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Abstract

Background: Protozoan parasites improve the likelihood of invading or adapting to the host
through their capacity to present a large repertoire of surface molecules. The understanding of the
mechanisms underlying the generation of antigenic diversity is crucial to aid in the development of
therapies and the study of evolution. Despite advances driven by molecular biology and genomics,
there is a need to gain a deeper understanding of key properties that may facilitate variation
generation, models for explaining the role of genomic re-arrangements and the characterisation of
surface protein families on the basis of their capacity to generate variation. Computer models may
be implemented to explore, visualise and estimate the variation generation capacity of gene families
in a dynamic fashion. In this paper we report the dynamic simulation of genomic variation using real
T. cruzi coding sequences as inputs to a computational simulation system. The effects of random,
multiple-point mutations and gene conversions on genomic variation generation were
quantitatively estimated and visualised. Simulations were also implemented to investigate the
potential role of pseudogenes as a source of antigenic variation in T. cruzi.

Results: Computational models of variation generation were applied to real coding sequences
from surface proteins in T. cruzi: trans-sialidase-like proteins and putative surface protein dispersed
gene family-1. In the simulations the sequences self-replicated, mutated and re-arranged during
thousands of generations. Simulations were implemented for different mutation rates to estimate
the relative robustness of the protein families in the face of DNA multiple-point mutations and
sequence re-arrangements. The gene super-families and families showed distinguishing evolutionary
responses, which may be used to characterise them on the basis of their capacity to generate
variability. The simulations showed that sequences from T. cruzi nuclear genes tend to be relatively
more robust against random, multiple-point mutations than those obtained from surface protein
genes. Simulations also showed that a gene conversion model may act as an effective variation
generation mechanism. Differential variation responses can be used to characterise the sequence
groups under study. For example, unlike other families, sequences from the DGFI family have the
capacity to maximise variation at the amino acid level under relatively low mutation rates and
through gene conversion. However, in relation to the other protein families, they exhibit more
robust behaviour in response to more severe modifications through intra-family genomic sequence
exchange. Independent simulations indicate that DGF| pseudogenes might play a role in the
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generation of greater genomic variation in the DFGI gene family through gene conversion under

different experimental conditions.

Conclusion: Digital, dynamic simulations may be implemented to characterise gene families on the
basis of their capacity to generate variation in the face of genomic perturbations. Such simulations
may be useful to explore antigenic variation mechanisms and hypotheses about robustness at the
genomic level. This investigation illustrated how sequences derived from surface protein genes and
computer simulations can be used to investigate variation generation mechanisms. Such in silico
experiments of self-replicating sequences undergoing random mutations and genomic re-
arrangements can offer insights into the diversity generation potential of the genes under study.
Biologically-inspired simulations may support the study of genomic variation mechanisms in
pathogens whose genomes have been recently sequenced.

Background

Trypanosoma cruzi is the etiological agent of Chagas dis-
ease, which is an incurable and debilitating illness affect-
ing millions of people in Latin America [1,2]. Chagas
disease also represents a serious health concern for indus-
trially-developed countries. There is a potential for infec-
tion in the USA and Europe due to the risk of
contamination of the blood supplies. Additionally, HIV/
AIDS patients may experience reactivation of Chagas dis-
ease [3]. T. cruzi infects and adapts to the vertebrate host
by exploiting evolutionary strategies to invade target cells
and to evade (or to confuse) the immune system [4,5].
The invasion, evasion and infection process involve differ-
ent families of surface proteins [5]. The generation and
presentation of variable surface antigens is a key strategy
[5-7]. The parasite may take advantage of this strategy to
adhere to different molecules on the host cell membrane
and the extracellular matrix [5].

In general, an understanding of the roles of genetic dam-
age (mutations) and recombination in the generation of
antigenic diversity in trypanosomes is important for
addressing key questions about the evolution, adaptation
and robustness of parasites and their interactions with the
hosts. However, the experimental analysis of antigenic
diversity generation represents a massive challenge, even
in the case of parasites that have traditionally received rel-
atively more international attention than T. cruzi, such as
the malaria and sleeping sickness parasites. The availabil-
ity of gene sequences derived from the T. cruzi Genome
Project [8] further motivates the proposal of data- and dis-
covery-driven approaches to characterising functional
properties of proteins at different levels of organisation.

The computer-based, dynamic modelling of biological
processes and mechanisms may provide tools to aid
researchers in addressing fundamental questions about
the genomic basis of evolution, adaptation and complex-
ity. The area of digital genetics, also known as artificial life,
offers tools in which self-replicating strands of computer
code are capable to mutate, compete, evolve and adapt to

a computing environment with space and resource con-
straints. Darwinian evolution has also inspired the devel-
opment of the area of evolutionary computation, which
provides algorithms that mimic mutation, recombination
and selection mechanism of data structures based on pre-
determined "fitness" functions. Evolutionary computa-
tion methods, such as genetic algorithms, have been
successfully applied to solve optimisation problems in
many disciplines. The reader is referred to [9] and [10] for
reviews of the areas of digital genetics and evolutionary
computation.

In a previous work [11] we investigated the potential
capacity of T. cruzi surface protein genes to maximise phe-
notypic variation, which may be seen as a key attribute to
expand the repertoire of surface antigens. The robustness
of a parasite gene against mutations was addressed in
terms of several gene volatility and diversity indicators. The
potential impact of point-mutation errors on surface anti-
gen genes based on the analysis of codon usage and its
potential for generating different amino acid mutants
were explored.

In this paper we propose in silico, yet biologically-inspired,
models that dynamically simulate genomic variation gen-
eration through random mutations and a relatively sim-
ple approximation of recombination. The models and
simulations implemented in this exploratory study proc-
essed coding sequences from two surface protein super-
families: the TS (trans-sialidase)-like proteins and putative
surface protein DGF-1 (dispersed gene family-1) super-
families [5,8,12]. These families are known to be impor-
tant components in the infection process, but relatively
little is known about their functional and adaptive prop-
erties. Moreover, the mechanisms underlying their varia-
tion generation process are not well-understood.

We propose the implementation of dynamic simulations
of mutation and genomic arrangements to estimate the
antigenic generation capacity of these families. In this
approach sets of gene sequences of biological interest for
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the study of T. cruzi are used as inputs to a system that rec-
reates mutation and replication mechanisms. The system
can also be used to simulate a gene conversion mecha-
nism under different in silico conditions, such as mutation
rates and the number of simulation generations. Such simu-
lations allowed us to visualise the generation of variation
at the amino acid level using the available sequences
(inputs) as starting points, as well as comparative refer-
ences, in the simulations. Thus, this methodology has the
potential to be applied for assessing the effect of mutation
and genomic exchange (e.g. gene conversions) in the gen-
eration of diversity of surface proteins. Moreover, it may
be exploited to characterise gene families in terms of puta-
tive models of antigenic variation through mutation and
conversion. This investigation explores some of these
applications and discusses their potential implications for
addressing fundamental questions relevant to the under-
standing of mechanisms driving genomic diversity.

Results

A variation generation simulation require DNA coding
sequences, a user-defined mutation rate value and the
number of simulation steps (self-replication generations)
as inputs. The input sequences are used as variation refer-
ences, i.e. the degree of variation of subsequent mutated
sequences is measured in relation to these input (wild)
sequences. The variation of a given sequence at a particular
time is estimated here by measuring the divergence (dis-
tance) between the resulting amino acid sequence
(encoded by a mutated DNA coding sequence) and the
reference amino acid sequence. Mutations, i.e. random
multiple-point mutation and sequence re-arrangements,
occur at the DNA level. At each generation step a multiple-
point mutation or a gene conversion event occurs,
depending of the model being simulated. The degree of
variation for each gene sequence is calculated based on
the resulting amino acid sequence. An average variation
value for each family of genes is calculated at each simu-
lation step. At the end of a simulation the system outputs
the average variation values at each simulation step for the
sequence family under consideration. The section of
Methods provides more details about these information
processing steps.

Different simulations using genes from the TS and DGF1
superfamilies were implemented. The TS family consists
of a large number of genes that encode major surface anti-
gens of the infective forms of T. cruzi [5]. This super-fam-
ily can be categorised into four groups according to
sequence similarity, molecular mass and function [5,8].
There are 1430 TS sequences in the T. cruzi genome: 737
genes and 693 pseudogenes [8]. In this investigation we
concentrated on 261 complete TS proteins whose biolog-
ical and structural properties had been previously
described. The TS super-family is divided into 14 families

http://www .kinetoplastids.com/content/6/1/6

[5,11]: ASP-1 (25 sequences), ASP-2 (37 sequences), CEA
(17 sequences), CRP-10 (24 sequences), FL-160 (16
sequences), GP82 (19 sequences), GP85 (92 sequences),
MVar1-GP90 (101 sequences), SA-85 (98 sequences),
SAPA (30 sequences), Tc85-11 (93 sequences), TESA-1
(57 sequences), TS EPI (30 sequences) and TSA (37
sequences). The DFG1 genes [12,13] investigated here
were represented by 85 coding sequences.

It has been suggested that genes encoding proteins
involved in maintaining core biological functions, such as
house-keeping and nuclear proteins, tend to be geneti-
cally robust to mutations (at the protein level). Therefore,
simulations were also performed on a set of non-surface
sequences to illustrate possible differences between genes
from these cellular components. We selected a group of 40
sequences encoding nuclear proteins in T. cruzi to further
illustrate observed differences between these families and
as a baseline reference for discussions. The potential role
of pseudogenes in the generation of genetic variability was
also explored by performing independent experiments in
which 15 DGF1 pseudogenes and 23 GP85 pseudogenes
from the group II of TS superfamily drove random
genomic modifications in their respective gene families.
Thus, pseudogene sub-sequences provided the potential
sources of variation in random gene conversion events.
The resulting variation patterns were compared to those
obtained from simulations that did not involve the partic-
ipation of pseudogenes.

A multiple-point mutation model

This first variation generation model evaluated simulates
random multiple-point mutations at the nucleotide level.
The amount of mutations occurring in a sequence
depends of a mutation rate (mr), which is directly propor-
tional to the percentage of nucleotides to be mutated in a
specific gene sequence. A mr = 0.0005, for example,
means that at each simulation step (generation) 0.05%
(0.0005 x 100%) of the nucleotides will be randomly
selected and mutated. Each nucleotide in the (mutating)
sequence has the same probability of being selected. Also
each nucleotide base has the same probability of being
chosen to substitute a base in a mutating sequence. Gene
sequences are replicated and mutations are accumulated
from generation to generation. Figure 1 illustrates this var-
iation generation model. At each generation the resulting
(mutated) amino acid sequence is compared to the refer-
ence (input) amino acid sequence and their distance in
the sequence space is calculated. Such a distance is used to
estimate the variation or diversity generation capacity of a
gene (more details in Methods). Simulations were per-
formed on each family and distance values were calcu-
lated for each sequence at each simulation step (i.e.
generation). Mean distance values were used to character-
ise the (average) variability of a family for a specific mr
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Figure |

Multiple-point mutation model. A (reference) input DNA
sequence, g;,, encodes an amino acid sequence, Ag;,, at gen-
eration '0'. Random selection and mutation of nucleotides
generate a new sequence, g, |, at generation 'l', which
encodes a mutated amino acid sequence, Ag; ;. The variability
of a gene i, g;;, at generation j, is estimated by measuring the
difference between Ag;, and Ag;..

value at each simulation generation. The results reported
in this paper were obtained from simulations obtained
with 1000 generations (replication-mutation steps).

Figure 2 shows the simulation results for all the families
when mr = 0.001. In this and similar figures the horizon-
tal axis indicates the simulation steps (generations) from
1 to 1000 generations. The vertical axis shows the average
variability of the protein family measured as the average
distance from the mutated amino acid sequences, at a par-
ticular time (generation number), to their respective refer-
ence amino acid sequences. Each curve refers to the
average variation response of a family to multiple-point
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Figure 2

Simulation results from a multiple-point mutation model for
all the families when mr = 0.001. The horizontal axis indi-
cates the simulation steps (generations). The vertical axis
shows the average variation of the protein family measured
as the average distance from the mutated amino acid
sequences, at a particular time (generation number), to their
respective reference sequences. Each curve refers to the
average variation response of a family to multiple-point muta-
tions. Top and bottom curves represent the average varia-
tion of DGFI and nuclear amino acid sequences respectively.

http://www .kinetoplastids.com/content/6/1/6

mutations. The closer a curve is to the top of the graph the
higher the average amino acid variability observed. This
simulation, as well as other with different mr values, con-
sistently shows a relatively higher variation capacity of
DGF1 in comparison to the other surface genes consid-
ered here. As expected, genes encoding nuclear proteins
tend to be, in general, more consistently robust to random
mutations than surface genes. Some surface gene families
display more heterogeneous responses. For example, TS-
EPI may exhibit a relative more robust response to multi-
ple-point nucleotide sequences (lower diversity genera-
tion) for mr below 0.0005. Figure 3 summarises the
genomic variation generation responses of all the families
under different mr values. Note that for mr = 0.0001 only
DGF1 generated variable amino acid sequences. In this
figure only the global, average variation values from the
families with the highest (DGF1) and lowest (nuclear)
diversity generation capacities are linked with lines.

A variation generation model based on gene conversion

The second variation generation model explored mimics
genomic exchange through recombination. This model
may be related to a gene conversion model based on syn-
thesis dependent strand annealing (SDSA) homologous
recombination [14]. Since unequal recombination mech-
anisms involving chromatids exchange at chromosomal
interstitial areas may lead to alteration in syntheny, which
is not the case in trypanosomatids so far studied[15], we
envisioned that the recombination mechanisms operating
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Figure 3

Variation model based on multiple-point mutations. Summary
of global variation generation under different mr values. Each
point represents the global, average variation values
observed in independent simulations for each protein family
through 1000 generations. Upper and lower curves highlight
the global, average variation of DGFI and nuclear amino acid
sequences respectively.
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in this exchange can be defined as gene conversion via
SDSA homologous recombination [14] without crosso-
ver.

In the computational model implemented here gene
sequences from the same family randomly exchange
nucleotide sub-sequences, which may encode diverse
amino acid sequences (Figure 4(a)). Figure 4(b) offers a
more detailed graphical illustration (at the DNA level) of
the biological gene conversion model based on SDSA
homologous recombination, which may be computation-
ally associated with the model summarised in Figure 4(a).
At a given simulation step (e.g. generation 0 representing
the beginning of the simulation) each of the sequences
used as inputs to the simulation system undergoes multi-
ple-point, continuous mutations, whose length is defined
by a mutation rate, mr. As in the variation generation

http://www .kinetoplastids.com/content/6/1/6

model introduced above, mr reflects the percentage of
nucleotide bases to be randomly mutated. The starting
point of a mutation for a given sequence is randomly
selected. This is followed by the random selection of a
donor sequence from the same family, which represents
the source of mutating nucleotides for the sequence to be
re-arranged. The starting point of the sub-sequence to be
donated is randomly selected and its length is defined by
the mr value. The re-arranged sequence encodes a mutated
amino acid sequence, which is compared to the reference
or native sequence (original input sequence). As in the
multiple-point variation model introduced above, the
variation level of a sequence is estimated by calculating
the distance between the mutated amino acid sequence
(at any generation during the simulation) and the refer-
ence sequence (at generation 0). Average variation values
are calculated for each family. Results reported here were

(b)
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resection
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A variation generation model based on gene conversion. (a) At generation '0', a (reference) native DNA sequence, g;,, encodes
a amino acid sequence, Ag;,. The mutation of nucleotides generate a new sequence, g; |, at generation 'l', which encodes a
mutated amino acid sequence, Ag; ;. This is achieved when a donor sequence, g, y, is randomly selected to provide a sub-

sequence to g;,. The resulting mutated sequence at generation '0' encodes Ag; . The variability of a gene i, g;

at generation j, is

estimated by measuring the difference between Ag; ,and Ag;;. (b) A more detailed graphical illustration (at t¥1e DNA level) of
the biological gene conversion model based on SDSA homologous recombination (adapted from [14]), which is computation-

ally approximated by model summarised in (a).
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observed for simulations implemented with different mr
values and during 1000 generations.

Figure 5 summarises the simulation results with mr =
0.0005 (upper panel) and mr = 0.001 (lower panel). In
both panels the lower curves represent the variation
response of nuclear proteins, which again indicates the
relatively low variation generation capacity of this family.
Thus, the genes encoding nuclear proteins tend to be
genetically robust against these genomic re-arrangements
in relation to the surface protein genes. However, for very
high mutation rates (mr > 0.01) this family can generate
greater diversity (not shown in Figure 5), which may be
even comparable to surface genes. In comparison to the
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Figure 5

Variation generation through gene conversion. Simulation
results with mr = 0.0005 (upper panel) and mr = 0.001
(lower panel). In both panels the lower curves represent the
variation generation response of genes encoding nuclear pro-
teins (i.e. most robust family). Under this model the DGFI
becomes relatively more robust to mutations (lower varia-
tion generation) for relatively higher mutation rates (lower
panel, curve above nuclear genes curve).
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other families, the DGF1 family tend to exhibit highly vol-
atile responses to re-arrangements driven by relatively low
mutation rates (mr < 0.0005) (not shown in Figure 5).
However, the diagrams shown in Figure 5 suggest that
DGF1 may exhibit relatively high robust responses (i.e.
lower variation generation) in the face of stronger gene
conversion-driven perturbations (i.e. mr > 0.0005). The
lower panel of Figure 5 indicates that DGF1 genes may
generate less genetic diversity (i.e. most robust behaviour)
than the other surface protein gene families considered
here. In this specific simulation scenario (mr = 0.001)
only the group of genes encoding nuclear proteins gener-
ated less genetic variability than DGF1 (bottom dotted
curve).

Figure 6 summarises the variation generation patterns of
all the gene families for different mr values. In this figure
each point represents the global, average variation values
observed in independent simulations for each protein
family through 1000 generations. Line-dotted curves
highlight the global, average variation of DGF1 and
nuclear proteins. Note that for mr = 0.0001 DGF1 was the
only family that generated variable amino acid sequences.
The response of the gene group encoding nuclear proteins
is in general consistent with the relative high robustness
observed in the multiple-point mutation model simula-
tions (Figure 3). However, under this variation generation
model DGF1 exhibits a more robust (less diversity gener-
ation) for relatively higher mutation rate values (mr >
0.0005). For mr values greater than 0.0005 the DGF1 rep-
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Figure 6

Variation model based on gene conversion. Summary of glo-
bal variation generation under different mr values. Each point
represents the global, average variation values observed in
independent simulations for each protein family through
1000 generations. Dotted-line curves highlight the global,
average variation of DGF| and nuclear proteins.
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resented the most robust surface gene family. Further-
more, for very high mr values (mr > 0.001) DGF1
displayed the lowest diversity generation capacity (highest
genetic robustness) in comparison to the other families.
The latter two observations are consistent with genetic
robustness estimations (based on static volatility scores)
reported elsewhere [11].

An exploration of the potential role of pseudogenes in
variation generation

Further simulations of the gene conversion-based varia-
tion generation model were implemented, which first
focused on DGF1 genes and pseudogenes. In these inde-
pendent simulations the DGF1 sequences randomly
exchanged sub-sequences with DGF1 pseudogenes only.
All pseudogenes had the same probability of being
selected to donate a sub-sequence. Moreover, the conver-
sion (insertion) points in the genes (receiver sequences)
and pseudogenes (donor sequences) are also randomly
selected. Figure 7 depicts different views of the obtained
results. The continuous- and dotted-line curves represent
the simulation results from variation generation through
intra-family gene sequence exchange only (i.e gene con-
version in which pseudogenes were not included) and
through gene conversion with pseudogenes only, respec-
tively. The upper figure panel displays results when the
simulations were conducted with mr = 0.0005. The lower
panel shows a partial view of results under mr = 0.01. The
results suggest that, for different mutation rates, pseudo-
genes tend to contribute to the generation of variability.
Figure 7, for instance, indicates that gene conversion with
pseudogenes may generate greater variation in compari-
son to the model that does not incorporate peseudogenes.
Independently of the mutation rate, there is a time (simu-
lation generation) in which the gene conversion model
with pseudogenes will show a higher average variation
than the model without pseudogenes. However, the dif-
ferences between these models do not appear to be statis-
tically significant. These exploratory simulations and
analyses suggest that pseudogenes might contribute to the
generation of variability in this family. Such a tendency is
incrementally reinforced in time, and is maintained after
reaching a number of generations (depending of the
mutation rate).

These simulations were repeated (independently) on the
GP85 family only. The results obtained from these simu-
lations showed less clear relationships than in the DGF1
analyses. Unlike in the case of the DGF1 family, GP85
pseudogenes did not achieve a capacity to consistently
generate greater variation in comparison to the variation
produced by gene conversion without pseudogenes. Fig-
ure 8 illustrates different views of some of the simulation
results. Its upper figure displays a partial view of results
when the simulations were conducted with mr = 0.0005.

http://www .kinetoplastids.com/content/6/1/6
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Figure 7

An exploration of the role of pseudogenes in variation gener-
ation — DGF| family. The continuous and dotted-line curves
represent the simulation results from variation generation
models based on intra-family gene sequence exchange only
(pseudogenes were not included in the gene conversion
events) and through gene conversion with pseudogenes (with
SGR), respectively. The upper panel displays results when the
simulations were conducted with mr = 0.0005. The lower
panel shows a close up view of results under mr = 0.01.

The lower panels shows a close-up view of results under
mr = 0.01. The results from these and other mutation rates
indicated that gene conversion with pseudogenes may
generate slightly greater variation (in comparison to the
model that does not incorporate peseudogenes) during
alternating simulation generations only. But unlike the
results from the DGF1 family, the capacity of pseudogenes
to increase variability through gene conversion is never
maintained. Independently of the mutation rate values
selected, there are alternating periods in which gene con-
version without the participation of pseudogenes may
actually contribute to the generation of (insignificant)
greater variation.
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Figure 8

An exploration of the role of pseudogenes in variation gener-
ation — GP85 family. The continuous and dotted-line curves
represent the simulation results from variation generation
models based on intra-family gene sequence exchange only
(pseudogenes were not included in the gene conversion
events) and through gene conversion with pseudogenes (with
SGR), respectively. The upper panel displays results when the
simulations were conducted with mr = 0.0005. The lower
panels shows a close-up view of results under mr = 0.01.

Discussion and conclusion

Potential biological relevance of models and observations
The study of mechanisms for the generation of genetic
diversity is important because such mechanisms are
needed for the survival and adaptation of the parasite in
the hosts. T. cruzi exploits such a capacity to generate a
massive genetic heterogeneity to increase its chances to
adapt to different hosts. The study of genomic variation
generation may have applications and implications for
the development of novel therapies against these para-
sites. For example, depending on the level of antigenic
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variation of a potential vaccine target, different strategies
(e.g. focus on function domains, focus on the vector-spe-
cific surface antigens) may be considered in the absence of
multivalent solutions [16]. Thus, highly volatile (or anti-
robust) genes may not be suitable drug targets, in compar-
ison to relatively more robust genes. Relatively more
robust genes (i.e. less diversity production ability) might
represent an even more feasible target if the gene in ques-
tion is predicted to be essential for the survival of the path-
ogen.

Previous research has shown that homologous recombi-
nation and gene conversions may be a significant mecha-
nism for achieving antigenic variation [16]. Recent
investigations have shown the importance of DNA recom-
bination for the generation of genetic variability in proto-
zoan parasites, including African trypanosomes [17].
However, there is a relative lack of research on genes and
mechanisms relevant to DNA mutation, recombination
and repair in this and other kinetoplastid organisms.

An important feature illustrated by the proposed method-
ology is the differentiating response capacity of specific
gene families in the face of random mutations. Previous
research has suggested that mutation rates (and its effects)
strongly depend on an evolutionary compromise between
a need to create diversity (a basis for adaptive evolution as
in the case of surface protein genes) and a need to preserve
core or essential cellular functions (as in the case of genes
encoding nuclear proteins) [17]. The results obtained here
underlined such a principle and indicated distinguishing
genetic variability responses between the gene families
analysed. Moreover, the simulations showed differential
patterns and responses between surface gene families,
which may be used to implement other sequence-based
characterisations.

Although genetic exchange among distantly related strains
of T. cruzi could occur, asexual reproduction is by far the
most prevalent way of propagation in this parasite
[18,19]. T. cruzi displays high level of genetic diversity in
the different isolates and even in the cloned cultures
[8,20]. Genomic rearrangement including single nucleo-
tide replacement could play a key role in maintaining
genetic heterogeneity of its population. Our results are in
agreement with previous experimental results that show
the importance of genomic rearrangement in the evolu-
tion of T. cruzi multigenic families [21]. For instance, the
diversity found in T. cruzi mucin genes of group I (TcMUC
I) are due to some point mutations, but mainly to inser-
tions/deletions of complete codons, whereas in the group
IT (TcMUC) most of the differences are due to non-synon-
ymous point mutations and some small insertions/dele-
tions [21]. These authors suggested that the accumulation
of non-synonymous point mutations could be the mech-

Page 8 of 12

(page number not for citation purposes)



Kinetoplastid Biology and Disease 2007, 6:6

anism involved in the generation of diversity within T.
cruzi mucin genes [21].

Previous experimental investigations have suggested that
genetic re-arrangements based on recombination might
be relevant to DNA damage repair mechanisms [17,22].
Thus, DNA recombination or gene conversions may play
arole in the reduction of variability. Although our models
did not directly address specific aspects of DNA damage
and repair through recombination, our results point out
interesting quantitative patterns and indicators. For exam-
ple, our simulations showed that genomic rearrange-
ments by a gene conversion mechanism tend to produce
less variable modifications (at the protein sequence level)
in comparison to the diversity generated by pure random,
multiple-point mutations. This behaviour was observed,
for instance, in the DGF1 family in terms of overall aver-
age values of genetic variation. Figures 3 and 6 (as well as
other simulation result figures) depict that for the same
amount of mutated nucleotides (i.e. the same mutation
rates), the DGF1 genes generated less variable amino acid
sequences through (intra-family) gene conversion than
through pure random, multiple-point mutations.

Our simulations indicated that gene conversion might act
as an effective variation generation mechanism in TS fam-
ily. Our results are in agreement with experimental results
[23] on TSA genes (group II of TS superfamily). Compari-
son of TSA genes revealed that they are analogous, sup-
porting the hypothesis that short segments between the
family members are exchanged by gene conversion events
[23]. Another critical factor that should be taken into
account to interpret the gene conversion simulation
results is the genomic diversity that is already present in
the gene sequences under study, particularly in TS family.
The potential roles of such a rich diversity should be con-
sidered in future modelling studies.

The possibility that sequence length may be an influential
factor in the simulations is excluded by the following evi-
dence. First, we ensured that the amount of mutating
bases in each simulation step is defined in relation to the
length of the sequence under consideration. That is, the
number of mutations and the variation effects are always
estimated relative to each sequence, and not as absolute
measures. But more importantly, in a previous research
we did not detect quantitative correlations between
sequence length and variation potential in each of the
gene families analysed here [11].

The simulations implemented here also illustrated how
the participation of pseudogenes might contribute to an
increase in diversity generation through gene conversion.
However, our simulations suggested this potential role in
the case of the DFG1 family only. More clear or significant
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relationships between the participation of pseudogenes
and genomic variation generation through gene conver-
sion were not observed in the case of the GP85 family.
Therefore, there is a need to implement additional, more
powerful statistical tests to identify possible systematic
differences. Previous experimental research has provided
evidence that combinations of silent genes may be
involved in the generation of diverse surface proteins in
trypanosomes. This may be achieved based on partial
duplications of pseudogenes or the insertion of sub-
sequences from the silent donor into the variable gene.
Recombinational processes have been proposed as a key
mechanism for diversity generation, in which the rear-
rangement of sequences may allow the partial expression
of pseudogenes [24]. For example, in T. brucei arrange-
ments based on duplicative transposition of pseudogene
subsequences have been suggested as an important source
of genetic variation [25]. Moreover, the existence of
expressed sequences derived from combinations of sev-
eral donor pseudogenes has been demonstrated. At least
in the case of African trypanosomes such pseudogene-
based recombinational processes have been suggested as a
key mechanism to enhance antigenic diversity of surface
protein gene sequences [25]. Further studies (experimen-
tal and bioinformatics using these and other protein fam-
ilies) are required to characterise and explain potential
roles of T. cruzi pseudogenes in the generation of genetic
diversity. For example, the results obtained in the GP85
family analysis might provide a basis for motivating the
study of the potential role of pseudogenes in protein fam-
ily preservation or stability. Future studies should also
include additional, more powerful statistical analyses to
test for systematic effects.

Summary of key findings and contributions

The simulations allowed us to assess the relative robust-
ness or variation capacity of the protein families in the
face of multiple-point mutations or sequence re-arrange-
ments. Distinguishing evolutionary responses were
observed between families, which may be used to charac-
terise them on the basis of their capacity to generate
genetic diversity. A group of genes encoding nuclear pro-
teins showed an ability to minimise the phenotypic varia-
tion generated by random, multiple-point mutations in
comparison to the responses observed in the surface pro-
tein genes. Simulations also showed that a gene conver-
sion model can act as an effective variation generation
mechanism in the DGF1 family.

This and research published elsewhere [11] suggest that
the variability patterns and responses observed may be
useful features to characterise gene groups. For example,
in relation to the other families, sequences from the DGF1
family have a greater capacity to maximise variation at the
amino acid level under relatively low mutation rates and
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through gene conversion. However, in relation to the TS
families, the DGF1 family exhibited more robust behav-
iour in response to more severe mutations through gene
conversion. This investigation also illustrated and evalu-
ated a mechanism of genetic variation generation at the
amino acid level that was driven by pseudogenes. Simula-
tions using DGF1 sequences indicated that pseudogenes
might contribute to the generation of variation of genes
through gene conversion-based re-arrangements under
different experimental conditions.

Thus, although this research does not report conclusive
and experimentally-validated results, it proposes digital
dynamic simulations as a tool to support the characterisa-
tion of gene families on the basis of their capacity to gen-
erate variability in the face of genomic perturbations.
These simulations require minimum user-defined inputs
and relatively low mathematical complexity to describe
models and outcomes. These and future in silico experi-
ments of self-replicating sequences undergoing random
mutations and genomic re-arrangements can also offer
insights into the mechanisms underlying variation gener-
ation of the genes under study.

To the best of our knowledge this is the first computa-
tional simulation study involving these variation models,
sequence data and the proposed simulation approach. A
recent study by Lythgoe et al. [26] presents a mathematical
model of the ordered appearance of variants in Trypano-
soma brucei during infection. Such a model is based on sets
of differential equations describing the dynamics of the
host-parasite responses. In our study the only critical,
user-dependent parameters are the mutations rates, which
allow the user to perform different simulations. The pat-
terns and responses shown here do not depend on other
analytical factors or computing variables. As part of future
work we will make a computing platform-independent,
user-friendly tool publicly available.

The proposed method may be applied as an alternative
approach to characterising surface protein families on the
basis of the visualisation and quantitative estimation of
genomic variation. Therefore, we aim to extend the pro-
posed methodology in order to approach such modelling
challenges in T. cruzi and other kinetoplastid organisms.
Nevertheless, in the long term the scientific value of these
and future in silico modelling proposals will greatly
depend on the availability of experimentally-obtained
data, which should be used to corroborate, modify and
refine models and simulations. At the time of completing
this revision we have not identified a specific strategy or
experimental technique to verify all the results reported
here. Regarding a possible approach to confirm the nature
of the variability of the TS superfamily, the approach
implemented by Khan et al. [6] based on monoclonal
antibodies is a feasible solution. However, this type of
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approach can now be assessed through new highthrouput
techniques, such as antibody-microarrays, which could
tell us how many different TS or DGF-1 members are
being expressed at a given time in different T. cruzi popu-
lations. Moreover, we expect that these and future results
will help us to direct our attention to more specific exper-
imental approaches that may allow us to test these or
related hypotheses.

Methods

The data

In this investigation we concentrated on 261 complete TS
proteins [8] whose functional and structural properties
had been previously described. The DFG1 genes investi-
gated here were represented by 85 coding sequences
[8,12]. The TS super-family consisted of 14 families: ASP-
1 (25 sequences), ASP-2 (37 sequences), CEA (17
sequences), CRP-10 (24 sequences), FL-160 (16
sequences), GP82 (19 sequences), GP85 (92 sequences),
MVarl-GP90 (101 sequences), SA-85 (98 sequences),
SAPA (30 sequences), Tc85-11 (93 sequences), TESA-1
(57 sequences), TS EPI (30 sequences) and TSA (37
sequences) [8,23,27-39]. Also our analyses incorporated
40 sequences encoding nuclear proteins in T. cruzi to fur-
ther illustrate observed differences between these families.
This group represented a set of sequences described as
"nuclear" proteins in the T. cruzi Genome Resource [40].
The variation generation simulation analyses also
included 15 DGF1 and 23 GP85 pseudogene groups
[8,12,13,39], which represented the donor sources in the
intra-family gene conversion model. The sequences used
in these analyses were obtained after performing Blastp
searches in the GenBank database [41] using sequence
probes identified by the authors. The sequences were cho-
sen based on their relationship with genes sequences iso-
lated from different laboratories, and whose functions
have been confirmed/demonstrated experimentally. For
instance, trans-sialidase genes code for proteins with
enzymatic trans-sialidase enzyme activity; GP82 and Tc85
have adhesin/binding properties; CRP has complement
activity, etc. In the case of the DGF-1 genes used here, their
sequences have been validated by comparisons with our
own sequences (2 of them) [13] and the original report by
Wincker et al. [12]. Since the selection of genes was done
considering the entire ORF of 10,000 nucleotides long,
and comparing these three sequences and the ones in the
database, it is unlikely that we have mosaics or misassem-
bled DGF1 genes sequences. Although we cannot rule out
the existence of misassembled sequences, such sequences
would represent exceptions in the T. cruzi Genome
Resource.

Estimation of gene variation

The implemented models quantitatively estimated genetic
variation or diversity by calculating the distance between
the amino acid sequence resulting from a mutated gene
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sequence and the corresponding native amino acid
sequence encoded by the input gene sequence. Average
and overall average variation values were used to summa-
rise variability responses in each family. Distances were
calculated by counting the number of different pair-wise
amino acids at the same position in the respective
sequences. This distance metric is also known as the Ham-
ming distance between two symbol sequences of equal
length. It calculates the number of amino acid positions
for which the corresponding amino acids differ. In this
study each distance was scaled to the length of the
sequence under consideration.

Computational models

Figures 1 and 4 depict the two variation generation mod-
els implemented. A variation generation simulation
require DNA coding sequences, a user-defined mutation
rate, mr, value and the number of simulation steps (self-
replication generations) as inputs. In both models mr is
proportional to the percentage of nucleotide bases to be
mutated. A mr = 0.0005, for example, means that at each
simulation step (generation) 0.05% (0.0005 x 100%) of
the nucleotides will be randomly selected and mutated.
Each nucleotide in the (mutating) sequence has the same
probability of being selected. Each nucleotide base has the
same probability of being chosen to substitute a base in
the mutating sequence. Gene sequences are replicated and
mutations are accumulated from generation to genera-
tion. In the gene conversion-based model each of the
sequences used as inputs to the simulation system under-
goes a multiple-point, continuous mutations, whose
length is defined by a mutation rate, mr. The starting
point of mutation for a given sequence is randomly
selected. This is followed by a random selection of a
donor sequence from the same family, which represents
the source of mutated nucleotides for the sequence to be
re-arranged. The starting point of the sub-sequence to be
donated is randomly selected and its length is defined by
the mr value. The re-arranged sequence encodes a mutated
amino acid sequence, which is compared to the reference
sequence (original input sequence) like in the case of the
first model. Results reported here were observed in simu-
lations implemented with different mr values and a 1000
generations.

The input sequences (see data description) are used as ref-
erences to estimate variation, i.e. the degree of variation of
subsequent mutated sequences is measured in relation to
these input (native) sequences. Mutations, i.e. random
multiple-point mutation and sequence re-arrangements,
occur at the DNA level. At each generation step a multiple-
point mutation or conversion event occurs. Both models
were implemented independently. The variation value for
each gene sequence is calculated based on the resulting
amino acid sequence as explained above. An average vari-
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ation value for each family of genes was calculated at each
simulation step. At the end of a simulation the system out-
puts the average variation values at each simulation step
for the sequence family under consideration.
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