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Abstract. This article develops a regression framework with a symmet-
ric tensor response and vector predictors. The existing literature involv-
ing symmetric tensor response and vector predictors proceeds by vec-
torizing the tensor response to a multivariate vector, thus ignoring the
structural information in the tensor. A few recent approaches have pro-
posed novel regression frameworks exploiting the structure of the sym-
metric tensor and assume symmetric tensor coefficients corresponding to
scalar predictors to be low-rank. Although low-rank constraint on coef-
ficient tensors are computationally efficient, they might appear to be
restrictive in some real data applications. Motivated by this, we propose
a novel class of regularization or shrinkage priors for the symmetric ten-
sor coefficients. Our modeling framework a-priori expresses a symmetric
tensor coefficient as sum of low rank and sparse structures, with both
these structures being suitably regularized using Bayesian regulariza-
tion techniques. The proposed framework allows identification of tensor
nodes significantly influenced by each scalar predictor. Our framework
is implemented using an efficient Markov Chain Monte Carlo algorithm.
Empirical results in simulation studies show competitive performance of
the proposed approach over its competitors.

Keywords: Low-rank structure · Symmetric tensor predictor ·
Shrinkage prior · Spike and slab prior

1 Introduction

This article is motivated by a variety of applications, in which a sample of sym-
metric tensors is available along with a few scalar variables of interest. Analogous
to rows and columns of a matrix, various axes of a tensor are known as tensor
modes and the indices of a tensor mode are often referred to as “tensor nodes”.
A tensor is known to be symmetric if interchanging modes results in the same
tensor. Entries in a tensor are known as “tensor cells”. In our motivating appli-
cations, each sample point is represented by its own symmetric tensor, and the
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tensor nodes are labeled and shared across all sample points through a regis-
tration process. The goals of such scientific applications are two fold. First, it
is important to build a predictive model to assess the change of the symmetric
tensor response as the predictors of interest vary. A more important scientific
goal becomes identifying nodes of the symmetric tensor significantly impacted
by each predictor.

Although there is a gamut of applications involving symmetric tensors, our
work is specifically motivated by scientific applications pertaining to brain con-
nectomics. In such applications the dataset contains brain network information
along with a few observable phenotypes (e.g., IQ, presence or absence of any neu-
ronal disorder, age) for multiple subjects. Brain network information for each
subject is encoded within a symmetric matrix of dimension V × V , with V as
the number of regions of interest (ROI) a human brain is parceled into following
a popular brain atlas. The (k, l)th cell of the matrix consists of the number of
neuron connections between the k-th and l-th regions of interest (ROI). Thus,
each mode of this symmetric matrix (when viewed as a 2-D symmetric tensor)
consists of V nodes (V = 68 when Desikan-Killany brain atlas is followed [1]),
each corresponding to a specific ROI in the human brain. The most important
scientific goal here boils down to making inference on brain regions of interest
(ROIs) and their inter-connections significantly associated with each phenotypic
predictor [9].

One approach is to vectorize the symmetric tensor and cast the modeling
problem as a high dimensional multivariate reduced rank sparse regression frame-
work with the vectorized tensor response and scalar predictors. There are ade-
quate literature on frequentist penalized optimization [15], as well as on Bayesian
shrinkage [2] which deal with model fitting and computational issues with high
dimensional multivariate reduced rank regression models. Although computa-
tionally efficient, these approaches treat the cells of the symmetric tensor coeffi-
cients as if they were fully exchangeable, ignoring the fact that coefficients that
involve common tensor nodes can be expected to be correlated a priori. Ignoring
this correlation may appear to be detrimental in terms of model performance.
Additionally, such modeling framework does not directly lead to the identifica-
tion of nodes significantly associated with each predictor.

We develop a symmetric tensor response regression model with a symmetric
tensor response and scalar predictors. The symmetric tensor coefficients cor-
responding to each predictor in this regression is assigned a novel Bayesian
shrinkage prior that combines ideas from low-rank parallel factor (PARAFAC)
decomposition methods, spike-and-slab priors and Bayesian high dimensional
regularization techniques to generate a model that respects the tensor structure
of the response. These structures are introduced to achieve several inferential
goals simultaneously. The low-rank structure is primarily assumed to capture
the interactions between different pairs of tensor nodes, the node-wise sparsity
offers inference on various tensor nodes significantly associated with a predictor.
The Bayesian regularization structure allows appropriate shrinkage of unimpor-
tant cell coefficients towards zero while minimally shrinking the important cell
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coefficients. All structures jointly achieve parsimony and deliver accurate char-
acterization of uncertainty for estimating parameters and identifying significant
tensor nodes. The proposed approach finds excellent synergy with the recent
literature on bilinear relational data models [4,7], multiway regression models
[6] and other object oriented regression models [3], where low-rank and/or reg-
ularization structures are imposed on parameters.

The proposed framework is similar to but distinct from the recent devel-
opments in high dimensional regressions with multidimensional arrays (tensors)
and other object oriented data. For example, recent literature that builds regres-
sion models with a scalar response and tensor predictors [6] is less appealing in
this context, since it does not incorporate the symmetry constraint in the tensor.
In the same vein, [5] formulate a Bayesian tensor response regression approach
that is built upon a novel multiway stick breaking shrinkage prior on the tensor
coefficients. While [5] is able to identify important tensor cells, it does not allow
detection of tensor nodes influenced by a predictor. Moreover, these approaches
have not been extended to accommodate scenarios other than a tensor response
with continuous cell entries and do not directly incorporate the symmetry con-
straint in the tensor coefficient corresponding to a predictor. Also, unlike these
approaches, our approach does not assume a low-rank representation of ten-
sor coefficients; hence allowing more flexible structure to analyze impact of the
predictors on tensor cells and interaction between tensor nodes. A work closely
related to our framework develops shrinkage priors in a regression framework
with a scalar response and an undirected network predictor, expressed in the
form of a symmetric matrix [3]. However, they treat the tensor as a predictor,
whereas we treat it as a response. This difference in the modeling approach leads
to a different focus and interpretation. The symmetric tensor predictor regres-
sion focuses on understanding the change of a scalar response as the symmetric
tensor predictor varies, while regression with symmetric tensor response aims to
study the change of the symmetric tensor as the predictors vary.

Rest of the article flows as follows. In Sect. 2 the model and prior distributions
on parameters are introduced. Section 2 also briefly discusses posterior compu-
tation, where as Sect. 3 presents simulation studies to validate our approach.
Finally, Sect. 4 concludes the article with an eye to the future work.

2 Model Development and Posterior Computation

2.1 Model and Prior Distributions

For i = 1, ..., n, let yi = ((yi,(k1,...,kD)))V
k1,...,kD=1 ∈ Y ⊆ R

V ×···×V denote
the D-way symmetric tensor response with dummy diagonal entries and zi =
(zi1, ..., zip)′ be p predictors of interest corresponding to the ith individ-
ual. The symmetric constraint in the tensor response implies yi,(k1,...,kD) =
yi,(P (k1),...,P (kD)), with P (·) being any permutation of {k1, ..., kD}. Due to the diag-
onal entries being dummies in the symmetric tensor response, it is enough to build a
probabilistic model for yupper = {yi,k : k = (k1, ..., kD), 1 ≤ k1 < · · · < kD ≤ V }.
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For the sake of this article, we assume yi,k ∈ R and propose

yi,k = γ0 + Γ1,kzi1 + · · · + Γp,kzip + εi,k , εi,k
iid∼ N(0, σ2), (1)

where Γ1,k , ..., Γp,k are the k = (k1, ..., kD)th cells of the V × · · · × V symmetric
coefficient tensors Γ 1, ...,Γ p with dummy diagonal entries, respectively. Here
Γs,k , s = 1, ..., p, is the coefficient corresponding to the sth predictor of interest
on the k = (k1, ..., kD)th cell of the symmetric tensor response. The coefficient
γ0 ∈ R is the intercept in the regression model (4).

To account for association between the tensor response y and predictors
z1, ..., zp, we propose a shrinkage prior distribution on Γs,k , s = 1, ..., p, repre-
sented as a location and scale mixture of normal distributions. In particular, the
distribution of Γs,k is assumed to be conditionally independent normal distribu-
tion with

Γs,k ∼ N

(
R∑

r=1

λs,rγ
(r)
s,k1

· · · γ(r)
s,kD

, κs,k σ2

)
, k = (k1, ..., kD), 1 ≤ k1 < · · · < kD ≤ V.

(2)
(2) implies E[Γs,k |σ2, κs,k ] =

∑R
r=1 λs,rγ

(r)
s,k1

· · · γ(r)
s,kD

, i.e., the prior distribu-
tion of Γ s is centered on a rank-R PARAFAC [10] decomposed tensor. The
PARAFAC or parallel factor decomposition is a multiway analogue to the two-
dimensional factor modeling of matrices. In particular it provides a low-rank
structure to the mean function of Γ s. Note that, in the tensor regression litera-
ture, it is a fairly common practice to assume a low-rank structure for Γ s directly
[6]. In contrast, the prior distribution in (2) centers on a low-rank PARAFAC/CP
representation [10], precluding any additional imposition of a low-rank structure
on Γ s a priori. This allows more flexibility in the structure of the coefficients.
κs,k is the scale parameter corresponding to each Γs,k controlling the local vari-
ability of each coefficient a priori and λs,r ∈ {0, 1}, r = 1, ..., R, are introduced to
assess the effect of the r-th summand on the mean of Γs,k . In particular, λs,r = 0
implies that the r-th summand of the low-rank factorization is not informative
to predict the response.

To develop a data dependent learning of nonzero λs,r’s, we propose λs,r ∼
Ber(θs,r), θs,r ∼ Beta(1, rc), c > 1, a priori. The hyper-parameters in the beta
distribution are set so as to penalize the usage of large number of summands in
the PARAFAC decomposition, which protects the model from over-fitting. Define
γs,v = (γ(1)

s,v , ..., γ
(R)
s,v )′ ∈ R

R as the tensor node specific vectors (for v = 1, ..., V )
describing Γ s. In the course of identifying important tensor nodes significantly
associated with the sth predictor, we note that the v-th node has minimal effect
on the sth predictor if γs,v = 0. Thus, in order to directly infer on γs,v, a
spike-and-slab mixture distribution prior [8] is assigned on γs,v as below

γs,v ∼
{

N(0,Hs), if ξs,v = 1
δ0, if ξs,v = 0 (3)

where δ0 is the Dirac-delta function at 0 and Hs is a covariance matrix of order
R×R. The rest of the hierarchy is completed by setting κs,k ∼ Exp(ζ2/2), ξs,v ∼
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Ber(Δs), Hs ∼ IW (I, ν), Δs ∼ U(0, 1), where IW stands for the inverse wishart
distribution. Finally, γ0 and σ2 are assigned N(μγ , σ2

γ) and IG(a,b) priors respec-
tively, IG corresponding to the inverse gamma density. The posterior distribution
of ξs,v is monitored and the vth tensor node is related to the sth predictor if the
posterior probability of {ξs,v = 1} turns out to be greater than 0.5.

A few remarks are in order. Note that, if κs,k = 0 for all k, then Γ s assumes
an exact low-rank decomposition given by, Γs,k =

∑R
r=1 λs,rγ

(r)
s,k1

· · · γ(r)
s,kD

. Also,
if γs,v = 0, then a priori Γs,k follows an ordinary Bayesian lasso shrinkage prior
distribution [12] for all k with some kl = v. In general, Γs,k a priori can be
expressed as Γs,k =

∑R
r=1 λs,rγ

(r)
s,k1

· · · γ(r)
s,kD

+ Γs,2,k , where Γs,2,k following an
ordinary Bayesian lasso shrinkage prior [12].

2.2 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed
form, full conditional distributions for all the parameters are available and cor-
respond, in most cases, to standard families. Thus, posterior computation can
proceed through a Markov chain Monte Carlo algorithm. Details of the Markov
chain Monte Carlo algorithm with the conditional posterior distributions are
provided in the Appendix. We run the MCMC chain for 15000 iterations. With
the first 5000 as burn-ins, the posterior inference is drawn on the L = 10000 post
burn-in draws suitably thinned. In order to identify whether the v-th tensor node
is significantly related to the sth predictor, we rely on the post burn-in L samples
ξ
(1)
s,v , . . . ., ξ

(L)
s,v of ξs,v. Node v is said to be influential if 1

L

∑L
l=1 ξ

(l)
s,v > 0.5. Here

1
L

∑L
l=1 ξ

(l)
s,v corresponds to the empirical estimate of the posterior probability of

{ξs,v = 1}. We also assess the point estimates on tensor cell coefficients Γs,k and
present uncertainty in the estimation procedure.

3 Simulation Studies

3.1 Simulation Settings

This article illustrates the performance of our proposed approach referred to as
the symmetric tensor regression (STR) along with some of its competitors under
various simulation scenarios. In fitting our model, we fix the hyper-parameters
at a = 1, b = 1, μγ = 0, σγ = 1, ν = 10 and ζ = 1. We compare our approach
to ordinary least squares (LS), which proposes a cell by cell regression of the
response on the predictors. Although a naive approach, LS is included due to
its widespread use in neuro-imaging applications. Additionally, we employ the
Higher-Order Low-Rank Regression (HOLRR) [14] as a competitor. HOLRR
provides a framework for higher order regression with a tensor response and
scalar predictors. A comparative assessment of these three methods will help
evaluate possible gains in inference in our method for taking into account the
symmetry in the tensor response.
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For the sake of simplicity, we work with p = 1 (hence get rid of the subscript
s hereon), with the scalar variable of interest zi’s are drawn iid from N(0, 1).
We also set D = 2. The response is simulated from the following model

yi,k = γ∗
0 + Γ ∗

k zi + εi,k , εi,k
iid∼ N(0, σ∗2), (4)

where γ∗
0 is the true intercept and Γ ∗ = ((Γ ∗

k ))V
k1,k2=1 is the true symmetric

tensor coefficient. The true intercept γ∗
0 is set to be 0.2. To simulate the true

symmetric tensor coefficient Γ ∗, we draw V tensor node specific latent variables
γ∗

v = (γ∗(1)
v , ..., γ

∗(R∗)
v )′, v = 1, ..., V , each of dimension R∗, from a mixture

distribution given by γ∗
v ∼ π∗

1NR∗(0.61, 0.5I) + (1 − π∗
1)δ0. We then construct

Γ ∗ under two different simulation scenarios, referred to as Simulation 1 and
Simulation 2, as described below.

Simulation 1
Simulation 1 constructs cell coefficients Γ ∗

k =
∑R∗

r=1 γ
∗(r)
k1

· · · γ∗(r)
kD

. Thus, the
coefficient tensor assumes a symmetric rank-R∗ PARAFAC decomposition. Note
that, if γ∗

v = 0, then the vth tensor node specific variable has no impact in
describing the relationship between y and z. Hence (1 − π∗

1) is the probability
of a tensor node being not related to zi. We refer to it as the node sparsity
parameter. In particular, the node sparsity parameter indicates the proportion
of nodes in the tensor response (among the total of V tensor nodes) which
are not related to the predictor. Notably, this data generation mechanism in
Simulation 1 is quite similar (although not identical) to our fitted model. Hence,
the goal of this first simulation is to evaluate the ability of the model to recover
the true data-generation mechanism. In particular, we consider four cases under
Simulation 1 (see Table 1) by varying the fitted rank of PARAFAC (R), true
rank of Γ ∗ (R∗), sample size (n), no. of tensor nodes (V ) and the tensor node
sparsity (defined before).

Table 1. First six columns present the cases under Simulation 1. The next seven
columns present the cases under Simulation 2.

Simulation 1 Simulation 2

Cases R R∗ n V π∗
1 Cases R R∗ n V π∗

1 π∗
2

1 4 2 70 30 0.4 1 4 2 70 30 0.4 0.5

2 3 2 70 60 0.6 2 3 2 70 60 0.6 0.5

3 5 2 100 30 0.5 3 4 2 70 30 0.4 0.7

4 5 3 100 60 0.7 4 4 2 70 30 0.6 0.7
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Simulation 2
Under Simulation 2, we first simulate node specific latent variables, similar to
Simulation 1. If either of γ∗

k1
, ...,γ∗

kD
is 0, we set Γ ∗

k = 0. Otherwise, Γ ∗
k is

simulated from a mixture distribution π∗
2N(0, 1) + (1 − π∗

2)δ0, where (1 − π∗
2) is

referred to as the cell sparsity parameter and δ0 refers to the Dirac delta function
at 0. Unlike Simulation 1, Simulation 2 does not necessarily leads to a low-rank
structure of Γ ∗. Hence this simulation is ideal for investigating the performance
under model mis-specification. Table 1 shows different cases under Simulation 2
where the model is investigated.

We compare the three competitors in terms of their accuracy of estimating
Γ ∗. The accuracy of estimating Γ ∗ is measured by the scaled mean squared
error (MSE) defined as ||Γ ∗ − Γ̂ ||2/||Γ ∗||2, where Γ̂ corresponds to a suitable
point estimate of Γ , e.g., the posterior mean of Γ for STR. || · || refers to the
Frobenius norm of a matrix. Additionally, we quantify the uncertainty offered by
each these competitors through the coverage and length of 95% credible intervals
of Γk , averaged over all k. Length and coverage of posterior 95% credible intervals
for each Γk are available empirically from the post burn-in MCMC samples of
Γ for our proposed approach. On the other hand, the 95% confidence intervals
of frequentist competitors are constructed using a bootstrap approximation. To
infer on the performance of STR in terms of identifying tensor nodes significantly
associated with zi, we present True Positive Rate (TPR) and False Positive Rate
(FPR) with different choices of the cut-off t for all simulation cases. As mentioned
earlier, such measures are not available for our competitors since they are not
designed to detect tensor nodes related to the predictor of interest.

3.2 Simulation Results

Scaled MSE, coverage and length of 95% CI for all competitors are presented
under Simulations 1 and 2 in Tables 2 and 3, respectively. With no model mis-
specification under Simulation 1, STR is showing significantly better perfor-
mance than LS and HOLRR under all four cases. The low-rank structure of
HOLRR facilitates its superior performance over LS for larger V/n ratio. How-
ever, as V/n ratio increases, HOLRR loses its edge over LS. All three competitors
show over-coverage under Simulation 1, with STR producing substantially nar-
rower credible intervals. Moreover, for a fixed n, the credible intervals tend to
be more narrow with increasing V for all competitors.

Even under model mis-specification in Simulation 2, STR outperforms all
competitors in cases with smaller V and higher node sparsity (Cases 1 and
3), as seen in Table 3. However, with a larger V in case 2, LS and STR are
competitive to each other. Since HOLRR is constructed on variants of sparsity
within low-rank principle, it loses edge over LS in terms of MSE in these cases.
Comparing MSE of STR between cases 3 and 4, we find that MSE increases as
the node sparsity decreases. Similarly, comparing Cases 1 and 3 reveals adverse
effect of decreasing cell sparsity on MSE of STR. It is generally found that the
effect of node sparsity is more profound than the effect of cell sparsity on the
performance.



354 R. Guhaniyogi

Table 2. Mean Squared Error (MSE), average coverage and average length of 95%
credible interval for STR, LS and HOLRR are presented for cases under Simulation 1,
with the lowest MSE in each case is boldfaced.

Case Competitors

SGTM LS HOLRR

1 MSE ×103 3.4 46 42

Avg. cov 0.99 0.99 0.99

Avg. length 0.10 1.74 1.68

2 MSE ×103 1.3 18 12

Avg. cov 0.99 0.99 0.99

Avg. length 0.08 2.79 2.63

3 MSE ×103 1.9 26 35

Avg. cov 0.99 0.99 0.99

Avg. length 0.10 2.53 2.37

4 MSE ×103 0.8 5.1 8.5

Avg. cov 0.99 1.00 0.99

Avg. length 0.21 4.82 4.74

Table 3. Mean Squared Error (MSE), average coverage and average length of 95%
credible interval for STM, LS and HOLRR are presented for cases under Simulation 2,
with the lowest MSE in each case in boldfaced.

Case Competitors

SGTM LS HOLRR

1 MSE 0.09 0.21 0.30

Avg. cov 0.96 0.97 0.89

Avg. length 0.12 0.95 0.78

2 MSE 0.23 0.29 0.21

Avg. cov 0.89 0.98 0.81

Avg. length 0.14 1.53 0.78

3 MSE 0.13 0.22 0.30

Avg. cov 0.96 0.98 0.92

Avg. length 0.15 1.09 0.88

4 MSE 0.16 0.15 0.32

Avg. cov 0.92 0.99 0.92

Avg. length 0.26 1.69 1.29

Moving onto uncertainty characterization, STR shows close to nominal cover-
age along with its competitors in cases 1, 2 and 4 when V is small. With increasing
V , coverage of STR and HOLRR drops below 0.90. Similar to Simulation 1, STR
demonstrates sufficiently narrower credible intervals than HOLRR in all cases. LS
offers over-coverage with much wider 95% credible intervals in all cases.



High Dimensional Bayesian Regularization 355

Table 4. True Positive Rates (TPR) and False Positive Rates (FPR) in identifying
nodes which are significantly related to the predictor under all cases with cut-offs
t = 0.1, 0.5, 0.9.

Simulation Accuracy of tensor node identification

TPR
(t = 0.1)

TPR
(t = 0.5)

TPR
(t = 0.9)

FPR
(t = 0.1)

FPR
(t = 0.5)

FPR
(t = 0.9)

1 Case 1 1.00 1.00 1.00 0.00 0.00 0.00

Case 2 1.00 1.00 1.00 0.00 0.00 0.00

Case 3 1.00 1.00 1.00 0.00 0.00 0.00

Case 4 1.00 1.00 1.00 0.00 0.00 0.00

2 Case 1 1.00 0.90 0.60 0.00 0.00 0.00

Case 2 1.00 1.00 0.84 0.00 0.00 0.00

Case 3 0.98 0.80 0.55 0.24 0.00 0.00

Case 4 1.00 1.00 0.76 0.24 0.15 0.00

Since LS and HOLRR are not designed to detect nodes significantly related
to the predictor, we focus our inference on STR for node detection. To this end,
we choose three cur-off values t = 0.1, 0.5, 0.9 and present TPR and FPR values
for our approach. STR yields the posterior probability of a node being related
to the predictor of interest to be very close to 1 or 0 for all reasonable values of
cut-off t, depending on whether a tensor node is related or not to the predictor of
interest in the truth, respectively. As a consequence, TPR and FPR values (see
Table 4) turn out to be close to 1 and 0, respectively, for all the simulation cases,
indicating a close to perfect active node detection. The posterior distributions
of γ0 also appear to be centered around the truth (not shown here).

4 Conclusion and Future Work

The overarching goal of this article is to propose a symmetric tensor regression
framework with a symmetric tensor response and scalar predictors. The model is
aimed at identifying tensor nodes significantly related to each scalar predictor.
Unlike the existing approaches, the proposed framework does not assume any
low-rank constraint on the symmetric tensor coefficients. Rather, we propose a
tensor shrinkage prior which decomposes the symmetric tensor coefficients into
low-rank and sparse components a priori. The low-rank component is further
assigned a novel hierarchical mixture prior to enable identification of tensor
nodes related to each predictor. The sparse component is equipped with Bayesian
regularization or shrinkage priors to enable accurate estimation of tensor cell
coefficients. Detailed simulation study with data generated under the true model
and mis-specified model demonstrates superior performance of our approach
compared to its competitors.
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Although there is a considerable literature on theoretical understanding of
Bayesian shrinkage priors in high dimensional regression, there is a limited liter-
ature on theoretical aspects of shrinkage prior on tensor coefficients. In future,
we will focus on developing conditions for posterior consistency of the proposed
approach under suitable conditions imposed on tensor shrinkage priors. It is also
instructive to employ other shrinkage priors on Γs,2,k from the class of global-
local shrinkage prior distributions [13] and provide a comparative understanding
of their performances. Finally, we would like to extend our approach when each
entry in yi,k are categorical or count in nature. Some of these constitute our
future work.

Appendix

The full conditional distributions of parameters for implementing the MCMC is
given by following.

1. γ0|− ∼ N
[∑n

i=1 1T (y i−
∑p

s=1 Γ szis)/σ2

(nq)/σ2+1 , 1
(nq)/σ2+1

]

2. κs,k | − ∼ RGIG

[
1
2 ,

(Γs,k −∑R
r=1 λs,rγ

(r)
s,k1

···γ(r)
s,kD

)2

σ2 , ζ2
]

, s = 1, ..., p; 1 ≤ k1 <

· · · < kD ≤ V
3. Let Z be an n × p matrix with the ith row as (zi1, ..., zip). Let yk =

(y1,k , ..., yn,k )′, Dk = diag(κ1,k , ..., κp,k ), mk = (
∑R

r=1 λs,rγ
(r)
s,k1

· · · γ(r)
s,kD

:
1 ≤ s ≤ p)′ and γk = (Γ1,k , ..., Γp,k)′. Let ΣΓ = σ2(Z ′Z + D−1

k )−1,
μΓ = ΣΓ

[
Z ′(yk − γ01) + D−1

k mk

]
/σ2. Then γk |− ∼ N(μΓ ,ΣΓ ).

4. σ2|− ∼ IG(a + (nq)/2 + (pq)/2, b +
∑n

i=1 ||yi − ∑p
s=1 Γ szis||2/2 +

∑p
s=1

∑
k(Γs,k − ∑R

r=1 λs,rγ
(r)
s,k1

· · · γ(r)
s,kD

)2)
5. Let Kv = {k : ∃ l, s.t., kl = v} υs = (Γs,k : k ∈

Kv). Define J as a matrix of the order #Kv × R with a rep-
resentative row (

∏
kl �=v λs,1γ

(1)
s,kl

, ...,
∏

kl �=v λs,Rγ
(R)
s,kl

). Define, wγ s,v
=

(1−Δs)N(υs|0,σ2I)
(1−Δs)N(υs|0,σ2I)+ΔsN(υs|J H sJ ′+σ2I) , M s = diag(κs,k : k ∈ Kv) Σγ s,v

=
(
J ′M−1

s J/σ2 + H−1
s

)−1
, μγ s,v

= Σγ s,v
J ′M−1

s γs,v/σ2. Then
γs,v|− ∼ wγ s,v

δ0 + (1 − wγ s,v
)N(μγ s,v

,Σγ s,v
)

6. Hs|− ∼ IW (I +
∑

v:γ s,v �=0 γs,vγ′
s,v, ν + {#v : γs,v �= 0}), s = 1, ..., p

7. θs,r|− ∼ Beta(1 + λs,r, r
c + 1 − λs,r), s = 1, ..., p; r = 1, ..., R

8. Δs|− ∼ Beta(1 +
∑V

v=1 ξs,v, 1 +
∑V

v=1(1 − ξs,v)), s = 1, ..., p
9. λs,r | − ∼ Ber(pλs,r

), where
pλs,r

= θs,rNs,r

θs,rNs,r+(1−θs,r)Ds,r
, where Ns,r =

∏
k N(yi,k |∑R

r′=1,r′ �=r λs,r′

γ
(r′)
s,k1

· · · γ(r′)
s,kD

+γ
(r)
s,k1

· · · γ(r)
s,kD

, σ2), Ds,r =
∏

k N(yi,k |∑R
r′=1,r′ �=r λs,r′γ

(r′)
s,k1

· · ·
γ
(r′)
s,kD

, σ2) for r = 1, .., R.
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