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Abstract: Skin is the largest organ of humans. Overexposure to ultraviolet (UV) is the primary
environmental factor that causes skin damage. The compound, (-)-loliode, isolated from the brown
seaweed Sargassum horneri, showed strong antioxidant and anti-inflammatory activities in in vitro
and in vivo models. To further explore the potential of (-)-loliode in cosmetics, in the present study,
we investigated the photoprotective effect of (-)-loliode in vitro in skin cells and in vivo in zebrafish.
The results indicated that (-)-loliode significantly reduced intracellular reactive oxygen species (ROS)
level, improved cell viability, and suppressed apoptosis of UVB-irradiated human keratinocytes. In
addition, (-)-loliode remarkably attenuated oxidative damage, improved collagen synthesis, and
inhibited matrix metalloproteinases expression in UVB-irradiated human dermal fibroblasts. Fur-
thermore, the in vivo test demonstrated that (-)-loliode effectively and dose-dependently suppressed
UVB-induced zebrafish damage displayed in decreasing the levels of ROS, nitric oxide, lipid peroxi-
dation, and cell death in UVB-irradiated zebrafish. These results indicate that (-)-loliode possesses
strong photoprotective activities and suggest (-)-loliode may an ideal ingredient in the pharmaceutical
and cosmeceutical industries.

Keywords: Sargassum horneri; (-)-Loliode; UVB irradiation; ROS; MMPs

1. Introduction

Skin is the largest organ and the first defensive line of the natural defensive system
of the human body. Ultraviolet (UV) is the primary environmental factor that causes skin
damage [1]. Based on the wavelength, UV can be classified into three subtypes, including
UVA (320–400 nm), UVB (280–320 nm), and UVC (100–280 nm). UVB is characterized as
causing more damage to human skin than UVA and UVC. This is because of its ability
to penetrate the layers of the stratum corundum and epidermis [2]. UVB irradiation
could cause skin damage such as thickening of the epidermis, pigmentation disorders,
loss of elasticity, erythema, deep wrinkles, and skin cancer. Thus, resources that can
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be used to protect skin against UVB-induced photodamage have received the attention
from researchers.

Natural products have the advantage of having high-effect and non- or low-toxicity.
Thus, finding photoprotective materials from natural resources and developing a skincare
agent to protect skin against the damage stimulated by UVB irradiation is an effective
strategy for skin health. Numerous natural compounds have been reported to have photo-
protective effect [3–7]. Zheng et al. investigated the photoprotective effects of theaflavins
isolated from black tea. According to the findings, theaflavin-3′-gallate effectively pro-
tected human keratinocytes (HaCaT cells) against UVB-induced photodamage [6]. Li et al.
evaluated the protective effect of the polysaccharide isolated from Sophora japonica L.
flower against UVB-induced skin damage in HaCaT cells. The results suggest that the
polysaccharide effectively decreased the UVB-induced apoptosis rate in HaCaT cells [7].

Seaweeds contain various bioactive compounds, such as polysaccharides, peptides,
pigments, polyphenols, and sterols [8–10]. These bioactive compounds possess numer-
ous health benefits, including antioxidant, anti-obesity, anti-cancer, anti-inflammatory,
anti-melanogenesis, and UV protective effects [8,11–13]. Recent research indicates that
algae-derived compounds possess strong photoprotective effects [11,13]. Fernando et al.
have investigated the photoprotective effect of fucoidan (SSQC4) isolated from Sargassum
siliquastrum [14]. The results indicated that SSQC4 effectively reduced intracellular ROS
levels and apoptotic body formation, as well as improved the viability of UVB-irradiated
HaCaT cells [14]. Ji et al. have reported the protective effect of polysaccharide from Sar-
gassum fusiforme (SFP-P1) against UVB-induced oxidative stress in HaCaT cells [15]. The
results indicated that SFP-P1 increased the activities of SOD and GSH-PX, and decreased
the level of ROS [15].

In the previous study, a compound, (-)-loliode (Figure 1), has been isolated from
Sargassum horneri and the antioxidant and anti-inflammatory activities of (-)-loliode had
been investigated [16]. The results indicated that (-)-loliode possesses strong in vitro and
in vivo antioxidant and anti-inflammatory activities and suggested the potential of (-)-
loliode for photoprotective effects [16,17]. Therefore, in the present study, we investigated
the photoprotective effect of (-)-loliode in vitro in human skin cells and in vivo in zebrafish.
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Figure 1. Structure of (-)-loliode.

2. Results and Discussion
2.1. Protective Effect of (-)-Loliode against UVB-Induced HaCaT Cell Damage

Skin is the largest organ in humans. It is directly exposed to environmental factors
such as chemical and UV irradiation. UV irradiation is the primary environmental factor
that causes skin damage. For the epidermis, UV irradiation could induce cellular damage
such as apoptosis and necrosis by increasing the intracellular ROS level [18]. Thus, a
compound with the ROS scavenging effect may possess the potential to protect skin against
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UVB-induced cellular damage. (-)-Loliode, an algae-derived compound, has been reported
to possesses strong ROS scavenging effect in AAPH-stimulated Vero cells and zebrafish
in our previous study [16]. In addition, Han, et al. reported that (-)-loliode suppressed
oxidative stress and inflammation by activating Nrf2/HO-1 signaling in IFN-γ/TNF-α-
stimulated HaCaT cells [19]. Furthermore, the methanol extract of S. horneri contains
(-)-loliode showed photoprotective effect in vitro in HaCaT cells [20]. To further investigate
the bioactivity of (-)-loliode and to explore its potential in the cosmeceutical industry, in
the present study, we investigated the photoprotective effect of (-)-loliode in in vitro and
in vivo models.

Our results showed that (-)-loliode was showed cytotoxicity on HaCaT cells at the
concentration higher than 50 µg/mL, but non-toxic at the concentration under 25 µg/mL
(Figure 2A). Thus, the maximum concentration of (-)-loliode treat to HaCaT cells was
determined as 25 µg/mL.
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Figure 2. Protective effect of (-)-loliode against UVB-induced HaCaT cell damage. (A) Cytotoxicity of (-)-loliode on HaCaT
cells; (B) intracellular ROS scavenging effect of (-)-loliode in UVB-irradiated HaCaT cells; (C) protective effect of (-)-loliode
on UVB-induced cell death in HaCaT cells. Cell viability was measured by the MTT assay and intracellular ROS levels
were measured by the DCF-DA assay. The data was expressed as the mean ± SE (n = 3). ** p < 0.01 as compared to the
UVB-irradiated group and ## p < 0.01 as compared to the control group.

In the present study, the intracellular ROS level, the apoptotic body formation, as
well as the viability of UVB-irradiated HaCaT cells were evaluated. As the results showed,
UVB irradiation significantly increased the intracellular ROS level and decreased the
viability of HaCaT cells; however, (-)-loliode remarkably and concentration-dependently
reduced intracellular ROS level and improved the viability of UVB-irradiated HaCaT
cells (Figure 2B,C). In addition, UVB irradiation significantly stimulated apoptotic body
formation, and (-)-loliode effectively suppressed the apoptotic body formation in HaCaT
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cells (Figure 3). These results indicated that (-)-loliode effectively protected HaCaT cells
against oxidative damage induced by UVB irradiation.
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Figure 3. Protective effect of (-)-loliode against UVB-induced apoptosis in HaCaT cells. The apoptotic
body formation was evaluated by Hoechst 33342 staining assay.

2.2. Protective Effect of (-)-Loliode against UVB-induced HDF Cell Damage

Previous studies indicated that UVB irradiation induces cell death, inhibited collagen
synthesis, and increased MMPs expression by stimulating intracellular ROS generation
in HDF cells [11,21]. Thus, in the present study, we investigated the effect of (-)-loliode
on oxidative damage, collagen synthesis, and MMPs expression in UVB-irradiated HDF
cells. According to the cytotoxicity analysis, (-)-loliode was non-toxic on HDF cells at
the concentration under 25 µg/mL. Thus, the maximum concentration of (-)-loliode treat-
ment on HDF cells was determined as 25 µg/mL. The intracellular ROS level of UVB-
irradiated HDF cells was increased to 196.73% compared to the cells non-irradiated to
UVB (100%) (Figure 4B). However, the intracellular ROS levels of the cells treated with
6.25, 12.5, and 25 µg/mL (-)-loliode were decreased to 170.21, 166.07, and 153.35%, re-
spectively (Figure 4B). In addition, (-)-loliode increased the viability of UVB-irradiated
HDF cells from 57.24% to 60.38, 69.72, and 79.31% at the concentrations of 6.25, 12.5, and
25 µg/mL, respectively (Figure 4C). The previous study has reported that the fucoidan
isolated from Hizikia fusiforme decreased the intracellular ROS levels of UVB-irradiated
HDF from 240.86% to 223.50, 208.67, and 203.14%, as well as improved the cell viabilities
of UVB-irradiated HDF from 71.31 to 74.58, 78.34, and 81.17% at the concentration of
12.5, 25, and 50 µg/mL, respectively [21]. Compared to the present results, (-)-loliode
showed a stronger photoprotective effect on HDF cells than the fucoidan isolated from
Hizikia fusiforme.

As Figure 5A shows, UVB significantly decreased the collagen level of HDF cells
compared to the control group (100%). However, the collagen levels of the cells treated
with (-)-loliode at the concentration of 6.25, 12.5, and 25 µg/mL were increased from 49.44%
to 61.75, 71.72, and 75.78%, respectively (Figure 5A). Furthermore, UVB irradiation was
significantly stimulated the expression of MMPs, particularly MMP-1 (Figure 5B–F). As the
results showed, the MMP-1 level of HDF cells non-irradiated to UVB was thought as 100%
and the MMP-1 level of UVB-irradiated HDF cells was increased to 278.64%. Whereas,
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(-)-loliode reduced the levels of MMP-1 to 266.58, 240.58, and 170.13% in UVB-irradiated
HDF cells at the concentration of 6.25, 12.5, and 25 µg/mL, respectively (Figure 5B). These
results demonstrated that (-)-loliode could effectively improve collagen synthesis and
reduce MMPs expression in UVB-irradiated HDF cells.
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cells; (B) intracellular ROS scavenging effect of (-)-loliode in UVB-irradiated HDF cells; (C) protective effect of (-)-loliode
on UVB-induced cell death in HDF cells. Cell viability was measured by the MTT assay and intracellular ROS level was
measured by the DCF-DA assay. The data were expressed as the mean ± SE (n = 3). * p < 0.05 and ** p < 0.01 as compared to
the UVB-irradiated group, and ## p < 0.01 as compared to the control group.

In summary, the present results indicated that (-)-loliode protected UVB-induced
photodamage in both epidermis and dermis cells. The protective effects were displayed
in the following way: increased cell viability by inhibiting apoptosis via scavenging
intracellular ROS in UVB-irradiated HaCaT cells; increased collagen content by improving
oxidative damage and reducing MMPs expression in UVB-irradiated HDF cells.

2.3. Protective Effect of (-)-Loliode against UVB-induced Zebrafish Damage

Zebrafish have several advantages, such as the similarity of their genome to mammals,
comparatively small size, and short life span. In recent decades, zebrafish have become
a popular in vivo model in biological, toxicological, and pharmacological studies. UVB-
irradiated zebrafish have been successfully used to investigate the photoprotective effect
of natural compounds [1,21,22]. Previous studies indicated that UVB irradiation induces
intracellular ROS generation, lipid peroxidation, nitric oxide (NO), and cell death in
zebrafish, and these adverse effects could be suppressed by natural compounds [1,21,22].
Thus, in the present study, we evaluated the effect of (-)-loliode on UVB-irradiated zebrafish.

As shown in Figure 6A, UVB significantly increased the ROS levels of zebrafish,
and (-)-loliode effectively and dose-dependently reduced ROS levels of zebrafish. In
addition, (-)-loliode significantly suppressed cell death in UVB-irradiated zebrafish in a
dose-dependent manner (Figure 6B). The NO generation of UVB-irradiated zebrafish was
increased to 295.95% compared to non-irradiated zebrafish (100%). However, (-)-loliode
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decreased the NO levels to 276.63, 246.29, and 155.14% at the doses of 6.25, 12.5, and
25 µg/mL, respectively (Figure 6C). Furthermore, (-)-loliode suppressed lipid peroxidation
stimulated by UVB irradiation in zebrafish in a dose-dependent manner (Figure 6D). These
results indicated that (-)-loliode possesses a strong in vivo photoprotective effect in the
zebrafish model.
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gen contents in UVB-irradiated HDF cells; (B) MMP-1 expression levels in UVB-irradiated HDF cells; (C) MMP-2 expression
levels in UVB-irradiated HDF cells; (D) MMP-8 expression levels in UVB-irradiated HDF cells; (E) MMP-9 expression
levels in UVB-irradiated HDF cells; (F) MMP-13 expression levels in UVB-irradiated HDF cells. The amounts of collagen
and MMPs were assessed using the ELISA kits following the manufacturer’s instructions. The data was expressed as the
mean ± SE (n = 3). ** p < 0.01 as compared to the UVB-irradiated group and ## p < 0.01 as compared to the control group.
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3. Materials and Methods
3.1. Chemical and Regents

Dulbecco’s modified Eagle medium (DMEM), Ham’s nutrient mixtures medium
(F-12 medium), trypsin-EDTA, penicillin-streptomycin (P/S), and fetal bovine serum
(FBS) were purchased from Gibco-BRL (Grand Island, NY, USA). PIP ELISA kit was
purchased from TaKaRa Bio Inc (Shiga, Japan). The 2,7-dichlorofluorescein diacetate
(DCFH2-DA), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 1,3-Bis
(diphenylphosphino) propane (DPPP), diaminofluorophore 4-amino-5-methylamino-2′,7′-
difluorofluorescein diacetate (DAF-FM-DA), and the ELISA kits used for the analysis of
human MMPs were purchased from Sigma (St. Louis, MO, USA). All other chemicals used
in this study were of analytical grade.

3.2. Preparation of (-)-Loliode from S. horneri

S. horneri was collected in June 2020 from the coastal area of Jeju Island, South Korea.
(-)-Loliode was prepared according to the method described in our previous study [16].
In brief, the chloroform fraction from an 80% methanol extract of S. horneri was injected
into high-performance centrifugal partition chromatography and separated using a solvent
system composed of n-hexane/ethyl-acetate/methanol/distilled water (5:5:5:5, v/v). The
isolated (-)-loliode was identified as a single compound using a high-performance liquid
chromatography system and the structure of (-)-loliode was further confirmed by NMR
spectra [16].

3.3. In Vitro in HaCaT cells

HaCaT cells (ATCC® PCS-200-001™, Manassas, VA, USA) were cultured in DMEM
medium (10% FBS and 1% P/S) and seeded at a density of 1× 105 cells/mL for experiments.
To analyze the cytotoxicity of (-)-loliode on HaCaT cells, HaCaT cells were seeded and
incubated with (-)-loliode (6.25, 12.5, 25, 50, and 100 µg/mL). After 24 h, the cell viabilities
of (-)-loliode-treated HaCaT cells were measured by the MTT assay [23]. To evaluate the
photoprotective effect of (-)-loliode in HaCaT cells, (-)-loliode-treated HaCaT cells were
irradiated with UVB (30 mJ/cm2) in PBS solution (1×), then, the intracellular ROS level
and the viability of UVB-irradiated HaCaT cells were investigated with the DCF-DA assay
and the MTT assay, respectively [5]. In addition, the apoptosis body formation in UVB-
irradiated HaCaT cells was detected with the Hoechst staining assay according to the
protocol described by Wang et al. [24].

3.4. In Vitro in HDF cells

HDF cells (ATCC®PCS201012™, Manassas, VA, USA) were cultured in the medium
mixed with F-12 and DMEM (1:3) supplemented with 10% FBS and 1% P/S. HDF cells were
seeded at a concentration of 5.0× 104 cells/mL for experiments. To analyze the cytotoxicity
of (-)-loliode on HDF cells, HDF cells were seeded and incubated with (-)-loliode (6.25, 12.5,
25, 50, and 100 µg/mL). After 24 h, the cell viabilities of (-)-loliode-treated HDF cells were
measured by the MTT assay according to the method described by Wang et al. [23]. To
evaluate the photoprotective effect of (-)-loliode in HDF cells, HDF cells were seeded and
treated with (-)-loliode (6.25, 12.5, and 25 µg/mL). (-)-Loliode-treated cells were exposed
to UVB (50 mJ/cm2) and the intracellular ROS level and the viability of UVB-irradiated
HDF cells were determined with the DCF-DA assay and the MTT assay, respectively [11].
In addition, the collagen synthesis level and the expression of MMPs were assessed with
ELISA kits (Sigma, St. Louis, MO, USA) using the cell culture medium [1,11].

3.5. In Vivo Assay

The zebrafish were maintained according to the conditions described previously [1].
The experiment was approved by the Animal Care and Use Committee of the Jeju National
University (Approval No. 2019-O-0074). At 2 dpf, the zebrafish larvae (10 larvae/group)
were treated with (-)-loliode (6.25, 12.5, and 25 µg/mL) for 1 h. The UVB-irradiated
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zebrafish larvae were further incubated for 6 h. The ROS levels, cell death, NO production,
and lipid peroxidation of UVB-irradiated zebrafish were determined according to the
methods described in our previous study [1].

3.6. Statistical Analysis

The experiments were performed in triplicates and the data are expressed as the mean
± standard error (SE). One-way ANOVA was used to compare the mean values of each
treatment in SPSS 20.0. Significant differences between the means were identified with the
Tukey’s test.

4. Conclusions

In this study, we investigated the photoprotective effect of the (-)-loliode isolated
from S. horneri in vitro in HaCaT cells and HDF cells, as well as in vivo in zebrafish. The
results indicated that (-)-loliode possesses strong in vitro and in vivo photoprotective
effects, and suggested its potential in the cosmeceutical and pharmaceutical industries. To
develop (-)-loliode as a therapeutic agent or cosmetic to treat and prevent UVB-induced
skin damage, this clinical study is vital in further research.
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