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Abstract: Although over 25 antiepileptic drugs (AEDs) have become currently available for clini-
cal use, the incidence of epilepsy worldwide and the proportions of drug-resistant epilepsy among 
them are not significantly reduced during the past decades. Traditional screens for AEDs have been 
mainly focused on their anti-ictogenic roles, and their efficacies primarily depend on suppressing 
neuronal excitability or enhancing inhibitory neuronal activity, almost without the influence on the 
epileptogenesis or with inconsistent results from different studies. Epileptogenesis refers to the 
pathological process of a brain from its normal status to the alterations with the continuous prone of 
unprovoked spontaneous seizures after brain insults, such as stroke, traumatic brain injury, CNS 
infectious, and autoimmune disorders, and even some specific inherited conditions. Recently grow-
ing experimental and clinical studies have discovered the underlying mechanisms for epileptogene-
sis, which are multi-aspect and multistep. These findings provide us a number of interesting sites 
for antiepileptogenic drugs (AEGDs). AEGDs have been evidenced as significantly roles of post-
poning or completely blocking the development of epilepsy in experimental models. The present 
review will introduce potential novel candidate drug-targets for AEGDs based on the published 
studies. 
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1. SIGNIFICANCE OF ANTIEPILEPTOGENIC 
THERAPY 

 Epilepsy, a chronic paroxysmal brain disorder, is one of 
the most common disabling conditions around the world [1]. 
Since the first introduction of bromides for seizures in 1850, 
the modern treatment for epilepsy has passed nearly 170 
years [2]. There are over 25 antiepileptic drugs (AEDs) have 
been currently available for patients [3]. Newer-generation 
AEDs have become better by getting safer and with fewer 
side effects [4]. However, the incidence of epilepsy world-
wide and the proportions of drug-resistant epilepsy (DRE) 
among them are not reduced during the past decades [5]. By 
contrast, the mortality of epilepsy and its social and eco-
nomic burden in global have been greatly increasing, particu-
larly in the paediatric and geriatric populations [6, 7]. 

 Traditional screens for AEDs have been mainly focused 
on their anti-ictogenesis roles, and their efficacies primarily 
depend on suppressing neuronal excitability or enhancing 
inhibitory neuronal activity [8, 9]. They are primarily symp-
tomatic treatments after the development of chronic epilepsy, 
without obvious influences on the underlying process of  
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brain abnormalities, causing epilepsy [10, 11]. Several clini-
cal trials have been conducted so as to prevent the epileptic 
development based on traditional AEDs, but unfortunately 
they all failed [12, 13]. Moreover, many adverse events, such 
as cognitive impairment, retarding the recovery of neuro-
logical deficits were found in the patients receiving preven-
tive AEDs treatment [14]. The preventive therapy using cur-
rent AEDs therefore is not recommended after traumatic 
brain injury (TBI), stroke, brain tumours or brain surgery by 
the guidelines from various regions and counties [15, 16]. 

 The disappointing results above may be due to current 
AEDs, which do not really interfere in any substantial way 
with the epileptogenic process of acquired epilepsies (maybe 
also including hereditary epilepsy) [17]. The question of how 
to decrease the incidence of epilepsy in the seizure-free 
populations but with higher risk for generating epilepsy has 
long been neglected and not received adequate attention. It is 
generally believed that blocking epileptogenesis may be not 
realistic in practice, although it will give better benefits to 
patients by avoiding the negative lifelong medical therapy 
and social consequences of epilepsy [18]. 

 Recently growing experimental and clinical studies have 
discovered the underlying mechanisms for the epileptogene-
sis, which are multifacial and multistep [19, 20]. These find-
ings provide us a number of interesting sites for antiepilep-
togenic drugs (AEGDs). AEGDs have been evidenced as 
roles of postponing or completely blocking the development 
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of epilepsy in experimental models [21, 22]. The present 
review will focus on the current understanding of the pro-
posed preventive strategy for epilepsy, so as to address some 
potential candidate drug-targets for lowering or inhibiting 
the development of epilepsy. 

 Moreover, it is also a good way to prevent the develop-
ment of epilepsy in clinic by identifying and avoiding the 
risk factors for epileptogenesis after certain precipitating 
events [23, 24]. Additionally, a ketogenic diet, the high-fat, 
low-carbohydrate composition, as an alternative metabolic 
therapy for paediatric DRE, has also proved to be a promis-
ing disease-modifying for epilepsy or anti epileptogenic 
therapy [25]. However both of these are beyond the scope of 
this review. 

2. CONCEPTS OF EPILEPTOGENESIS AND 
ANTIEPILEPTOGENIC DRUGS 

 Epileptogenesis refers to the pathological process of a 
brain from its normal situation to the neuron network altera-
tions following initial insults, which can produce continuous 
prone of unprovoked spontaneous seizures [26, 27]. The pre-
cipitating epileptogenic events (PEEs) vary over a wide 
range including stroke, TBI, neurodegenerative diseases, 
infectious and autoimmune disorders, prolonged febrile con-
vulsions, as well as some specific genetic conditions [28]. As 
shown in Fig. 1, there are usually three different stages for 
epileptogenesis [29, 30]: Stage 1 of the triggering phase 
(with or without seizures) after PEEs; Stage 2 of the latent 
phase (a relatively “silent” period without manifestations of 
“seizures”, which offers a therapeutic window for the pre-
vention of epileptogenesis.); and Stage 3 of the chronic epi-
lepsy phase (this is the definite diagnosis of epilepsy if it has 
at least 2 unprovoked seizures with an interval of over 24 h 
in clinic [31]). 

 The experimental models of epilepsy available, such as 
chemical-kindling, electric-shocked, prolonged hyperther-
mia-induced, could well simulate the processes of epilepto-
genesis [32]. Status epilepticus (SE) had long been focused 
as a PEE only in animal models for studying epileptogenesis, 
which had been thought of rarely in patients. Thus, the val-

ues of animal models for epileptogenesis had been debated. 
But presently, more and more new-onset SE occurring in 
patients has been found with a higher risk for epilepsy [33, 
34]. Therefore, the results from the animal models may be 
persuasive as SE actually exists as a PEE in populations; and 
current researches on epileptogenesis mostly based on these 
models of convulsive seizures with clear behavioral symp-
toms. It is relatively difficult to identify the models of non-
convulsive seizures due to more subtle semiology such as 
altered consciousness and less motor activity. Although it is 
still controversial, nonconvulsive seizures was defined as 
characteristic electroencephalographic events in models from 
several studies [35]. Based on this definition, nonconvulsive 
seizures have been found as the earliest signs during the la-
tent period of epileptogenesis (Stage 2) in pilocarpine (Pilo) 
[36] or kainic acid (KA) [37] -induced models and electrical 
stimulation-triggered SE [38]. Thus, the exploration of 
AEGDs based on mechanisms underlying nonconvulsive 
seizures during the latent period could even be most effec-
tive and promising, such as Y-27632 (one of Rho/Rho-
kinase inhibitors) [39] and micro-RNA-211 [40]. 

 The concept of AEGDs is defined as the agents with the 
ability to partially postponing or completely blocking the 
development of epilepsy in this review, mainly based on 
convulsive seizures [41]. These intervention drugs may be 
used in Stage 1 (mostly in animal models) or Stage 2 (both 
in animal models and several clinical trials) to test its effi-
cacy and safety. The intervention approaches in Stage 2 can 
be expectedly used in clinic to prevent epileptogenesis in the 
future. 

 Generally, the term “antiepileptogenic therapy” refers to 
the distinct methods of preventing or delaying the develop-
ment of epilepsy in the susceptible population. In the present 
review, “antiepileptogenic therapy” was mainly limited to 
chemical agents for preventing epileptogenesis. Indeed, there 
are some overlaps among the concepts of “antiepileptogenic 
therapy”, “neuroprotective therapy for epilepsy” and “epi-
lepsy-modifying therapy” [43]. The neuroprotective therapy 
for epilepsy means the approaches of decreasing the neu-
ronal damage (i.e. neuron loss, plastic construction) or im-
proving the neurological deficits (i.e. cognitive impairment, 

 

Fig. (1). Three continuous stages of epileptogenesis. This picture is based on the data from Ethan M’s study [29] and our own data [41, 42]. 
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mood disorders) resulting from the initial brain insult events. 
Epilepsy-modifying therapies aim at reducing seizure fre-
quency, shortening seizure duration, increasing seizure 
thresholds, or inhibiting the spread and severity of seizures 
[44]. Different from the antiepileptogenic therapy mainly 
limited in the experimental models, neuroprotective and dis-
ease-modifying therapies have been both used in clinic cur-
rently, such as increasing response to AEDs and changing 
epilepsy from refractory to controllable [45]. The antiepilep-
togenic roles of an AEGD may depend on its neuroprotective 
or disease-modifying activity, whereas the latter two may not 
show a solo role in treating epilepsy [46]. But it may be dif-
ficult at times to differentiate the drug effects of “true” anti-
epileptogenesis, “true” disease-modifying efficacy or “true” 
neuroprotective effect. Certain neuroprotective and disease-
modifying therapies have been used in epilepsy, primarily 
associated with resolving its pathology, comorbidities, and 
adverse effect of AEDs [47]. Therefore, antiepileptogenic 
therapies may belong to one of the epilepsy-modifying ap-
proaches. 

3. MECHANISMS OF EPILEPTOGENESIS 

 Epileptogenesis is an extraordinarily complex process. 
Till date, its detailed mechanisms have not been fully clari-
fied. In general, the development of epilepsy may be initially 
precipitated by various etiologies with distinct PEEs, such as 
stroke, TBI, CNS infectious and autoimmune disorders, 
alongside some specific genetic conditions [48]. Epilepto-
genesis is characterized by distinct histopathologic and bio-
chemical changes, which include astrogliosis and imbalance 
between excitatory and inhibitory neurotransmitters [49]. 
However, the studies currently available have suggested 
some convergences of molecular mechanisms underlying 
epileptogenesis following different PEEs [50]. The common 
signal pathways involved in the processes of epileptogenesis 
are listed in Table 1. 

 Although there seems to be the inherent complexity and 
heterogeneity of known mechanisms of epileptogenesis, 
there are still some common fundamental pathophysiologic 
mechanisms shared by various PEEs. For instance, neuroin-
flammatory pathways and mammalian target of rapamycin 
(mTOR)-extracellular signal-regulated kinase (ERK) 1/2 
pathways can both involved the development of epilepsy 

after TBI, stroke, infectious, immune disorders and certain 
genetic diseases [51, 52]. Moreover, genetic factors may play 
a general role in the likelihood of epileptogenesis [53]. It is 
important to note that some of these mechanisms may bene-
fit the repair or the recovery process after brain injury, which 
are not appropriate as targets of AEGDs, e.g. reactive astro-
gliosis in TBI could contribute to the recovery of neurologi-
cal function and epileptogenesis in the meanwhile [54]. The 
intervention without any selection on drug targets may do 
harm to the brain. For example, tumor necrosis factor-α 
(TNF-α), one of important pro-inflammatory cytokines has 
proved to predispose epileptogenesis by upregulating micro-
glial glutamate release and causing neurotoxicity [55], 
whereas anti-TNF-α therapy for epilepsy may increase the 
suspected risks of infection and cancer development [56]. 
The more instances like this were not fully discussed in this 
review. We mainly focused on promising cases currently.  

4. CANDIDATE DRUG-TARGETS FOR AEGDS 
BASED ON ESTABLISHED MECHANISMS FOR 
EPILEPTOGENESIS 

 Established mechanisms above provided us many prom-
ising targets for AEGDs include anti-inflammatory and anti-
oxidative drugs, mTOR inhibitors, TrkB inhibitors, TGFβ 
antagonists, ADK inhibitors, the SV2A modulator, and epi-
genetic interventions, as listed in Table 1. Due to amounts of 
crosstalk existing among different signal pathways, single 
drug candidate may have several potential action targets. For 
instance, both TrkB inhibitors and TGFβ antagonists may 
generate predominantly anti-inflammatory roles in some 
animal models [57, 58]; whereas anti-inflammatory drugs 
can also inhibit the TrkB or TGFβ pathways [59]. So, it is 
only relatively easy to introduce them separatedly below. 

4.1. Neuroinflammatory Pathways as AEGDs Targets in 
Prophylaxis for Epilepsy 

 Excessive activation of inflammation response in the 
brain might be one of the most extensively studied pathways 
underling epileptogenesis, which has been commonly identi-
fied in various animal models of epilepsy and in humans 
[60]. The main inflammatory pathways for epilepsy include 
the damage-associated molecular pattern of high-mobility 
group box 1(HMGB1)-Toll-like receptor 4(TLR4)/advanced 

Table 1. Brief summary of major signaling pathways underlying the mechanisms of epileptogenesis and related AEGDs targets. 

Signalling Pathways Pathophysiology Example of Antiepileptogenic Treatment 

Neuroinflammatory pathways Inflammatory brain injuries Anti-inflammatory and anti OS agents 
mTOR-ERK1/2 pathways Linked with the development of cortical malformations mTOR inhibitor: rapamycin 

BDNF/TrkB signalling Cell proliferation and plasticity BDNF gene duo-therapy 
TGFβ signalling Associated with BBB dysfunction TGF-β signalling blockers: AT1 

Adenosine kinase (ADK) hyper-reaction Decreasing the adenosine levels and lead to astrogliosis ADK inhibitor 5-iodotubercidin 
SV2A hyper-reaction Disrupting action potential-induced γ- GABA SV2A modulator 

Note: OS= Oxidative stress; TOR=mammalian target of rapamycin; ERK 1/2= extracellular signal-regulated kinase ½; TGFβ =transforming growth factor beta; BBB= Blood-Brain 
Barrier; BDNF=brain-derived neurotrophic factor; TrkB= tropomyosin related kinase B; FGF-2=fibroblast growth factor 2; ADK=Adenosine kinase; SV2A=synaptic vesicle glyco-
protein 2A; γ-GABA=γ-aminiobutyric acid; AT1=angiotensin II type 1 receptor antagonist. 
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glycation end products(RAGE)-nuclear factor-kappa B (NF-
κB)-interleukin(IL)-1 beta axis [61], and the arachidonic acid 
(AA)-cyclooxygenases (COX)-prostaglandin (PGs) cascade 
[62]. Neuroinflammation can be initiated by numbers of 
PEEs for epilepsy, such as infectious diseases and non-
infectious brain injuries [63]. Pathogen-associated molecular 
patterns (PAMPs) from infectious agents, like herpes virus, 
can also activate TLRs and promote similar consequences of 
neuroinflammation above [64]. Recently, it was found that 
the conditions of post-herpes virus encephalitis could trigger 
to produce anti-neuronal antibodies, like N-Methyl-D-
aspartate (NMDA) receptor antibody [65], which mediated 
causing autoimmune epilepsy furtherly [66]. 

 Oxidative stress (OS) can also trigger or be triggered by 
acute or chronic neuroinflammation for epilepsy, which 

manifested as an imbalance status of a brain between realis-
ing reactive oxygen species and eliminating them under in-
sulting conditions [67]. The downstream of neuroinflamma-
tion activation during the period of epileptogenesis may 
share the common pathways, such as the dysregulation of 
cytokine balance in the CNS or through the complement 
pathway, which furtherly cause the neuron loss via neurotox-
icity or over hyperexcitability [68]. Ischemic processes, one 
of important PEEs, can block the degradation of hypoxia 
inducible factor 1-α (HIF-1α), which binds to hypoxia re-
sponsive element, resulting in the up-regulation of COX-2 
and PGE-2 [69]. Based on the roles of anti-inflammatory, 
some natural plant products, e.g. berberine (a quaternary 
ammonium salt from the protoberberine group of benzyliso-
quinoline alkaloids found in such plants as berberis) [70], 

 

Fig. (2). The therapeutic targets for prophylaxis of epileptogenesis associated with interconnected inflammatory pathways. The hy-
perexcitability, excitotoxicity and neurotoxicity caused by the neuroinflammatory process could predispose to spontaneous recurrent seizures 
and mediate the epileptogenesis. Multiple targets for AEGDs are presented via modulating the inflammatory pathways. “(-)” means the in-
tervened targets. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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and curcumin (a principal curcuminoid present in turmeric) 
[71] also exhibited anti-epileptogenic properties. The complex 
relationships among the inflammation signal pathways and 
corresponding molecular targets for anti-epileptogenic thera-
pies through anti-inflammatory were established in Fig. 2. 

 Apart from its therapeutic effects, we recently reported 
that neuroinflammatory pathways could modulate expression 
of the ATP-binding cassette transporters [41] and the en-
zymes of cytochrome P450 family [82], both of which can 
mediate the development of DRE. So, inflammatory media-
tors could also provide diagnostic, prognostic and predictive 
biomarkers for epilepsy or DRE, which will be useful tools 
for patient stratification futurely. 

4.2. mTOR Signaling Pathway as Candidate Targets for 
AEGDs 

 Mammalian target of rapamycin (mTOR) is a key protein 
kinase regulating cellular division and proliferation [83]. 
mTOR has two distinct complexes—mTORC1 and 
mTORC2, encoded by tuberous sclerosis complex 1 (TSC1) 
and TSC2 genes respectively [84]. mTOR hyper-activation, 
as a consequence of TSC1 and TSC2 mutations could lead to 
dysplastic neurons, abnormal cortical organization and as-
trogliosis, which are considered as the primary cause for 
TSC, linked with the development of cortical malformations 
and epilepsy [85, 86]. Furthermore, giant cell astrocytoma, 
angiomyolipoma, hemimegalencephaly, and lymphan-
gioleiomyomatosis are all also associated with mTOR hyper-
activation [87]. In addition to genetic epilepsy, hyperactiva-
tion of mTOR signalling has also been involved in animal 
models of acquired epilepsy in particular with the controlled 
cortical involvement, including TBI [88], ischemic stroke 
[89], and KA [90] or electrical stimulation induced-SE [91]. 
According to a large randomized clinical trial [92], ever-
olimus, one mTOR inhibitor and also an analogue of ra-
pamycin, has been recently approved by the FDA of the 
United States and European Union for TSC-associated par-
tial-onset seizures alongside with many other aspects of 
TSC, such as cortical dysplasia, subependymal giant cell 
astrocytomas and renal angiomyolipomas; and the efficacy 
of mTOR inhibitors has also been confirmed in epileptic 
patients [93]. From another long-term prospective trial [94], 
vigabatrin also showed a preventative antiepileptic effect in 
TSC infants with paroxysmal EEG changes before clinical 
seizures, probably relevant with its mTOR inhibitory effect. 
Therefore, mTOR is currently a very greater candidate for 
anti-epileptogenesis. Many other mTOR inhibitors are being 
explored or in clinical trials. 

4.3. BDNF/TrkB Signaling 

 Neurotrophic factors (NTFs), such as brain derived neu-
rotrophic factor (BDNF) and fibroblast growth factor 2 
(FGF-2), are a family of endogenous soluble biomolecules, 
with critical roles in regulating the growth, survival, and 
differentiation of both developing and mature neurons [95]. 
Their actions are at tropomyosin related kinase (Trk) recep-
tors, which include TrkA (bind with NGF), TrkB (selectively 
bind with BDNF), and TrkC [96]. Early studies have found 
that frequency seizures or other brain injuries could increase 

the expression of BDNF and TrkB, which consequently in-
creased neuron network excitability, giving us the clues of 
the link between the BDNF and epileptogenesis [97]. An-
other report found that conditional deletion of TrkB inde-
pendently prevented epileptogenesis in a kindling model 
[98]. Nowadays, increasing evidences addressed the role of 
increased BDNF/TrkB signalling on the progressive devel-
opment of epilepsy by different models [99]. Therefore, sev-
eral drugs targeting BDNF/TrkB signaling have been used to 
prevent epileptic generation following PEEs, showing an 
innovative promising strategy [100]. 

4.4. TGFβ Signal Associated with Blood-brain Barrier 
Dysfunction for AEGDs 

 Blood-brain barrier (BBB) dysfunction, usually with in-
creasing permeability and extravasation of serum albumin in 
perivascular brain tissue, is an important etiological player in 
epileptogenesis following various brain insults [101]. The 
PEEs may directly damage the integrity of BBB, or produce 
indirect injury to BBB mediated by inflammatory mediators, 
impairment of tight junctions, and OS [102]. Consequently, 
the secondary events to the above furtherly activated trans-
forming growth factor beta (TGFβ) receptor signalling path-
way in astrocytes, which consequently influenced the func-
tion of potassium channel, the aquaporin 4 channel and the 
glutamate transporters [103]. This pathological process dem-
onstrated a key role for astroglia and profoundly involved in 
the development of epilepsy. Blockers of TGF-β signalling, 
such as angiotensin II type 1 receptor antagonist (AT1), 
losartan, could effectively prevent the development of de-
layed spontaneous seizures in different rat models of vascu-
lar injury, which effect persisted weeks after drug with-
drawal [104]. These findings could be considered as a key 
epileptogenic process, indicating the manipulation of the 
TGF-β-pathway as another potential strategy for anti-
epileptogenic therapy. 

4.5. Modulating Neurotransmitters and their Metabolic 
Enzymes as AEGDs Targets 

 Dysfunctional release of neurotransmitters (including 
synaptic neurotransmitters) and their metabolic enzymes is 
closely involved in the pathogenesis of epilepsy [105]. In 
this respect, the following features have been found in the 
epileptogenic process: loss of c-aminobutyric acidergic 
(GABAergic) interneurons, increasing glutamatergic neu-
rons, and the molecular reorganization of glutamate and 
GABA receptor subunits [106]. The pathophysiology of epi-
leptogenesis has been found profoundly relevant with over-
expression and activity of both types of glutamate receptors, 
including ionotropic glutamate receptor (eg. NMDA, 
AMPA) and metabotropic glutamate receptors (mGluRs), as 
well as their related signal transduction pathways [107]. The 
following changes have been as marked characteristics dur-
ing epileptogenesis: altered excitability of neurons and/or 
neuronal circuits, reactive synaptogenesis and axonal sprout-
ing, activation of microglia, and astrocyte dysfunction. 
mGluR antagonist (LY367385 + MPEP) [108] and NMDA 
receptor antagonist (MK-801, dizocilpine) [109] both have 
been evidenced to successfully block prolonged epileptiform 
discharges in experimental models. 
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 Among the metabolisms of neurotransmitter systems, the 
adenosine-metabolizing enzyme adenosine kinase (ADK) is 
extensively studied by various models of PEEs. Increased 
expression of ADK could contribute astrogliosis associated 
with epileptogenesis, therefore providing us another target 
for therapeutic intervention [110]. Pre-treatment with ADK 
inhibitor 5-iodotubercidin (5-ITU) significantly reduced the 
susceptibility and severity of seizures in intrahippocampal 
KA mouse model of temporal lobe epilepsy (TLE) [111]. 5-
ITU also showed neuroprotective roles by suppressed gran-
ule cell dispersion in these protected mice [111]. So, the 
transient use of a small-molecule ADK inhibitor may yield 
both anti-epileptogenesis and disease-modifying properties. 
Synaptic vesicle glycoprotein 2A (SV2A) is a membrane 
protein specifically expressed in synaptic vesicles, regulating 
action potential-dependent neurotransmitter release in brain 
[112]. It serves as one of specific binding sites for the current 
AED-levetiracetam and its analogues [113]. Blocking 
SV2A’s action showed that the dysfunction of SV2A prefer-
entially disrupted action potential-induced γ-GABA, but not 
glutamate in kindling epileptogenesis, indicating that en-
hancing SV2A function could decrease epileptogenesis and 
encourage future research on the novel AEGDs [114]. 
Levetiracetam has also been identified to act primarily 
through SV2A, so it is taken into account as possessing 
promising antiepileptogenic properties in addition to its anti-
seizure effect [115]. But it still needs large clinical trials on 
distinct types of subjects with higher risk for epilepsy. 

4.6. Epigenetic Chromatin Modifications 

 Epigenetic signalling has proved to exert predominant 
regulation of gene expression, widely linked with the patho-
physiology of epileptogenesis [116]. The potential epigenetic 
mechanisms included histone modifications, DNA methyla-
tion, microRNA-based transcriptional control, and bromo-
domain reading activity [117]. This process can explain the 
synergistic mis-regulation of multiple genes in major epilep-
togenic pathways-including neuroinflammation and synaptic 
reorganization [118]. Increased levels of DNA promoter 
methylation have been found in resected brain specimens 
from TLE patients [119, 120]. Reddy et al. [121] have 
showed that the histone deacetylase (HDAC) inhibitor so-
dium butyrate in the hippocampus kindling model of TLE 
markedly attenuated seizure persistence many weeks and 
resulted in a striking retardation of epileptogenesis. How-
ever, this effect was not evident in early studies by selective 
HDAC inhibition of trichostatin A [122] or suberoylanilide 
hydroxamic acid [123]. We speculated the controversial re-
sults may contribute to those inhibitors targeting different 
informs of HDAC. Although it provides some insights from 
this aspect, targeting the epigenetic HDAC pathway for pre-
venting curing epilepsy still need to be further explored in 
future. 

4.7. Others Potential Candidates for AEGDs 

 There were numerus other experimental studies attempt-
ing to find an effective prophylactic treatment for epilepto-
genesis, as listed in Table 2. These drug-targets may be dis-
tinct from the mentioned above. Occasionally, there were 
contrary conclusions from the studies using same drugs. For 

example, an antagonist of transient receptor potential cation 
channel subfamily M member 8 showed significant protec-
tive effects on febrile- and pentylenetetrazol (PTZ)-induced 
seizures; however, it did not produce similarly protective 
effects on electroshock-induced seizures model [124]. An-
other similar example, bumetanide, an inhibitor of the 
Na(+)K(+)2Cl(-) co-transporter could prevent epileptogenesis 
in a model of the febrile seizures in neonatal rats [125] as 
well with a model of genetic epilepsy [126] but this effect 
was not found in the lithium-Pilo model in adult rats [127] . 
Both examples illustrated that the groups with different 
models (or PEEs) and ages may undergo different patho-
physiological changes of brain underlying the epileptogene-
sis. Importantly, models are not naturalistic, and do not have 
high validity pertaining to the human epilepsy aetiology. 
Even where they do, success in one model and not another is 
also valuable as it represents a potential tailored treatment 
for one group of patients. This is in line with modern princi-
ples of drug discovery. 

5. POTENTIAL AEGDS BASED ON KNOWN DRUGS 
AVAILABLE FOR NON-EPILEPSY DISORDERS 

 The drugs clinically approved for non-epilepsy indica-
tions, such as glatiramer acetate (an immunomodulator cur-
rently used in the treatment of multiple sclerosis)[139], stat-
ins (cholesterol-lowering drugs used for the treatment of 
hypercholesterolemia and related atherosclerotic dis-
eases)[140], isoflurane(an anesthetic agents) [141], and the 
first-line antidiabetic agents(metformin [142] and rosiglita-
zone [143]), and cannabinoids (a group of compounds found 
in the Cannabis sativa plant, licenced for Lennox-Gastaut 
syndrome and Dravet syndrome)[144] have also offered the 
roles of preventing the development or progression of epi-
lepsy in different animal models at some extent. Their anti-
epileptogenic effect may primarily or partially depend on 
their anti-inflammatory and antioxidative properties. It 
should be noted that statins are the only drugs with clinical 
evidence of antiepileptogenic efficacy from large clinical 
trials [145]. But the enrolled participants in the previous tri-
als are all geriatric populations usually with stroke or cardio-
vascular disease. 

6. CHALLENGES AND PERSPECTIVES 

 Most of potential candidates for AEGDs summarized 
above all reflect the mechanisms underlying generation of 
epilepsy to a certain extent. Among them, the targets on neu-
roinflammatory pathways and mTOR-ERK1/2 pathways 
may provide a more promising application for prevention of 
epilepsy. Some known drugs available for widely using in 
non-epileptic disorders are worth further being evaluated in 
clinic due to their multiple acting targets and safety. 

 However, preclinical data may not be completely equal to 
clinical outcomes. There is a long way of translating knowl-
edges from bench to bedside. Many mysteries and challenges 
still exist on exploring and employing the AEGDs in future. 
Sloviter et al’s study showed that the latency of injury-
induced epileptogenesis may be a much more rapid process 
than previously thought, inconsistent with a delayed epilep-
togenic mechanism [146]. As one research suggested that 
antiepileptogenic therapy may need to start earlier after the 
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brain insult [147], how do we precisely define and control 
the time when to start this prophylaxis for epilepsy? Fur-
thermore, which specific subjects at risk for epilepsy follow-
ing PEEs will get benefit from the earlier therapy? Since the 
mechanisms underlying the epileptogenisis are multitargeted, 
multistep, and multi-interactional, will the combined therapy 
acting on distinct targets get better effects than monother-
apy? Last but not the least, how long does the prevention 
treatment need sustain? It is also necessary to define which 
specific forms of AEGDs should be administered, at what 
doses, and for what duration of treatment, in order to pro-
mote repair of neuronal damage. We have also acknowledged 
that rationally based on specific molecular targets validated 
in animal models-have failed to show significant effects in 
humans [148]. Therefore, we still need perform proof-of-
concept clinical trials with the most promising drugs, which 
will be essential to make prevention of epilepsy a reality. 
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