-related gene co-expression modules and selected 
eight of these to construct a prognostic model (Figure 10). 
Time-dependent ROC curves analysis and survival analysis 
demonstrated that our model exhibited excellent efficiency 
for predicting the prognosis of LrGG and was a valuable 
hierarchical marker. Furthermore, our model had the potential 
value of predicting sensitivity for radio- and chemotherapy. In 
addition, these eight genes within our model were aberrantly 
expressed and were significantly associated with the infiltrating 
level of immune cells in LrGG, indicating their potential as 
targets for immunotherapy.

FIGURE 10 | Workflow of the current work.
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